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ABSTRACT

This paper deals with a number of applications of the correlation
and faltung functions, their Fourier transforms and their integrals. It
is possible to show that various types of distortions produced by a record-
ing instrument do not affect the value of the integral of the quantity
recorded. This should be of great interest to designers of recording
instruments. The advantage of using the F.T. in compounding probability
distribution functions is pointed out with an illustration giving a short
derivation of Kluyver’s famous distribution for the problem of random
“walk in two dimensions by using this method. Finally, the relation of
the correlation function to the Patterson function of a crystal structure
is also pointed out.

1. INTRODUCTION

Two types of integrals occur in various problems in physics and prob-
ability theory, which may be represented in the following form:

Tehe—x) ¢ =f(D=geh () () ®
e A+ x)de = () =goh () (say). ?)

The former is called the “ Faltung” (folding) or “convolution” of the func-
tions g(x) and A (x). The latter does not seem to have been recognised
as a typical form. However, the term “correlation funciion” of g (x) and
h(x) seems to be appropriate for it, as it is the integral of the product of
the value of g (x) at x’ and of & (x) with its origin shifted by — x at x'.
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Equations (1) and (2) can also be written in another equivalent form,
namely ‘

2Fh (x) =__}:} (x — x') h (¥') dx' = hEg (x) 3)

2ch (%) =_Z} (' — %) b (&) dx’  hcg () @

It is the purpose of this paper to point out some of the properties of these
functions and a few types of problems in which they find application.

Analogous to the notation of matrix theory, we may define the follow-
ing functions related to a given (complex) function f(x) = a (x) + b (x):

F(x) [ftranspose-x'] = f (— x) = a(— x) + ib (— x) (5 a)
S * (x) [f-conjugate-x'] = [ f (x)]* = a (x) — ib (x) (5 b)
ST () [f-dagger-x] = f* (x) = a (— x) — ib (— X) (Sc)

It is clear that

) =F** () =1t (x) = (%) 6)

" and that the four operations identity, transpose, star and dagger form a
group of order four, isomorphous with the group D, (= C, X C,).

By far the most interesting properties of the faltung and correlation
functions are concerned with their integral and Fourier transform (F.T.).
We define the F.T. of the function f(x) as

F(X) = | f(x) ei#*%4x, (70)
with the inverse relation

) =_+£:°F (X) e-imXzgx (7 b)

Then, it follows that the F.T. of f(x), f*(x) and f1 (x) are F (X), F (X)
and F*(X) respectively and their integrals are F, F* and F* respectively,
where

F =F(0) =_L°}(x) dx. ®)
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Using the above results, the following are readily proved:

oth wrh %)
hee g oth w(w?z (10)
‘» erh® (gt (1)
ofeh  g*ch gt (12)

In particular, the results shown in Table T are noteworthy. Here, G (X),
H(X) are the Fourier transforms of g (v) and h(x) and G and H are their

$hwy

integrals.  The results tha [ el vy dy - GH :md | g(;‘.lz (A) dlx == GH may
bl * +}

be called the ™ Faltung mtegral theorem™ and the * corrclation integral
theorem ™ respectivels.

Tanrr 1

Fuurier transforms and mtegrals of faltung and correlation functions

Correlation bquivalent Fourier
function EXPressIon transform Integral
dn d MHUI! :,

iy aih G(X)H(X)  GH
wh aih GX)H(X)  GH

ROy gih G*X)H(X)  G*H
eich e GHXOH(X)  G*H

T S SR AT

The extension of these equations to higher dimensions can readily be made
with the following definitions:

§eat

ah(r) 1o T b —r)dr | (13)

"RY R ww kB3

geh(r) = j’ g(r Yh(r 4 r)dr. (14)

ih@ L X 21

The Fourier transform is

F(R) - ?M Y‘} (r) PaTR.T
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with the inverse
Bew ¥

finy [ PR 2 TUR

v

t1t)
All the results mentioned abuec e e wabut b cndiord by pognd X
by R.

Sn éil?‘kﬂ. Hm g’hiﬂgjfi‘%ﬁ ﬁf §§w !vﬁx%’ii;fai,; BRI AT n'%gg“{hifd 11 mr
faltung or convolution of ans numbee of Dty ¢ Witing
the integral definmy the Caltung of ¢, teraend oo the ssmmetneal for

AR

[T LA NREEE B N U PN TR O S SR S an

we have more generally

il o gpygy vt

IR B R
[ R TS T Wi A b ude e dry
with
Py oorg b 8 Ry o F 11b)

It is then readily shown thal
F(RY G (RYGy(RY Gy tRy, 1%

ot the F.T. of the faltung function i the prodduct or e b Do the &
indiviclual functions.

We shall now consider the applwation of these Tundtions Do vaneh
of problems which occur m physacs These hase been chosen wath the
idea of illustrating the types of such prablems and no attempt o made to
make them exhaustive.

& Mucrorotosr i Ricoun

Suppose we are scanning a senics of banes an oo photographie plate by
means of a microphotameter, whose explonng beam has a e width w
(say). For convenience, let the plate be a positive prnt of a spectrum, %0
that A (x) [Fig. | (&)} represents the true variatuwan g the fransmission,
However, because of the finite width of the  nucrophotometer apot, the
record ¢ (x) (Fig. 1 (M)} will not be equally sharp 1t v readily seen that
¢ (x) is the correlation function of g with #, s

¥ ouny
¢ (x) = :‘L gLV hix 4 x'ydy ~ gokoy) I
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The interesting point is that the application of the correlation integral
theorem gives

Te@ar=Tgeer . Thinds | @

or Area under the curve in the record = w (area under the true curve)  (3)

where w = width of the microphotometer beam [the intensity being scaled
such that g (x) = 1 within this width]. Thus, in spite of the distortion in
the shape of the lines, the integrated value obtained from the record is pro-
portional to the correct value. In fact, from the correlation integral theorem,
this is true even if the intensity distribution in the microphotometer spot
is not uniform. Extending this idea to the individual lines in the record
[Fig. 1(b)]. the areas under the different peaks would be exactly pro-
portional to the areas under the corresponding peaks in Fig. 1 (a), even
for an arbitrary shape of the function g (x). Of course, the peaks should
be resolved, so that effectively the area is the integral from — oo to + oo.

b 9% & (=g ¢h (1)
& o
: 3
g hex) &
e X, e X,
Fic. 1(a) Fic. 1 (b)

This result appears to the author to be important, for it is applicable
to a variety of other cases, e.g., in recording spectrophotometers and so
on. It is obvious that if A(x)=1 for all x, then ¢(x) = [g(x)dx =
a constant K for all x. Then, Equation (2) becomes

T40)de=K [ h(adx | @

Consequently, if the instrument is graduated to read unity for unit incident
intensity when it is uniform, then the constant K becomes effectively unity,
and thereafter all integrated values on the record will be correctly scaled

automatically.
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3. X-RAY REFLECTION WITH [DIVERGENT Beam

A problem which is mathematically very similar to the above is the
shape (or angular distribution of intensity) of an Xeray reflection by a
crystal, when the incident beam is not perfectly collimated.
Suppose g (0) is the distribution of intensity about a mean position
6, when the incident beam has zero angular width [Fig. 2{a)]. I Aoy
: the angular distribution of intensity in the incident beam [Fig. 2 M}, thenat
: is obvious that the reflected intensity R (0), when the erystalis setat , 1 &1

R(6)= [ g(®— 07 h(0")d0" = grh (0). (5}

A Tittle reflection will show why the faltung integral occurs, in this cise,
while the correlation integral occurs in the microphotometer problem.
If the functions f(x) and g(x) are symmetrical, the two are one and the
same, but they are not so in gencral.

[ K\Q
. \g (©)
g o
E
b b
o Fio. 2.
T Just as in the previous case, an interesting result follows for the integral
- = of R(f). By the faltung integral theorem,
l 400 +00 oo
SR J ROV =] g®)dd. [ h(0)dd = pE, (6)
Lo i -—00 E)
L o) using a motation commonly used in crystallography.

o ie., By= [h(6)df is the total energy in the incident beam and p =
e [g(0)df is the area under the curve g(0) for perfect collimation,
IR usually called the “integrated reflection”. Thus,
| _IR(®) 48

P=""g, > (N

and this is true, independent of the shapes of / (6) and g (6).
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This Lquation (7) is widely used by crystallographers and is  usually
derived for the case corresponding to Fig. 2 (), ie., for a perfectly  colli-
mated incident beam. However, in any experimental set-up, the incident
beam has a fimte angular width and the same formula is used for this case
also. - An intuitive justitication of this may be piven by supposing that the
incident beam consists of a series of well-collimated  components, for cuch
of which the result (6) holds, so that it holds also for the sum. Going to
the limit, Equation (7) follows, However, a rigorous justification for taking
p o be equal to the ratio of the integrals of the observed reflection curve
[R ()] to the total energy E; in the incident beam is only obtainable from
the faltung integral theorem.

Incidentally, this shows that in any Xerav technique, irrespective of
the shape of the line profile, the integrated intensity of the reflection iy 4
true measure of the quantity p.

4. INITGRATING METIRS

(Y Simple averaging,  Suppose {6 5 the vartittion of some quantity
say with time 7, and suppose that o meter is able to register not this vilue,
but only the mean value over the interval ¢ st 4 v This is the simplest
type of mteprating meter, for iU gives a reading & (1) proportional to the
integral of A(1) from ¢« o e 5 70 This can he written down  imme-
distely av a correlution function, by tiking,

o) Ko for R S

* (8)
gl 0 outside this interval ) |

and then
S0 K [ hi b )y gur)dr (9)

Av i the previous case, the meter can be made to give the correct value
for a steady mput by making K 12+ Dnthat case, it is seen hat if a
pulse is fod i, then the itegrited vidue of the ontput s exactly cqual to
the integrated value of the anput, although the shape of the output i
distorted.

Gy Type of integration met with i counting  rate meters, Counting
rate meters, used for instance with Geiger counters, contain a resistance.
apacity tank cireuit, to which charge 15 fed in at a rate proportional to the
number of counts repistered per second.  Let 2(r) be this input current, so
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that the amount of accumulated charge in time dr’ at ¢ is h(t) dt'. Since
the tank circuit has a finite time constant = CR (C = capacity, R = resist-
ance), this charge will leak away cxponentially as e--U where a = 1/CR.
Thus, the total charge at time f is

[h() e dr = 1() (say). (10)

This can be put as a faltung function by defining

g()y=e for 130

¢(=0 for <0} ()
when

f=gh= [ hE)gl—ndr. 1)
The voltage across the condenser is obviously V (1) = f(1)/C and so

V) =g emh () (13)

Consequently, if there is a sharp peak in the counting rate, and the
true integrated value is [ 4 () dt = H, then the integral of the record, which
is the voltage, is

f VO di= f gk () dr =, f g di J h(0) di
CH (o ay  H ,
-8 f ol = G = HR. (14

Thus, the integral of the recorded trace is exactly proportional to the
integral of the input (H), the constant of proportionality being R. Once
again, we find that the distortion of the shape of the peak does not matter

and that the total area under the recorded curve is exactly proportional
to the true value.

Incidentally, the absence of the capacity value (C) in HR of Eqn. (14)
shows that, once the instrument is correctly calibrated, then the time con-
stant can be altered by changing C, without affecting the calibration.
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5. ErrecT OF DELAY WITH OR WITHOUT INTEGRATION

It is obvious that a simple delay cannot affect the integrated value of
a quantity. Thus, if

fx)=h(x—a).
then

Troyac=Thx—adxr=H (15)

On the other hand, suppose there is a delay in recording in addition
to integration in an integrating meter. Denoting the independent variable
quite generally by x (this may be time or distance on a recording paper),
the two effects together can be represented by the equation

Flx) = Kj? B(x = x' +a) g (&) dv’ = Kgrh (x + a). (16)

It is again clear that the integrated value of f(x) will be proportional
to the integrated value of 7 (x).

These results can be generalised as follows: Irrespective of any instru-
mental effects like integrating time, delay, etc., if a meter is calibrated to read
correctly for constant input, the integral of the record will be correct even for
varying input, i.e., there may be a large distortion in the record, but the
integrated value will be correct.

6. PROBABILITY DISTRIBUTION FUNCTIONS

The concept of the faltung of two or more functions occurs most fre-
quently in the applications of probability theory. If p, (x;), pa (%), ...
Pn (xp) are the probability distribution functions* (p.d.f.) of a number of

random variables x; and if x = } x; and the variables are independent, then
1

the p.d.f. of x is clearly

400

px)={

-0

_:rf::p1 (x) pa(xg) ... pn(xn)dx; ... dxny an

* The term distribution function is used here to denote the function p (x), which gives the
probability that the variable lies between x and x -+ dx as p (x) dx. This agrees with the nomen-
clature in physics and applied mathematics (e.g., Maxwell distribution of velocities, Gaussian
distribution of errors, etc.), besides being description of the actual function. It is a pity that in
the more abstract studies on probability, the term “distribution” is used for the integral of
this function, while the term “frequency function” is used for p (x).

g ¥
W
v
N
T
;
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with

X=X + X+ ... + Xn (18)
Thus, p (x) is the faltung of the 1 functions p; (x3)-

Proof that p (X) is a p.d.f—Mathematically, a p.d.f. p; (x;) satisfies the
following two conditions .

(@) p; (x;) is positive for all x;

(b)j:Pi () dx; =1 (19)

The range of integration may be finite in many cases, but it can always be
made infinite by’ putting p; = 0 outside this range.

Now Equation (17) may be derived by probability arguments and
p (x)dx then gives the probability that the compounded variable x lies
between x and x —+ dx. However, the simplest proof that the function
p (x) defined by Equation (17) is in fact a p.d.f. and satisfies 19 (¢) and (b)
is obtained by an application of the faltung integral theorem. Then it
follows thal

400 n +o0

Jp(x)dx = ‘T-’ JopiC) d = 1, (20)
-—00 =] w—00

thus proving the condition 19 (a). The positivity condition (19 /) is obtained

from the fact that all the terms occurring in Equation (17) are positive.

Now it immediately follows from Equations (17) and (18) that their
F.T.s are related by the equation

P (X) - P1 (X) - P:n (X) - ‘H Pi (X). (21)

In stochastic theory, P (x) is called the characteristic function of p (x)
and Equation (19) may be then interpreted in the following form: *‘‘When
a number of p.d.f’s are compounded, the characteristic function of the

compounded p.d.f. is the product of the charact ristic functions of the
individual omes.”

. The above results are readily extended to joint probability distributions
in any number of variables.

Thus, if
r=r1+rz+--.+rn,
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then
o+ 0 +00

p(r) ”m{m- . wpr] (r) ... pn (rn) dry ... drpy (22)
and we have also

P ()‘) ,’ 1 l)é (R) RELERE ] M (23)
where

Pi (R) = [ pilry) 2Ry, (24)

In fact, the F.T. is a convenient means of doing the compounding,
either numerically or even theorctically. Thus, Equations (23) and (24)
are directly applicable to the derivation of the distribution ¢y, (r) dr for the
position of a particle after il has suffered » random displacements, when
the distribution function for cach displacement is given (Theory of Random
Flights, Chandrasckhar, 1943). Remembering that 27 is included in the
exponent in our formule, the above cquations give at once Equations (51)
and (52) of Chandrasckhar’s formulation. Chandrasekhar has in fact used
, the F.T. method to work out various results in the theory of random flights
¢ in three dimensions.

Tt can also be used to work out in a straight-forward manner the general
formula for the problem of random walk in two dimensions. Suppose
the i-th step is of length /;. The problem is to find the probability Wy, (r) dr
that onc is at a distance between r and r - dr from the origin after taking
n steps in random directions. ‘The function p; (r;) is then given by

I
pir) =5 8([ri [ 1) (25)

whose F.T. is just

P; (R) = J, (27RJy).

Hence, il ¢y (r) dr is the probability that the resultant displacement after
n steps lies in an area dr at r, then

ET. of gn (r) = ‘{"{ P(R) = 1 J,(2nRY), 26)
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so that
Wn (r) = 2""’4’7& (I')

—2nr [ ] e~temrrens IT ), (27R1y) RARA

L1}

= dn?r [ Ry (2mRr) 1T J, (27RA}) dR. 2N
|

fa )

Putting 27R = x, this gives

Wo(r)=r ijlo (rx) 11 Jo (l3x) dx. {28}
0 L=

which is identical with the well-known formula of Kluyver (1906) in the

form given by Rayleigh (1919), usually obtained by a long derivation.

Fourier transform methods scem to be ideally suited not only for com-
pounding distribution functions, but also for deconvoluting functions,®
e.g., to get h(x) from grh (x) when g (x) is known. The method can be
employed for numerical calculations with case, since routine methods of
calculating Fourier transforms are available and the latter have only to be
multiplied or divided thereafter.

7. CORRELATION FUNCTION OF REAL FUNCTIONS

For a real function f(x), F (X) = F*(X) and it follows that if both
g(x) and h(x) are real functions, then

FT. of gch(x) = G*(X)H (X).

In particular, if g and k are the same function. the function goe (x) may
be called the “autocorrelation function™ of g. Its Fourier transform is
then equal to G*(X)G(X) = | G(X) 2. This function is of very great
importance in X-ray crystallography and is known as the Patterson fune-
tion [.P (x)] in that field. 1In fact, the propertics of P (x), which is the inverse
Fourfer transform of | G (X) |* and of f(x) the faltung which is the inverse
Fourier transform of G (X) H (X) have been extensively studied in con-

nection with a study of crystal structures by Ramachandran and Raman
(1959) and Raman (1959).

* The use of the F.T. for deconvoluting a function has bhe i 3 "
. \ ; sen pointed out by § ; (1948,
1955) in connection with the study of X-ray line profiles, I ed out by Stokes (1948,




