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Abstract

Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in
the fifth intron of the essential gene rout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic
analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role
for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced
by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not nor-
mally expressed, did not affect organization of the nuclear lamina. /lamC mutant alleles suppressed position effect variegation
normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C
affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role

during development and is required for chromatin organization.

[Gurudatta B. V., Shashidhara L. S. and Parnaik V. K. 2010 Lamin C and chromatin organization in Drosophila. J. Genet. 89, 37-49]

Introduction

Lamins are the components of a filamentous network un-
derlying the inner nuclear membrane termed the nuclear
lamina, and are also located in the interior of the nucleus.
The lamina is an important determinant of interphase nu-
clear architecture as it maintains the integrity of the nu-
clear envelope and provides anchoring sites for chromatin.
Lamins have essential functions in the organization of DNA
replication, transcription and RNA splicing, as well as in
apoptosis (reviewed in Cohen er al. 2001; Goldman et al.
2002; Dechat et al. 2008; Parnaik 2008). Two major kinds
of lamins are present in vertebrate cells: B-type lamins (B1
and B2), found in nearly all somatic cells; and A-type lamins
(A and C), expressed in differentiated cells of several lin-
eages. Lamins belong to the intermediate filament family
of proteins and have a short N-terminal head domain fol-
lowed by a a-helical rod and a globular tail (Herrmann et
al. 2007). Lamin genes are highly conserved across species.
Drosophila melanogaster has two lamin genes, the B-type
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homologue lamin Dmy (lamDmy), expressed in all cell types
(Gruenbaum et al. 1988); and lamin C (lamC), that exhibits
tissue-specific expression like the vertebrate A-type lamins
(Bossie and Sanders 1993; Riemer et al. 1995; Melcer et al.
2007).

Mutations in human lamin A gene (LMNA) cause at least
nine debilitating diseases that affect specific tissues and have
been collectively termed laminopathies (reviewed by Wor-
man and Courvalin 2005; Broers ef al. 2006; Capell and
Collins 2006). Most mutations affect skeletal and cardiac
muscles, causing autosomal dominant Emery—Dreifuss mus-
cular dystrophy (EDMD), dilated cardiomyopathy and limb-
girdle muscular dystrophy. Other mutations cause loss of
white fat, bone disorders and peripheral neuropathy. Ma-
jority of mutations are missense mutations; those affecting
muscle tissue occur throughout the gene, whereas mutations
causing abnormalities in fat tissue tend to be clustered to-
wards the carboxy terminus. Valuable insights into lamin A
function have been obtained by the knock-down of mouse
LMNA (Sullivan et al. 1999). Mice that lack LMNA develop
severe muscle wasting, similar to human EDMD and loss
of white fat, by 3—4 weeks, and die by eight weeks after
birth. It has been suggested that abnormal nuclear struc-

Keywords. nuclear lamina; laminopathies; lamin Dmy; HP1; heterochromatin.

Journal of Genetics, Vol. 89, No. 1, April 2010 37



B. V. Gurudatta et al.

tures might make cells more susceptible to physical stress
(Sullivan et al. 1999; Lammerding et al. 2004), lead to de-
fects in chromatin organization and altered gene expression
(Wilson 2000; Nikolova et al. 2004; Capanni et al. 2005)
and affect signalling pathways during myoblast differenti-
ation (Muralikrishna ef al. 2001; Mariappan and Parnaik
2005; Parnaik and Manju 2006). Consistently, several stud-
ies suggest that interactions between lamins and their binding
partners might influence chromatin structure and gene activ-
ity (reviewed by Goldman et al. 2002; Zastrow et al. 2004).
Other Drosophila nuclear membrane proteins such as young
arrest (YA) and otefin interact with lamin Dmg and are likely
to be involved in nuclear envelope assembly (Goldberg et al.
1998).

Drosophila lamC is situated in the fifth intron of another
gene, tout velu (ttv), which codes for a protein involved in
the synthesis of heparan sulphate proteoglycan (Bellaiche
et al. 1998; The et al. 1999). Heat-induced overexpression
of a Drosophila lamin C cDNA construct with a modified
C-terminus resulted in melanotic tumours and larval death
(Stuurman et al. 1999). Mutations in lamC that are lethal at
the pre-pupal stage have been reported (Schulze et al. 2005),
but a detailed analysis of lamC functions is not yet available.

Results reported here suggest that misregulation of lamC
affects nuclear organization in specific tissues during devel-
opment, leading to apoptotic cell death. Further, lamC mu-
tant alleles suppress position effect variegation (PEV) and
both downregulation and overexpression of lamC alter the
localization of heterochromatin protein 1 (HP1), thus sup-
porting a role for lamin C in chromatin organization.

Materials and methods

Drosophila stocks and genetic analysis

Recombinant chromosomes and combinations of GAL4
drivers and UAS lines, different mutations and markers
were generated using standard genetic techniques. Several
flystocks were obtained from various sources: lamC::GFP
PTT-G00158 (Morin et al. 2001), ttv! 1904 11,0081 " 41,,14030,
Df(2R)trix, hs-FLP, noc/CyO, ey-FLP, P(FRT)42D and
GMR-RFP were obtained from Bloomington Stock Center,
Indiana, USA; lamCF¥?% and lamCFX'87 were kindly pro-
vided by L. L. Wallrath (Schulze et al. 2005); sh631 line
was from S. X. Hou (Oh er al. 2003) and NP3088 was
obtained from the Drosophila Genetic Resource Center,
Kyoto, Japan. GAL4 strains used are ap-GAL4 and pnr-
GALA4 (Calleja et al. 1996), hs-GAL4 (personal communica-
tion to FlyBase, 2003.5.27), omb-GAL4 (personal commu-
nication to FlyBase, Calleja, 1996.10.16), ptc-GAL4 (Brand
and Perrimon 1993), sd-GAL4 (Shyamala and Chopra 1999)
and Ubx-GALA4 (Pallavi and Shashidhara 2003). UAS-GFP is
reported in Halfon et al. (2002). elav-GAL4 and sca-GAL4
are from Bloomington Stock Center, Indiana USA.

UAS-lamC and lamCRNA transgenes

A full-length lamin C cDNA construct (LD 31805; Berke-
ley Drosophila Genome Project) was subcloned into pUAST
vector (Brand and Perrimon 1993). The construct was first
sequenced to ensure that no mutations have been introduced
during cloning. Transgenic lines were generated using stan-
dard methods. Two independent transgenic flies were ob-
tained. The unique combination of pUAST primer and out-
ward primer from the cloned cDNA allowed amplification of
lamin C cDNA only from the transgene and their sequence
was further verified. Both the insertions showed similar ef-
fects and Western blot analysis showed substantial increase
in lamin C levels only when induced with As-GAL4.

The unique RNAI target sequences specific for 3’UTR
and tail region of lamC were PCR-amplified from cDNA
templates using specific primers with incorporated restriction
sites (shown below in small letters). The primers used were
as follows:
lamin C-UTR

forward 5’ ggaattc AGGATGTTGCCAGCTACGAC 3’
reverse 5’ gaatgcGGCCGCCCAAAATGCATGTTC 3’
lamin C-tail
forward 5’cggaattcCGCATTCGGGAGCTGGAGAACCTC3’
reverse 5 GGTGTGGCTGGAAACGTTG 3’

The lamin C-UTR (1840-2311) and lamin C-tail (1121—
1889) segments of lamC were subcloned initially into pMOS
vector. Sequences were verified and then subcloned into
pSympUAST vector (Giordano et al. 2002). Transgenic lines
were generated using standard methods. Out of 15 indepen-
dent transgenic flies generated and examined, two transgenic
lines were used for all the studies based on the consistency
in generating phenotypes.

Immunohistochemistry

Rabbit polyclonal antibodies to lamin C and guinea pig poly-
clonal antibodies to lamin Dmg were raised to the bacteri-
ally expressed Drosophila proteins. Monoclonal antibodies
to lamin C (LC 28.26; Riemer et al. 1995) and to HP1 (C1A9;
James et al. 1989) were obtained from the Developmental
Studies Hybridoma Bank (University of lowa, lowa, USA).
Their specificities were confirmed by Western blot analysis
and immunofluorescence assays. Furthermore, in the CNS,
where lamin C is not expressed, we observed staining of the
nuclear envelope only with anti-lamin Dmy antibodies (see
below). Monoclonal antibodies to 8-galactosidase were from
Sigma (St Louis, USA). Rabbit polyclonal antibodies against
Drosophila GAGA factor was from R. Mishra (CCMB, Hy-
derabad, India). Immunochemical staining on imaginal discs
and on polytene chromosomes was performed as described
earlier (Patel et al. 1989; Lavrov et al. 2004). For double an-
tibody staining, a combination of (i) monoclonal anti-lamin
C and polyclonal anti-lamin Dmy, (ii) polyclonal anti-lamin
C and monoclonal anti-HP1 and (iii) polyclonal anti-lamin C
and monoclonal anti-B-galactosidase antibodies were used.
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Fluorescence images were obtained either on a Zeiss
Apotome™ microscope or Zeiss LSM/Meta Confocal mi-
croscope (Jena, Germany). The control and experimental im-
ages were digitized at identical microscope and camera set-
tings. The quantifications were done using Image J software
(NIH, Washington, USA). The adult appendages were pro-
cessed for microscopy as described earlier (Shashidhara et
al. 1999).

Position-effect-variegation assay

For assaying dominant suppression of PEV, an inver-
sion stock In(1)w"#": Su(var)205°/In(2L)Cy, In(2R)Cy, Cy'
(Bloomington Stock Center #6234) and telomeric PEV in-
sertion 39C-72 (kindly provided by L. L. Wallrath, Univer-
sity of Iowa, Iowa, USA) were used. As a third PEV marker,
variegating Sb locus with a pericentromeric heterochromatin
insertion 7(2;3)Sb" (Sinclair et al. 1983) was used. The lamC
excision females, of genotypes as shown in Results section,
were crossed with males of PEV lines. The progeny were
assayed for suppression of PEV as described (Reuter et al.
1982; Cryderman et al. 1999). Progeny of w!//® females
crossed to males of PEV lines were used as control for com-
parison.

A AE 003814 Genomic contig 2R

11,0068

A4

Results

The genomic locus of Drosophila lamC is within the fifth in-
tron of the essential gene #fv in the opposite orientation, at
position 51B1, on the right arm of chromosome 2 (see figure
LA). Several lethal P-element insertions (zrv/°%, G00158,
NP3088 and sh631) have been mapped to the 5’ region of
lamC gene (shown in figure 1B). However, complementation
tests showed that all of them were lethal with #fv-specific
mutant allele v’’’ Schulze et al. (2005) have reported
the isolation of two excision alleles of lamC, lamCFX'87 and
lamCEX2% both of which are viable over 118! and show
near complete reduction in the levels of lamin C protein.
They both were reported to be prepupal lethal when brought
in trans over the deficiency Df{2R)trix. We have observed
that both lamCFX'87 and lam“F**% alleles are early larval
lethal when homozygous and are late larval or early pupal
lethal only when hemizygous with Df{2R)trix. Considering
that these alleles could be rescued by UAS-lamin C trans-
gene (Schulze et al. 2005), these discrepancies indicate com-
plexities of the lamC locus. We, therefore, employed RNAi-
mediated gene knock-down approach to examine the effect
of downregulation of lamC in more detail.
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Figure 1. Schematic representation of the lamC locus. (A) The genomic contig har-
bouring the lamC and #tv genes is indicated (not to scale). (B) The lamC genomic locus.
The exact insertion sites of various P-elements used in this study have been derived by
PCR mapping and are numbered with respect to the lamC transcription-initiation site,
which was determined by primer extension analysis (data not shown). (C) The posi-
tions of the fragments used in RNAi experiments are marked by arrows in the lamin
C cDNA. (D) Western blot analysis, for lamin C levels in wild-type (WT) and in hs-
GAL4/UAS-lamC-UTRFN4; UAS-lamC-tail®¥4 (RNAI) larvae continuously grown at
29°C. (E) Western blot analyses for lamin C levels in wild-type larvae grown at 29°C (a)
and hs-GAL4/UAS-lamin C larvae grown at 25°C (b) In another Western blot analysis,
lamin C levels were estimated in wild-type (c) and hs-GAL4/UAS-lamin C (d) larvae
both grown at 29°C and given a pulse of heat-shock at 37°C for 30 min (e) Actin and
a-tubulin were used as control for normalizing loading differences.
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Defects associated with RNAi-mediated downregulation of
lamin C

Two RNAI target regions that do not have significant ho-
mology of more than 18 bp with any other Drosophila
gene (including lamDmy) were chosen for generating UAS-
lamCRNAi transgenes. Regions corresponding to 3’UTR and
tail sequences were used to generate RNAi constructs (figure
1C). hs-GAL4-driven expression of one copy of either UAS-
lamC-UTRRNATL or UAS-lamC-1aitRNAT construct did not
affect viability or induce any phenotypes, when expressed in
wild-type background. We examined the effect of downreg-
ulation of lamC function using both the RNAI transgenes to-
gether. Constitutive expression of both lamC- UTRRNAI 4pq
lamC-tailRNAT together using hs-GAL4 driver resulted early
larval lethality. The Western blot analysis using the early lar-
vae showed significant reduction in the levels of lamin C pro-
tein (figure 1D).

Combined expression of both the RNAI constructs in the
dorsal compartment of the wing disc using ap-GAL4 driver
resulted in significant loss of lamin C (figure 2C). These discs
also showed depletion in lamin Dmy (figure 2C), suggesting
that loss of lamin C caused disruption of the nuclear lamina.
This was associated with lethality (upto 25%; n = 161) and
adult phenotypes (in 12% flies), which were typically, loss of
thoracic bristles (figure 2E) and necrotic patches on the wing
blade (figure 2H). Similar phenotypes were observed when
UAS-lamC-UTRRNAL o1 UAS-lamC-1ailRNAT alone was ex-
pressed in lamCEX296 heterozygous backgrounds (figure
2F). Combined expression of both the RNAI transgenes (fig-
ure 2I) or one copy of the RNAI transgene in lamCEX296
background using ptc-GAL4 driver resulted in mild curled-
wing phenotype (data not shown). These effects can be at-
tributed to cell death resulting from downregulation of lamin
C expression.

Effects of tissue-specific overexpression of lamin C

We examined the phenotypes caused by the overexpression
of lamin C under a wide range of tissue-specific enhancers
using the UAS/GALA4 system (figure 1E).

We first examined if overexpression of lamin C in tis-
sues, where it is normally not expressed, affects nuclear lam-
ina organization or tissue development. Interestingly, elav-
GAL4 mediated expression of lamin C in the CNS, where it
is normally not expressed (figure 3A), led to incorporation of
lamin C into the nuclear periphery in a normal rim pattern
(figure 3B), but did not affect CNS development and adult
flies were normal. To check if lamin C overexpression af-
fects the organization of the nuclear lamina in the wing disc,
we overexpressed lamin C using Ubx-GAL4 driver, which is
expressed in the peripodial cells of the wing disc (figure 3C).
We then examined the effect of overexpression of LamC on
tissue development by expressing it in developing wing using
omb-GAL4 and ap-GALA4 drivers. We observed distinct phe-
notypes depending on the tissue and domain of overexpres-

sion of lamin C, such as ectopic veins, thickening of veins
and loss of the intervein tissue or defective thoracic closure
(data not shown). Considering the overexpression of LamC
induces wing phenotypes, the absence of phenotype when
LamC is overexpressed in the developing CNS reflects its
tissue-specific role.

We then examined the effect of overexpression of LamC
on the organization of the nuclear lamina. Peripodial cells
are squamous epithelial cells, which are large compared to
other columnar epithelial cells and thereby it would be eas-
ier to examine the effect of lamin C overexpression on the
nuclear lamina. Normally, epithelial cells show smooth pe-
ripheral staining of the lamins in the nuclei (figure 3,D&F).
Ubx-GAL4 mediated lamin C expression in the wing disc
gave rise to aberrant nuclear morphology with distinct ag-
gregates of lamin C and lamin Dmy at the nuclear periphery
(figure 3,E&QG).

We then examined the effect of overexpression of lamin C
in developing muscles in view of the muscle-specific defects
observed with lamin A/C mutations in humans and mice.
Lamin C expression mediated by the early muscle-specific
GAL4 driver, 24B-GALA4, led to severe defects in the forma-
tion of larval longitudinal muscles (figure 3I) and, probably
as a consequence, lethality at the first instar larval stage. pnr-
GALA4 mediated lamin C expression led to disruption in orga-
nization of dorsal indirect flight muscles in the adult (figure
3K).

The above described effects of lamin C overexpression in
epithelial and muscle cells suggest cellular lethality (consis-
tent with aberrant nuclear morphology). We, therefore, ex-
amined if lamin C overexpression causes cell death, in par-
ticular apoptosis. For this purpose, we expressed lamin C in a
small domain of the wing disc using ptrc-GAL4 driver, which
expresses only in the A/P boundary cells (figure 4A). Stain-
ing of these wing discs with acridine orange suggested ex-
tensive apoptotic cell death along the A/P boundary, where
lamin C is overexpressed (figure 4C), probably as a conse-
quence the A/P boundary itself was much narrower com-
pared to wild-type discs (figure 4D). We observed highly
condensed nuclei, and there was a distinct change in the nor-
mal localization of both lamin C and lamin Dmy (figure 4E;
shown at higher magnification in figure 4F). These effects
were restricted to the pfc-GAL4 domain of expression and
the surrounding cells displayed normal staining of lamins
C and Dmy. The apoptosis caused by the overexpression of
lamin C was further confirmed as the bacculovirus caspase
inhibitor, P35, was able to inhibit the cell death and restore
normal nuclear morphology (figure 4G). The width of the
A/P boundary was also comparable to the wild-type (figure
4G).

Alterations in chromatin structure due to overexpression of
lamin C

Several studies suggest that interactions among lamins and
their binding partners might influence chromatin structure

40 Journal of Genetics, Vol. 89, No. 1, April 2010



Lamin C function in Drosophila

A Wild-type
Lamin C Lamin® Dm0

Lamin Dm0

= >
| ptc:lamCRNAf

Figure 2. Larval and adult phenotypes caused by RNAi-mediated down reg-
ulation of lamin C expression. (A) Wild-type wing disc stained with mono-
clonal antibodies to lamin C and polyclonal antibodies to lamin Dmy. (B) ap-
GAL4/UAS-GFP wing discs showing the expression pattern of ap-GAL4 in
wing discs. It is expressed only in dorsal cells of the disc. (C) ap-GAL4/UAS-
lamC-UTR®NA'; UAS-lamC-tail®™A" wing disc stained with antibodies to lamin
C (red) and lamin Dmjy (green). Note levels of lamin C are considerably down
regulated. There is a decrease in lamin Dmy levels (also see figure 8). (D) Adult
thorax of wild-type fly. (E) ap-GAL4/UAS-lamC-UTR®N!; UAS-lamC-tail®N4!
fly. Note, loss of scutellum (asterix) and shortening of thoracic macrochaete
(sensory organs; arrows). (F) Adult thorax of ap-GAL4/lamCE¥*%; UAS-lamC-
UTRRNA fly with similar thoracic phenotypes. Similar phenotypes were ob-
served in ap-GAL4/lamCEX®; UAS-lamC-UTR®™ A flies. One copy of UAS-
lamC-UTR®N on its own does not have any phenotype. (G-I) Adult wing blades
of wildtype (G), ap-GAL4/UAS-lamC-UTR®A!; UAS-lamC-tail®4' (H) and
pte-GAL4/UAS-lamC-UTR™A!; UAS-lamC-tail®™4! (1) flies. Down regulation
of lamin C causes cell death (arrow in H) and aberrant vein patterns (arrow in I)
and also affects wing size (I).
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Figure 3. Larval and adult phenotypes caused by the misexpression of lamin C under various tissue-
specific enhancers. (A, B) Wild-type (A) and elav-GAL4/UAS-lamin C (B) third instar larval CNS.
Normally, lamin C is not expressed in the larval CNS and its misexpression is not associated with any
phenotype. (C) Ubx-GAL4/UAS-GFP wing disc showing GAL4 expression in the peripodial cells. (D,
E) Wild-type (D) and Ubx-GAL4/UAS-lamin C (E) wing discs stained with antibodies to lamin C. (F,
G) Wild-type (F) and Ubx-GAL4/UAS-lamin C (G) peripodial cells shown at higher magnification. The
cells are stained with antibodies to lamin C (red) and lamin Dm, (green); arrow in G points to aggregates
of lamin C. (H, I) Larval body wall muscles of wild-type (H) and 24B-GAL4/lamin C (I) third instar
larvae. Muscles in both the images are visualized with the help of UAS-GFP. Note, severe developmental
defects in both longitudinal and transverse muscles when lamin C is overexpressed. (J, K) Adult thoracic
muscles of wild-type (J) and pnr-GAL4/UAS-lamin C (K) flies stained with phalloidin-594. Note, all

indirect flight muscles are completely absent when lamin C is overexpressed.

and gene activity (reviewed by Goldman et al. 2002; Zastrow
et al. 2004). However, there is no in vivo evidence for the role
of lamin C in chromatin organization.

In Drosophila, changes in chromatin organization and
structure can easily be studied by monitoring the phe-
nomenon of PEV. Inversion-mediated relocalization or
transgenic-mediated insertion of white*, a euchromatin gene,
near centromeric or telomeric heterochromatin results in
PEV, which can be demonstrated by the mosaic or varie-
gated expression of the red eye colour (figure 5,A&B). PEV
has been attributed to cis-spreading of the heterochromatic
state and is influenced by chromatin structure and nuclear
organization (reviewed by Wallrath 1998). Genes associated
with PEV have been identified by analysis of suppression
of PEV (reviewed by Weiler and Wakimoto 1995). To de-
termine whether mutations in lamC have a direct effect on
PEV, lamC**?*% and lamCFX'%” excision alleles (both the al-
leles are in homozygous w!//8 background) were crossed
to strains bearing transgenes of the white™ marker at near-
centromeric (In(1)w"*; Su(var)205°/In(2L)Cy, In(2R)Cy,
Cy'; here referred to as In(1 W™y and telomeric (39C-

72, fourth chromosome) locations, and the progeny were
scored for the modification of PEV. Nearly 50% of the
progeny showed increased pigmentation (figure 5,A&B).
w™h: Su(var)205/lamCF*¥'¥ had nearly normal red eye
colour with little evidence of variegation, in contrast to the
variegated eyes of the PEV strains crossed to w///$ strains
(figure 5,A&B). Precise excisions of #v//?* from which
lamCFX?% and lamCFX'87 were generated, did not show any
suppression of PEV associated with In(1)w"#" and telom-
eric 39C-72 (data not shown), suggesting specificity of the
effect to lamC mutants. Similar suppression of PEV at the
Sb locus with a pericentromeric heterochromatin insertion
(T(2;3)Sb"; Sinclair et al. 1983 was observed by lamCFX?%
and lamCFX!87 (figure 5C). The suppression of PEV by lamC
mutants strongly suggests that normal lamina organization is
required for PEV.

HP1 is mislocalized in loss and gain of lamin C backgrounds

HP1 is a non-histone-chromosomal protein enriched in het-
erochromatin that is involved in the transcriptional silencing
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Figure 4. Overexpression of lamin C induces apoptosis in the wing disc. (A)
ptc-GAL4/UAS-GFP wing disc showing the expression pattern of the GAL4
driver. (B, C) Wild-type (B) and ptc-GAL4/UAS-lamin C (C) wing discs stained
with acridine orange, which reflects apoptotic cell death. Note, considerable
apoptosis all along the A/P boundary, the domain of ptc-GAL4 driver. Wild-type
wing discs do not show any acridine orange staining. (D) ptc-GAL4/UAS-GFP;
UAS-lamin C wing disc. Note that the width of the A/P boundary is considerably
narrow in this disc compared to the wild-type shown in (A), particularly in the
ventral compartment (arrow). (E) ptc-GAL4/UAS-lamin C wing discs stained
with antibodies to lamin C (red) and lamin Dmy (green). (F) Wing pouch of
wing disc in (D) is shown at higher magnification. Note, decrease in lamin Dmj
levels due to overexpression and mislocalization of lamin C. (G) ptc-GAL4/
UAS-p35; UAS-lamin C wing disc stained for lamin C (red) and lamin Dmjy
(green). Note restoration of normal width of the A/P boundary and normal levels
of lamin Dmy due to inhibition of apoptosis by P35.

of gene expression, and has been shown to mediate PEV (re-
viewed by Weiler and Wakimoto 1995; Eissenberg and Elgin
2000). In the PEV assay, the In(1)w™*" also carried the HP1
allele Su(var)205. This stock showed maximum suppression
of PEV than the 39C-72. We, therefore, sought to determine
the effects of loss-of-lamin C or gain-of-lamin C on the dis-
tribution of HP1.

Salivary gland cells of the third instar larva do express
LamC (figure 6A). In those cells, intense staining of HP1

is observed only in specific regions near the nuclear periph-
ery (figure 6,B&C). ptc-GALA4 is expressed specifically in the
salivary glands, but not in the adjacent fat bodies. ptc-GAL4-
induced expression of lamCRVA" in the salivary glands led to
more diffused HP1 staining and often at reduced levels (fig-
ure 6D). Cells with reduction in HP1 levels showed change
in nuclear morphology. Salivary gland nuclei looked small
and elongated (figure 6D). In peripodial cells too intense
staining of HP1 is observed only in specific regions near
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Figure 5. Suppression of PEV by lamC mutations. Strains bearing (A) centromeric or (B)
telomeric insertions of the white* marker were crossed to homozygous w//’® (first column), het-
erozygous lamC®'%7 (second column) or lamCF¥?% (third column) alleles. For each cross, three
representative eyes are shown. Number () in each panel represents number of flies examined
in one set of experiments. Note suppression of variegation in the background of heterozygous
lamC alleles. (C) Suppression of PEV by lamC mutations. Flies bearing variegating Sb locus
with a pericentromeric heterochromatin insertion 7(2,3)Sb" (Sinclair et al. 1983) were crossed
to homozygous w'//®, heterozygous lamCF¥'%” or lamCF*?** alleles. For each cross, one rep-
resentative thorax is shown. Number (7) in each panel represents number of flies examined in
one set of experiments. Due to the translocation of heterochromatin, 7(2;3)Sh" flies show nor-
mal thoracic bristles. Suppression of this would lead to the appearance of stubble bristles. Note
suppression of variegation in the background of heterozygous lamC alleles. Data for additional
alleles of this locus are also shown.

the nuclear periphery (figure 6E), while peripodial cells of
Ubx-GAL4/UAS-lamin C larvae showed striking reduction
in HP1 staining (figure 6F).

We further examined the effect of lamin C on HP1 local-
ization at the polytene chromosome level. In wild-type poly-
tene chromosomes of the third instar larva, intense staining
of HP1 is observed at the chromocentre (figure 7A), which is
consistent with earlier reports (Cryderman et al. 1999). ptc-
GAL4-induced expression of lamC®V4" in the salivary glands

led to reduction of HP1 staining in polytene chromosomes
and de-condensation of the chromatin (figure 7B). Morin et
al. (2001) have reported a homozygous lethal GFP-trap P-
insertion in the lamC locus. In this line, we observed GFP
staining in aggregates (figure 7C), suggesting mislocaliza-
tion of lamin C. Interestingly, polytene chromosome prepa-
rations from the salivary glands of lamin C::GFP trap line
showed significant reduction in HP1 levels (figure 7E). Fur-
ther, prc-GAL4-induced overexpression of lamin C in the
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A Wildtype

Lamin C Lamin Dm0

C Wildtype

Lamin C
E Wildtype

Lamin|C + HP1

D pte: LamCRNAi

B Wildtype

—i

Lamin C + HP1

F Ubx:LaminC

Lamin C + HP1

Figure 6. Downregulation of lamC affects localization of HP1. (A-C) Wild-
type salivary gland cells stained with antibodies to lamin C and lamin Dmy (A),
lamin C and HP1 (B) and HP1 and DAPI (C) as labelled on the images. Note,
HP1 staining is predominantly in one region of the nucleus, near the nuclear pe-
riphery (arrows). (D) ptc-GAL4/ UAS-lamC-UTRRNA; UAS-lamC-tail®™*' sali-
vary glands stained for lamin C (red), HP1 (green) and with DAPI (blue). Note
more diffused staining of HP1 suggesting mislocalization (arrows). Few cells
also show reduced staining and such cells are smaller and elongated (asterisks
in DAPI panel). Panels below C and D, show few cells at higher magnifica-
tion for better comparison. (E-F) Peripodial cells of wild-type (E) and Ubx-
GAL4/UAS-lamin C (F) wing discs stained for lamin C (red) and HP1 (green).
Note, wherever the peripodial cells show lamin C aggregates, HP1 is either ab-
sent or mislocalized (arrowheads in F).

salivary glands also showed drastic reduction in HP1 binding
at the chromocentre (figure 7F). Finally, we estimated the
levels of HP1 by Western blot analyses and observed that in
the context of both overexpression and knock-down of lamin
C, HP1 levels are reduced by approximately 2-fold (figure
8). Taken together, these observations suggest that lamin C is
required for appropriate chromosome organization and local-
ization of HP1. Disruption in lamin C levels, by either down-
regulation or upregulation, causes disruption in nuclear lam-
ina, chromosome organization, and distribution of HP1 and
thereby causes lethality at the cellular level.

Discussion
Genetic analysis of lamC

The genetic analysis of the Drosophila lamC gene is com-
plicated due to its position within the fifth intron of the es-
sential gene #tv. Lamin C is not maternally stored and its

expression is initiated by 12-15 h of embryonic develop-
ment. Levels of lamin C protein increase at later stages of
embryonic development and remain high from larval stages
onwards (Riemer et al. 1995). RNAi-mediated downregula-
tion of lamC ubiquitously in all cells too resulted in early
larval lethality. Tissue-specific downregulation resulted in a
variety of phenotypes in wings, legs, thorax and eyes. At the
cellular level, we observed defects in nuclear lamina organi-
zation and cell death. Thus, it appears that lamC is an essen-
tial gene required for cell survival, although its requirement
appeared to be restricted to postembryonic stages as well as
in non-neuronal tissues.

Studies in cultured cells have demonstrated that a num-
ber of lamin A/C mutations cause deleterious effects on
nuclear structure and functions, including aberrant muscle
differentiation (Ostlund ez al. 2001; Raharjo et al. 2001;
Favreau et al. 2004; Mariappan and Parnaik 2005; Manju et
al. 2006; Parnaik and Manju 2006). Interestingly, majority of
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Pl + HP1
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C lamC::GFP E lamC::GFP

LamC::GFP Wil PI+ HP1

F ptc:Lamin C

Pl + HP1

oy

Pl +HP1

Figure 7. Effect of changes in LamC levels on HP1 localization
on polytene chromosomes. (A-B) Wild-type (A) and prc-GAL4/
UAS-lamC-UTR®™ A, UAS-lamC-tail®™4" (B) polytene chromo-
somes stained for DNA (with propidium iodide; PI), HP1 (green)
and GAGA factor (blue). Note, the preferential localization of
HP1 on the chromocentre in wild-type cells, which is significantly
depleted when lamin C is downregulated. Expression pattern of
GAGA factor is unaltered suggesting that effect of HP1 is spe-
cific. Polytene spread is better in B than A, which is why regions
of intense PI and GAGA staining are missing in B. (C) Magnified
salivary gland cell of a lamC::GFP strain, wherein GFP is fused
to lamin C. The salivary gland is stained for lamin C (red). Note
aggregates of lamin C. The spectral image of a magnified salivary
gland cell is shown on the right side, which shows relative levels of
lamC::GFP. Aggregates of lamin C are evident in this image. (D-E)
Wild-type (D) and lamC::GFP (E) polytene chromosomes stained
for HP1 (green) and DNA (PI). Note, significant depletion of HP1
in E. (F) ptc-GAL4/ UAS-lamin C polytene chromosme spreads
stained for DNA (with propidium iodide; PI), HP1 and GAGA fac-
tor. Note, significant depletion of HP1 from the chromocentre. Ex-
pression pattern of GAGA factor is unaltered suggesting that effect
of HP1 is specific.

lamin A/C mutations express mutant forms of lamins rather
than depleting their expression. Furthermore, overexpression
of wild-type lamin A/C can also affect nuclear functions and
morphology (Kumaran et al. 2002; Favreau et al. 2003).

In a lone study on the effect of misexpression of lamin C
in Drosophila, Stuurman et al. (1999) overexpressed lamin
C using a heat-shock promoter, which resulted in melan-
otic tumours and larval death. As this gene construct had a
frameshift mutation at the 3’ end, which produced 59 unre-
lated amino acids at the C-terminus, the implications of this

A ++ RNAi
WT LamC /amC

H3 - -

LamDm0 -_— .
Actin ey o »

B ++
WT LamC

HP1 1.00 0.33+0.06 0.52+0.06

H3 1.00 0.88+0.04 0.59+0.45
LamC 1.00 2.16+0.18 0.16+0.13
LamDmo 1.00 0.59+0.34 0.0410.00

RNAi
lamC

Figure 8. HP1 and lamin Dm, levels are reduced in the background
of increased or decreased levels of lamin C. (A) Western blot anal-
yses of wild-type (WT), hs-GAL4/UAS-LamC (LamC**) and hs-
GAL4/UAS-lamCFA! (IamCRNA) larvae for HP1, histone 3, lamin
C, lamin Dmy and actin. (B) Quantitative analysis of protein levels
expressed as fold change compared to wild-type after normalization
to actin (mean = s.d. from three blots).

data for the functions of wild-type lamin C are not clear. In
our studies on tissue-specific overexpression of lamin C, we
have observed a variety of phenotypes depending on the tis-
sue and domain of expression, in particular, in dividing cells
and in imaginal discs, which contribute to adult structures.
Severe disruption of larval and adult muscles occurred upon
misexpression of lamin C under muscle-specific enhancers.
At the cellular level, we observed distinct aberrations in nu-
clear lamina morphology as well as deleterious effects on cell
survival leading to apoptosis. Interestingly, lamin C was nor-
mally incorporated into neuronal cells and did not affect their
differentiation. This is consistent with earlier studies show-
ing that ectopically expressed lamin A is assembled at the
nuclear periphery in mammalian embryonal cells lacking A-
type lamins (Collard and Raymond 1990; Horton ef al. 1992)
and does not interfere with their capacity to differentiate into
neuronal cells (Peter and Nigg 1991).

Taken together, it is evident that both downregulation and
upregulation of lamC have similar phenotypes, thereby un-
derlining the importance of precise assembly of lamin C into
the nuclear lamina. However, it is not yet clear if the lethal-
ity caused by downregulation and upregulation of lamin C is
through a common mechanism.
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Importance of lamins in chromatin organization

Binding of lamins to chromatin is well documented in vivo
and in vitro experiments (reviewed by Goldman et al. 2002).
Lamins are involved in the organization of RNA polymerase
II transcription in the nucleus (Kumaran et al. 2002; Spann et
al. 2002). In addition, lamins can bind to transcriptional reg-
ulators such as pRb (Ozaki et al. 1994) and SREBP1 (Lloyd
et al. 2002) and might be required for specific gene regula-
tion. Hutchinson—Gilford progeria disease is caused by mu-
tations in human laminA that affect the processing of lamin A
precursor, which in turn cause widespread alterations in nu-
clear structure and loss of heterochromatin (Goldman et al.
2004). Further reports also suggest that the human cells ex-
pressing mutant forms of lamins show nuclear dysmorphism
and chromatin disorganization (Columbaro et al. 2005) and
display loss of heterochromatin and epigenetic markers (Shu-
maker et al. 2006). Interestingly, a comprehensive survey of
genome organization in Drosophila has indicated that ~500
genes interact with lamin Dmy in embryonic cells (Pickers-
gill et al. 2006).

Our data on the suppression of PEV by mutant lamC
alleles is consistent with a role for the nuclear lamina in
chromatin organization. Although the exact mechanism of
silent chromatin spreading is not clear, several factors have
been shown to be involved in this process (Weiler and Waki-
moto 1995; Wallrath 1998). Of these, HP1 is important for
inducing heterochromatic gene silencing (Danzer and Wall-
rath 2004). Our results demonstrate that downregulation or
misexpression or aberrant localization of lamin C leads to
depletion of HP1 from the chromatin. This suggests that
HP1 localization is dependent on the proper organization
and function of the nuclear lamina. In addition to mediating
gene silencing, HP1 promotes accurate chromosome segre-
gation in Drosophila embryos (Kellum and Alberts 1995).
Further, several genes are misregulated in HP1-depleted mu-
tants (Cryderman et al. 1999). Loss of HP1 upon lamin C
mislocalization might also lead to misregulation of gene ex-
pression, causing aberrant cell division and ultimately cell
death.

In Drosophila, interphase centromeres and telomeres
tend to cluster at the nuclear periphery and lamina (reviewed
by Pluta er al. 1995). The PEV suppressor Su(var)2-10 is
essential for chromosome structure and inheritance, and is
involved in nuclear organization (Hari et al. 2001). Inhibi-
tion of Su(var)2-10 function disrupts telomere—telomere and
telomere—lamina interactions. Su(var)2-10, which encodes a
PIAS protein homolog, partly colocalizes with the periph-
eral lamina and is also detectable in the interior of the nu-
cleus. Although there is substantial evidence for the pres-
ence of lamins in the interior of the mammalian cell nucleus
(Moir et al. 1994; Hozak et al. 1995; Jagatheesan et al. 1999;
Moir et al. 2000), internal lamins have not been detected in
Drosophila nuclei. It is possible that lamin C bridges the
nuclear lamina with chromatin by interacting with specific

binding proteins. Further investigation on the lines of yeast
two-hybrid screens and other similar techniques may reveal
the precise molecular mechanism by which lamin C func-
tions in the nucleus.
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