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7. Introduction

The problem of the reflection of electromagnetic waves by a periodically
stratified medium is of interest in many branches of physics, e.g., the diffrac-
tion of X-rays by crystals-and the scattering of light in solids and liquids.
Although the theory of the phenomena has been elaborately investigated
in the case of the reflection of X-rays by crystals, the optical analogues, which
were known much earlier, have not been so thoroughly studied. The late
Lord Rayleigh (1917) developed the theory of the reflection of light by a
laminated structure, but he did not discuss its significance with regard to
the spectral distribution of intensity in the reflected light. Recently, R. V.
Subrahmanian (1941) has sought to rectify this omission and has computed
the intensity distribution numerically from Rayleigh’s formula in a number
of cases.

In this paper an expression for the intensity of reflection from a strati-
fied medium 'is derived in a very simple manner by a method somewhat
similar to that employed by Darwin (1914) for the X-ray problem. A very
general case is considered in which the medium is supposed to have a
periodic structure, the nature of this being unspecified. The particular
case of Rayleigh is then deduced from the general theory. The expressions
- s0 obtained are then discussed, having regard to the manner in which the
functions appearing in it vary. This shows that it is not quite correct to
say that the sharpness of the principal maxima increases in direct proportion
to the number of stratifications, or that it is possible to deduce the number
from the sharpness of the maxima, as has been assumed by various authors
including the late Lord Rayleigh and R. W. Wood. It is found that the
width of the primary maxima is not appreciably diminished by an increase
in the number, except when the latter is small, and that the width is finite
even when the number is infinite. This minimum width is found to depend
only on the reflecting power of the stratifications. The discussion also
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shows that there exist a number of secondary maxima in the interval between
the principal maxima, and that they are asymmetrically distributed as
regards their intensity on either side of a principal maximum.

2. Derivation of the Fundamental Formule

We shall consider a non-absorbing medium in which there is a periodic
variation of optical properties. Let Oj, O, O,,....0,,; be consecutive
points in the medium at which the properties of the medium are identical.
Then the distances 0,0,, 0,0;,....0,0,,,, are all identical, and each is equal
to the thickness of the stratification. It is supposed that there are n such
stratifications.

Since there are variations in the optical properties, it is evident that
there will be a large number of multiple reflections ; and consequently,
there will be two streams of energy in the medium, one passing upwards,
and the other downwards. Let Ty, R; ; T, R, ; etc., represent the electric
vectors in the upward and downward streams of energy at the points O,
O,, etc., respectively.

According to our notation, T, is the amplitude of the incident wave,
and let 6, be the angle made by T, with the common normal to the strati-
fications. Then, at each of the points O,, O,, etc., the two streams of energy
will make the same angle 6, with the common normal. We shall now
denote by » and ¢ the complex reflection and transmission coefficients for
a single stratification, on which light is incident at the angle under considera-
tion. Here again, we refer the vibration to points O,, O,, etc., that is, ¢ is
the ratio of the electric vector in the transmitted wave at O,,, to that at O,,
and r is the ratio of the reflected wave at O, to that at O, in the incident
wave. -

With these definitions, we see that R, consists of two parts : (1) due to
the transmission of R, = tR,,; and (2) due to the reflection of T = rT..

Hence,
sz rTJ+ tRs-&-l P (1)

Similarly, T,= T, ; + rR, (2)
Our aim is now to find the amplitude T,,; of the wave transmitted by

the last stratification, and of that reflected out of the first, viz., R;. For
this, eliminating the R’s and the T’s successively from (1) and (2), we get

14 £2— r? .
Ts--l = “':'{—_ZT"""C T.r - Ts-{—l ' (3)
. 14 t2— r2
R, ;= Sus 7 4 R,— R,y 4
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1 2____ 2 . .
+ t‘"—i— as y. It is evident that R,,.; =0,

For convenience, call the factor
since no light is incident from below. From (4), therefore
R, 1= YR, |
Now, applying relation (4) successively, we get
R, 2= VR, 1— R,=(0*— 1) R,, etc, giving
(n—4) (n— %) s

9 n— .-
Rlz[y T— ( T ) Y3 . ]R,,::j,,(y)R,,(say)

2
Then — B “‘.fu (») | )
Again, putting s=(n+ 1) and R,,; = O in (2),
Ty = n-i—l/ t

Applying relation (3) successively,
Tyq=yT,— Tyryy = (y/ t— 1) Ty, etc, giving

Ti=[7 £ —fa )] Tua or

T 1 :
T =2 )= fra ) ()
n+1
Also, from relation (1), since R,,,; =0, R, = rT,, giving
R, ;; T,.1, and from (5), we get
R1 o r
T, = % S (¥) )

We have thus evaluated both T,.; and R; in terms of T;. Ndw, the series
appearing as f,, (») is well known, and is summable. Putting y= 2 cosh S,
we have, in fact, (Jolley, 1925)
sinh
J# ) =1, (2 cosh ) = S

Also, the right-hand side of equations (6) and (7) can both be expressed
in terms of hyperbolic functions by writing

ro ot 1
sinh B sinhea K

(7) goes over into the form T,..— sinh «
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We may evaluate K using the relation cosh B=(1+ r2— r?)/2t, and
obtain K == sinh (a4 B). Hence,

ro o 1 9
sinh B~ sinh o sinh (a + f) ®)
T, 1 . r __sinh (a+ np)
and T, 7 Su (V)= fpa ()= simh (10)
F inally, Rl = Tﬂ-{-l —= T]‘ ’ (1 l)

sinh nf ~ sinh o sinh (a + nB)

The angles « and B can be expressed in terms of 7 and 7. We have seen
that

cosh B == 1%:,2 (12)
Similarly cosh a= L Z;jif' (13)
From these, it follows at onge that
sinh? o= EDZ B0 = ) (14)
sinh? g — (15)

é-1 ///////}////%}///
s U

g+

B+t 77//////////////

Td'l'g
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So far, our theory has been quite general. We shall now consider a
case treated by Lord Rayleigh, one in which the stratification consists of
a set of n parallel plates, each of thickness d and of refractive index u separated
by empty gaps of thickness d’. Let the rays make an angle 8, with the com-
mon normal in the space within the plates and an angle 0, in the space
between. For shortness, let us write the path retardations 2ud cos 8, and
2d cos A, within the plates and in the spaces between, respectively, as § and 3"
Also let  be the reflecting power of the surfaces of separation between the
two media. Then, referring by O,, O,, etc., to the points bisecting the
intervals between the plates, we can show from the electromagnetic theory
of light that

" (‘?M’a— 1) . — (1 _ 772) eiﬂ’i‘. (16)
= (B —n) etk (ei®s — 72y chifs’

where k= 2n[A.

Substituting these values, we get

sinh? a =
{cos? 1k (843")—n? cos? 1k (8 —d')} {sm2 +k (8-+8")—n?sin? 1k (6 —8')}
2 (17)
7% sin® 1kd
sinh? 8=

(1{—%—)—2 {cos® 1k (84 8") — n2cos® }k (8 — &)} {sin®> 1 k (8 + &)
— n%sin® 1k (8 — 8')} (18)

Since we shall have often to make use of these relations, we put
1k (8+ 8)=¢ and (8— &)/(5-+ 8)=c, and rewrite them in a simpler
form as

. 1o {(cos ¢ — n? COS“Cqb) (sin® ¢ — 7® sin® ch)}
sinh”® ntsin? (1+ o) ¢ _ (19)

sinh? == 43) {cos? ¢ —7? cos? c¢} {sin2® ¢ — 02 sin? ¢} (20)

3. The Two Cuases

We are now in a position to consider the intensity of the reflected beam.
We need discuss only the reflected part, since the transmitted part will
exhibit the complementary phenomena. Since r and 7 are complex, we
should expect R; also to be complex, so that the intensity is represented by
| R; |2 Let us now represent the ratio of the intensity | R, |2 of the reflected
beam to that T,2 of the incident beam by R, which we may call the
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“reflecting power ™ of the stratified medium. Then
sinh? nB \
_— """"”“"‘_—"‘—"-’*—{“""""‘T' ‘)
sinh? (a4 nB)° | (21)
where sinh? a and sinh2 8 have the values given in (19) and (20).

Before proceeding further, it is important to note that both o and B
are complex. Hence, we write a ==a;+ ey, and B = fB;+ iB, where
a;, By, @, B, are real. A consideration of equations (19).and (20) will show
that sinh® « may have positive or negative values, and that sinh? B will corres-
pondingly have negative or positive values. Hence we must distinguish
two distinct cases:

() sinh?ais —ve, and consequently sinh®f is --ve. In this case
sinh « is imaginary and sinh 8 is real, so that a Is pure imaginary = iu, and
B8 is real = B;. Hence,

= cosh a + sinh « coth n 8 == cos a,+ i sin a, coth upB,.
1 VT2 sinfa,
Therefore, R~ R, { =1+ - SnhinB, (22)

As B, is finite, sinh?®nfB; steadily increases with 1 tending to the value oo as
n — oo. Hence, for a particular value of « and 8, R steadily increases with
n, and - 1 as n — oo.

R1

(if) sinh%e is +ve and sinh® B is —ve, making a = a,, and B == iB,.
This gives
1 sinh? ¢
c=1 1 23
R TS sin? np, (23)
so that R fluctuates between O and a maximum as 7 is increased.

We may now consider the conditions under which these cases occur.
From (19) and (20), it is easily seen that case (1) occurs when 7?2 lies between

@ 25 C‘f—b- and ® 25 fb, and that case (ii)

occurs when it lies beyond these limits.
- Tt is easy to see that if one of the two quantities (a) or (b) is less than
‘unity, the other is greater. But%?has a range of values only between O and 1.

Hence, the conditions of occurrence of the two cases may be rewritten as
below :— ‘

Case (1) occurs if n2> either (@) or (b) whichever is < 1, and
case (i) occurs if n? < either (a) or (b) whichever is < 1.
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4. The Principal Maxima

We shall now consider the nature of the reflection. At the very outset,
we note that the rays from the corresponding parts in each stratification will
reinforce each other, if the path retardation § 4 8" = sA, where s is an integer.
It then follows that the reflecting power R of the n plates must be a maximum,
R,.. for these values of A. We shall call these maxima as the “ primary
maxima ~. In this case, k (8 4 8") = 2=s and ¢ = s7/2, which gives

sinh? a =n%cos?1ks — 1 (24

Since n and cos k& are always < 1, sinh? a is always negative. This corres-

ponds to case (i), R steadily increasing with » to the limiting value 1, as
1l — co.

Now, this phenomenon of a steady increase of R with # can occur, as

have seen, only if n2 is > Sil12¢) or cos® ¢ whichever is less than unit

si
Let us therefore find the solutions of the equations
sin? ¢ = 52 sin? ¢ (A
cos? ¢ = 72 cos? ¢ .. (B)
This is easily done graphically. Fig. (2) shows the curves y ==cos ¢ ;
y = +ncoscd and y ==sind; y = + ynsincé, drawn for two sets of

by

Fic. 2 (2)
1. y=sin¢ 2. y=+ +5sin-9¢ 3. y= % -1sin-9%

Fi1c. 2(3)
1. y=cosg¢ 2. y= % -5cos ‘9¢ 3. y= 4+ -1cos ‘9¢

values of y =5 and -1 and for ¢ = -9. We see from these that, in
general, the solutions of the equations (A) and (B), which are given by the
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values of ¢ corresponding to the intersection of the two curves, always
occur in pairs on either side of ¢ = s7/2. The pairs of solutions of A and B
occur alternately. Let us call the two solutions on either side of s7/2 as

¢, and ¢,.
5. The Subsidiary Maxima

It is easily seen that for values of ¢ situated in those intervals between
¢, and ¢, which contain sm/2, case (i) holds and the reflection steadily
increases with n. Let us now consider the other region of values of ¢. In
this region, it is evident that case (ii) holds, so that

1 sinh? a4

R~ 1 + gﬁ'{z“;‘iﬁz' (22)
Taking the expression (20) for sinh?2 j3, it is easily seen that sinh? 8 = O, for
the values of ¢ corresponding to the solutions of A and B and that it is
negative in the region between, reaching a maximum negative value some-
where between. Hence, | 8, | must also increase from O to a maximum,
which is less than =/2 and then decrease to O. Then, if 2 is sufficiently
large, sin? nB, must undergo fluctuations between O and 1, and consequently,
R also must fluctuate between zero and a maximum in this range. This
gives rise to subsidiary maxima in the region between the primary maxima.

It is also easily seen that for the same range of values of 8,, the fluctua-
tions increase in number as n is increased, so that the number of secondary
maxima, and consequently, their sharpness increase as n increases.

Coming now to the intensity of the secondary maxima, it is influenced
only by the values of sinh2?a, since sin®npBy;=:1, for every one of them.
Therefore, the secondary maxima must all lie on a curve whose equation is

1 )
g= 1 + sinh® o (25)
The general form of this curve is shown in Fig. 3 for a typical value of ¢ and
of ». It may be noted that, in general, there is a marked asymmetry in the

intensity of the secondary maxima about a primary maximum.

j L.
N ] '
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6. The Width of the Primary Maxima

We have already scen that in those regions between the solutions of
A and B which contain s7/2, the intensity steadily increases with n, and that,
in the other regions, it fluctuates with z. Now for a particular value of ,
we note that, on passing out from the former region to the latter, the
intensity becomes zero for values of ¢ corresponding to the first subsidiary
minimum on either side. Thus, the width of a primary maximum is given
by the distance between the first subsidiary minima on cither side of s#/2.

Now, the first subsidiary minimum occurs for that value of ¢é for which
nB,=m=. Also, we know that 8, increases from the value O at ¢ = é; or ¢,
to a maximum and then diminishes. Hence, the larger the value of n the
smaller will be the range of values of ¢, outside ¢,¢, in which R falls to zero.
Hence, as n increases, the width of the primary maximum must decrease.

However, it is easily seen that the width cannot go on diminishing
indefinitely, since R can never be equal to zero in the range of values of ¢
from ¢; to ¢,. Hence, the minimum width is given by the distance ¢,¢,.
We call this the ““ limiting width >’ for any order of primary maximum. We
then see that, as n increases, the width steadily decreases, until at a fairly
high value of n, it is very nearly equal to the limiting width. After this,
the width does not undergo any appreciable diminution, however much
is 1ncreased.

7. Variation of the Primary Maxima with Other Fuactors

We shall now see how the intensity and width of the primary maxima
vary with other factors when » is a constant.
Variation with 7.

We have already seen that for the primary maxima

sinh? a=mn2%cos? k8 — 1= {n2cos? (14 ¢) sw/2} — 1 (26)
In the same way, sinh? 8 reduces to
sinh? B = a= “n* T %e (cos? csmf2) (1 — 72 s1n~ csm|2) 27

Since, in this case, sinh? a == (i sin a,)2, we see from (26) that sin a, decreases
as m increases. Also, from (27), we see that sinh?2 8; = sinh® B increases,
making B, and consequently sinh®z253, increase. Hence, from relation (22)
we find that R increases as » increases. '

At the same, time, as increase in n produces an increase in the limiting
width as may be inferred from the curves in Fig. 2.

Variation with p.

Let us suppose that the refractive index of the intervening medlum is
increased. Then g i1s diminished, resultlng in a decrease in the value of’ ”.
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The intensity of the primary maximum is diminished and its limiting width
is also diminished.

Variation with Obliquity and the State of Polarization

Both these factors affect only the value of % and the effect is easily
predictable. If the beam is polarised with the electric vector in the plane
of incidence, the reflection coefficient 7, 1s equal to unity at angle of incidence
90°, which rapidly diminishes with 6§, to 7;=0, at f,=tan'py, the
Brewsterian angle. As 6, is further diminished, »; rises to a small value.
R_.. also must show similar variation with 6.

If, however, the beam is polarised with the electric vector perpendicular
to the plane of incidence, the reflection coefficient 7, is equal to unity at
6, =90° and slowly decreases to the same value as 7; at 6,= O. Hence,
R steadily diminishes as 6, diminishes.

Corresponding to the variations in n, we must also expect a variation in
the limiting width of the primary maxima as the angle of incidence is varied.

8. A Particular Case

It can be seen from Fig. 2 that the limiting width of the primary maxima
varies in general, from order to order. However, for a special case, when
& = &', this is the same for all orders. We shall now consider this case in
detail. Here, since 8 = 38’, ¢ = O, and the equations A and B reduce to

cos? ¢ = n?cos? ch=n? .. (A" and

sin? ¢ = n2sin® cp = O .. (B)
the solutions of which are ¢ = s and ¢ = s7 + coslxn. We see that both
the solutions of (B’) coincide at sw, so that we can have no principal
maximum at ¢ = sw. Hence, only odd orders of principal maxima exist
in this case. This can also be explained physically, since for an even order,
O + &'=2sA, and since & = &', each i1s == sA. Now the alternate reflecting
surfaces are dissimilar, and therefore produce a relative phase change of «
or path retardation of A/2, so that the beams from each pair of consecutive
surfaces destructively interfere, and completely annul each other, and there
will be no reflection for that particular order. Also, for every one of these
odd orders of reflection, we have from (25) sin®a,=1, and from (26)
sinh? B, = aé%@, which is a constant independent of s. Hence, from (22)
we see that the intensity of the primary maxima is the same for all orders.
The limiting width also is given by 2 sin! 5, which is the same for all orders,
and the maximum possible for a given 7.

Again, taking the secondary maximum curve, 1/R =1 + sinh% ,, we
get in this particular case. !
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__(cos®¢— 7 cos? cé) (sin? b — 12 sin2 cd)

sinh® a Tt (15 0) 6
2
= C032 e — 1, so that
7
1 cos?d 2 y
R: 772 —y and RT—‘—‘ —C—O‘.Z)S—E)‘"—- (28)

This is symmetrical about ¢ = (2s + 1) n/2, so that the secondary maxima
are symmetrical about the primary maxima. Also R for these subsidiary
maXLma may have a value =1 at ¢ = cos™ !+ », and it decreases to a value
n? at ¢ == s, midway between the primary maxima. Thus the secondary
maxima may have considerable intensities in the immediate neighbourhood
of the primaries, and may even have an intensity greater than them.

9. Stratifications of Vanishing Thickness

Let us suppose that one of the media is very thin, e.g., let 8’ be very small

4

compared with 6. In this case, ¢ = gm_?—»_ig_, will be very nearly equal to

unity. Let it be =1 — x, where x is very small. Then we may put sin
xsm/2 = xsm[2 and cos xsm/2= 1, approximately, so that the values of sinh? «
and sinh? # become

sinh? a=— sin% ay =— (1 — 73 (29)
IR 2 DAY g
and sinh?® B = sinh® g (1 77 E ( ) . (30y

for the sth order. From these, it is easily seen that if 8= O, then x = O,
and sinh®B, = O, making the reflection R == O. Thisis obvious, for the

condition 8" = O means that there is no second medium, and no reflections
can occur in this case.

Also, from (30) we see that if x increases, sinh? 8 also increases with it,
and from (22), it follows that R also increases. Thus, when the thickness
of one of the layers is small, the intensity of the primary maxima is a direct
function of the thickness.

A more detailed analysis, involving no approximations, shows that the
intensity actually fluctuates as x is increased to larger values. The value
of x is 28’/(8 + &’), and an increase in x means an increase of 8’ relative to
5. It is found that as x increases from O to 1/s, the intensity of the sth
order increases from zero to a maximum. Then it decreases to zero at
x ==2/s. Thereafter, it undergoes fluctuations, having maximum values if
x =(2m + 1)/s, and zero values if x = 2m/s, where m is an integer.
Although it is not possible to vary x in any specimen and observe these
fluctuations, this discussion is of interest because it enables us to arrive-at
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a rough idea of the relative thicknesses of the two layers by means of a study
of the relative intensities of the various orders of primary maxima. Thus,
if 8 = &, x =4, and all even orders must vanish, as we have already seen.
If 8 =28, x =1, and the 3rd, 6th, etc., orders vanish, and so on.

70. Graphical Illustration

In order to illustrate the preceding discussion, a particular case has
been numerically computed, and the results are shown in Fig. 4. Here,
-&
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the reflecting power 7 is supposed to be 0-1, and the value of ¢, 0-9. The
spectral distribution of intensity in the neighbourhood of the first order
principal maximum has been drawn for 2, 10, 20, 50 and 100 plates. The
curves show the way in which the principal maximum is built up as the
number of plates is increased. They also show that, when the number is
increased above 20, the diminution in width is small.

The dotted line marks the curve on which the secondary maxima lie,
and it shows how the intensity of these are widely different on either side of
the principal maximum. It is also interesting to note how the number of
the secondary maxima increases as » increases.

In conclusion, the author wishes to express his sincere gratitude to his
professor, Sir C. V. Raman, for suggesting the method of attacking the
problem, and also for the deep interest he took in the investigation.

17. Summary

An expression for the reflection from a medium consisting of n stratifi-
cations is derived in a simple manner, utilising Darwin’s method in the
analogous case of X-rays, modified to suit the optical case. The particular
case of Lord Rayleigh is deduced from the general theory, and the expression
so obtained is discussed in a general way by a consideration of the manner
in which the functions vary. An important result that comes out of this
is that the sharpness of the principal maxima cannot be indefinitely increased
by increasing the number of stratifications, but that the width has a minimum
limiting value, which depends only on the reflecting power of the stratifica-
tions. The mathematical discussion also shows that there exist a number
of secondary maxima in the interval between the primary maxima, and that,
in general, these show a marked difference in their intensities on either side
of a principal maximum. Particular cases, when the paths in the two media
are equal, and also when the path in one of them is small, are also investi-
gated, and they yield some interesting results.
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