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1. Introduction .

DARWIN (1914) and Prins (1930) have investigated the intensity of reflection
of X-rays by crystal planes, and have derived formule for the variation of
intensity with the angle of incidence. The special case of a non-absorbing
crystal was studied by Darwin, who found that the reflection is total over a
small range of angles of incidence, outside which it falls away rapidly.
Prins has extended Darwin’s formule to an absorbing crystal. In essence
the method is identical in both cases; it depends on the formation of a set
of difference equations, and the solution of these for the case when the number
of planes in the crystal is infinite. An excellent resume of the Darwin-Prins
analysis is given in the book, ““ X-rays in Theory and Experiment,” pp. 365
to 391, by Compton and Allison (hereafter referred to as C and A), whose
notation we shall follow in this paper, on account of their compact nature.

* An alternative method would be to solve the equations for the case when
the number of planes is finite and then to extend the results for the infinite
crystal. This procedure is more instructive in that it shows the manner in
which the principal maximum is built up. In fact, it is found, as will be
shown later, that, outside the region of perfect reflection indicated by
Darwin’s theory, the curve is not smooth as shown by his, but that there are
an infinite number of maxima and minima, which, however, are so close
together that it will not be possible to detect them. This important feature
is altogether missed in Darwin’s theory.

The author has actually considered such a finite stratification in an
earlier paper (1942). There, a most general case of a periodic stratification
was considered, in which the variation in the properties of the medium was
supposed to occur periodically, the nature of this variation being unspecified.
The theory can easity be applied to crystal planes, and then it can be extended
to the case of a crystal of infinite depth. This is done in this paper, and the
results obtained are substantially the same as those of Darwin and Prins.
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It is however found that Darwin’s theory leads to a different formula from
that in the present paper for the region outside that of perfect reflection,
which obviously arises from the failure of his theory to take cognisance of
the fluctuations of intensity which occur in this region. Incidentally, it is
found that a certain assumption made by Darwin and Prins is not altogether
justified. The present method is free from any such, and is consequently
more Tigorous.

2. General Formule

Suppose that we have a medium consisting of n stratifications, and that
a beam of electromagnetic radiation is incident on it. Let T, be the ampli-
tude of the incident beam at the beginning of the first stratification. It is
evident that there will be a large number of multiple reflections, and conse-
quently there will be two streams of energy in the medium, one building up
the transmitted beam, and the other the reflected beam. Let T, Ry; T,, Ry;
...; T, represent the electric vectors in the two streams at the beginning
of the first, second, etc., stratification. If now we denote by r and ¢ the
complex reflection and transmission coefficients of a single stratification,
on which the radiation is incident at the angle concerned, then the following
difference equations are obtained:

R, =0T, + 1Ry T, =1T, + rR, ()
Fliminating the R’s and the T’s successively from these,
Ts~1 =T s Ts—l—l; R:—l =yR.s‘ _ R.r+i : (2)

where y = (1 42 — r?/t. These can be solved by making use of the
condition that R,,,; =0. One obtains in this way

Ry/Tpa = /0 ) TofTpsa =L )it = fua () - (3)
 where ) =yt = O Dy 0o BE =D s

The series appearing as f, () can be summed up by putting y = 2 cosh B,
and comes out as =sinh nf/sinh 8 (Jolley, 1925). Also, making the
‘substitution ‘ | , '
roo_ ot 1
sinh 8~ sinha K
where K: can be evaluated to be equal to sinh (a-+ B) from the relation
cosh B = (1 + 2 — r?)/2t, one finally obtains,
ﬁ,.__I.{f*.,.,. — .T]!:hl —_ TI . 5
sinh n8 ~ sinh a = sinh (a+ nB), : )

‘where cosh B = (1 + 12 — r?)/2t and cosh & = (1 — ¢ + r2)/2r | (6)
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From (5), the reflecting power, R, of the stratified medium is given by
IR = }»F{;’rz | cosh a + sinh a coth n8 |? (7)
1

This is our fundamental equation, from which the intensity of the reflected
beam can be calculated by substituting the values of « and 8. It may be
noted that, in general, both a and B are complex.

3. Derivation of the Formulz for an Absorbing Crystal

In order to determine the values of a« and B, we must know those of
r and t. For these, we make use of the relations, first derived by Darwin
and reproduced in C and A, pp. 365 to 376. If we take the boundary

between adjacent stratifications as the planes midway between the atomic Q
planes, it is easy to show from the above formule in C and A that
r= —ise#32and t = (1 — io)e-* &2 (8)

where s and ¢ are two constants depending on the nature of the planes,
k =2=/A, and & = 2d sin ¢, d being the distance between the planes, b the ;
angle of incidence, and A the wavelength of the X-rays. The quantities f
o and s are given by

(A sin $/2nd)e =p, — 1 = — (8 +iP) (9)
where p, is the complex refractive index of the crystal, whose real and
imaginary parts are, respectively, (1 — &) and B8, and

s =f (2. k) a[f (0, ),
so that (A sin §/2nd) s = — (8 +iB). f(2, K}/ (0. k) = — (A +ib) (10)

where f (24, k) and f(0, k) are quantities proportional to the atomic struc-
ture factors for angles 2¢ and zero. (C and A, p. 376). In the above
expressions, o and s are to be taken as small.

P B T e e e i NG oo E O A

Now, we are interested in the phenomena that occur near about the
Bragg angle, for which k8/2 ~ mn. Putting k 8/2 = mn + £, where ¢ is
small, exp (— ik 3/2) = (— 1)” exp (— if), and

r=(=1"tis e, and t = (— 1) (1 — io)e-' (11)
From these, treating o, s and ¢ as small quantities, one obtains
cosh a = (— 1)"+1 (e + £)/s; cosh. 8 = (~ 1) {2452 —(c + %72 (12)

In the general case of an absorbing crystal, both ¢ and s are complex
quantities, so that both cosh « and cosh B, and hence « and 8, are complex.
Now, the reflecting power of a finite stratification is given by (7). 1In order
to determine the same for an infinite one, we must put 7 —>co in the right
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hand side of (7). If B is complex, it is easily shown that Lz coth n8 =1, so

- L . . ”—)w
that for an infinite stratification,
Lt T cosh a + sinh (13)
n - OO R'l

Now, from (12), cosh a =(— 1) (¢ +£)/s, so that sinh a =
T 4/(c + € — s?fs, and :
Lt D =1 0 10 sV T HT= (14)

7 ~» CO Tl

This is identical with the Eq. (6-42) in C and A, p. 380, except for the factor
(— 1)” before (o + £) in our above expression. The difference is easily
explained, for the amplitudes are measured at points on the planes in the
derivation in C and A, while in ours, the reference point is at a distance d/2
above the first plane. It is obvious that this would produce a phase change
of exp (— ik3/2), which, for small values of ¢, reduces to (— 1)” exactly the
factor by which the two expressions differ. It is thus seen that Prins’s formula
can be derived easily from our general formule by substituting the appro-
priate values of r and ¢.

4. The Case of a Non-Absorbing Crystal

We now consider the case of a non-absorbing crystal. Here, 8 and 5 in
Eqns. (13) and (14) are equal to zero, so that both o and s are real. Hence,
both cosh « and cosh B are real, and two separate cases have to be considered,
viz.,

case (i) | cosh « | < |, for which | cosh 8 | > |, and
case (i) | cosh a | > |, and | cosh 8| <.
From (12), lcosha| =1,if(c +§) = s, 01 § =—oxs.

Hence, if —o —s <& < —o +¢, case (i) is operative, so that sinh?a is
—ve and sinh2B is-4-ve. If one writes @ = a; +iay, and B =B, + i, then

1
%

Therefore, as n is increased, the intensity corresponding to any value of ¢
within this range steadily increases. When n—>co, sinh*nf,—oco, and
R —1, ie., the reflection is total throughout the whole range of values of §
from —ao—s to —o +5 for an infinite stratification. 'This region may be
called the principal maximum, and its width is given by AE=2s.

A ™ e

o sin?
= | COS ay + i Sin ay cothnB|2=1+ Sminhzt:z"g‘gl (15)
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Outside this range, case (ii) is operative, so that sinh®a is +-ve and sinh®g
— ve. Hence, in this case,
1/R =1 + sinh?%,/sin2n8, . (16)

In this region, a number of maxima and minima occur corresponding to
nB, = sm + 1/2 and s~ respectively. These may be referred to as subsidiary
maxima, and they all lie evidently on the curve R =sech?«e,. When the
number n increases, the intensity corresponding to any value of £ in this
region does not tend to a limit, but only undergoes fluctuations. Also, the
subsidiary maxima approach closer and closer together. When » actually
tends to infinity, the subsidiary maxima would be so close together, and the
fluctuations in the intensity would be so rapid, that they would not be detected.
The observed "intensity would only be an avefage over a cycle of changes,
and the observed value of R would be given by

g + 0+

R4 : f R d(nBs)= 7—17 f i d(nBs) a7y
6

i sin? nB, + sinh? o,

The integration can be carried out, and leads to the remarkably simple result

that

Ry =1 —|tanha, | (18)
Now, the boundary between the two regions is obviously given by sinh a, = O,
for which tanh o) =0 and R, =1. Thus, in the second region, R,
starts from unity and quickly drops down as the value of £ is taken farther
and farther away from a principal maximum. These features are all very
similar to those predicted by Darwin’s theory. In fact, the reflection curve
i1s not symmetric about £ =0, but € = —o, or, k§/2 =mr —0s. The
value of this shift caused by refraction, as also of the width of the region
of perfect reflection can be obtained in angular dimensions. If 6y, be the
Bragg angle defined by £ 82 = kd sin 6, =m, and if 8 be the angle of
incidence corresponding to the centre of the Jiffraction pattern, then

0 — 8y = — o 'kd cos 8, = & sec 6, cosec 6, (19)
Also, if the angular width of perfect reflection be A, then
A =s/kd cos 8, = A sec 8, cosec f, (20)

Both these are identical with the relations derived in C and A, pp. 388 and -

389.

5. A Note on Darwin’s Method of Solving the Difference Equations

In.the prcc?eding section, it was shown that the reflection coeflicient in
the region outside the principal maximum is R = 1 — [tanh a,]. Darwin’s

_
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formula, put in terms of our symbols, gives R = =121 in the same region.
The disagreement needs an explanation. It arises from a certain assumption
made by Darwin in solving the difference equations. In terms of our symbols
Darwin puts T,/T, = x, and obtains R,/T; in the form

RYT, =(r* — 2 +tx)/r 1)

The problem thus reduces to the evaluation of x, and for this, Darwin makes
the assumption that T, =T,x'. By substituting this in (2), he gets

x = e*F = cosh B+ sinh Band Ry/T, = cosh « + sinha. (22)
For the absorbing crystal, the same procedure is followed (C and A, p. 378).

It is to be noted that such an a priori assumption cannot be justified,
since we are actually trying to find the values of the quantities T, and R..
A more serious objection to this assumption lies in the fact that it leads to an
internal contradiction in the theory. Taking the case where it disagrees
with the present theory, the value of x here is exp (+ i8,), so that | x| = 1.
Hence, | T,,; | =| Ty |, so that Lt | T,| =| T, |. Thus the transmitted in-

3> 0O

tensity is equal to the incident intensity and the reflection must be zero. How-
ever, by substituting the value of x in (21), Darwin actually gets R = | cosh
+ sinh a |2 =exp (+ 2q;). Thus proceeding in two different ways from the
same assumption, one gets different results, so that the assumption itself
cannot be correct.

In fact, by making use of the method of the present paper, it can be
proved that the assumption holds asymptotically for the first few planes
(i.e., for small values of 5) in Prins’s case, and in the region of perfect reflection
in Darwin’s case. In other words, the value of x as defined by the equation
x = T,/T; is actually equal to exp(+ f§) in these cases. However, the
assumption is not generally true, and is invalid in the region outside the
principal maximum for a non-absorbing crystal. Details are not given for
want of space.

In conclusion, I wish to express my thanks to Prof. Sir C. V. Raman for
the many helpful discussions I had with him during the-investigation.

Summary

In this paper is described a new derivation of the formul for the reflec-
tion of X-rays by perfect crystals, which forms an alternative approach to
the problem to that adopted by Darwin and Prins. It consists in obtaining
a solution of the difference equations which occur in the problem for a
crystal containing a finite number (n) of laminations. The case of a crystal

Al
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of infinite depth is obtained from this by proceeding to the limit when n—>oo.
The formule thus obtained are identical with those of Prins for an absorbing
crystal, while for a non-absorbing crystal, the width of the region of perfect
reflection is in agreement with Darwin’s value. However, there is a
difference in the formulz for the variation of intensity with angle outside
this region. This has been shown to be due to an assumption made by
Darwin which is not altogether justifiable.
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