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1. INTRODUCTION

Carcite is a common mineral and exhibits strong birefringence, and it is
therefore not surprising that the phenomenon of double refraction was first
observed in it. The origin of the phenomenon has naturally been the subject
of inquiry ever since its discovery. As early as 1690, Huygens suggested
that it arises from the form and arrangement of the particles of which the
crystal is built up. A clearer explanation had however to wait till the
structure of the crystal was more fully elucidated. Following his determina-
tions of the structures of calcite and aragonite, W. L. Bragg (1924) put for-
ward a theory of the origin of birefringence in these crystals. The theory
is based on the idea that, as a result of the mutual influence of the oxygen
atoms, the carbonate ion 1s much more polarisable in its plane than at right
angles to it. Since all the CO; ions are orientated in the same plane through-
out the crystal, the latter also exhibits a strong birefringence. Bragg also
considered the mutual influences of neighbouring ions, and the method was
also successfully used to calculate the birefringence of other carbonates and
nitrates. However, refraction and birefringence form only part of a larger
subject, namely the theory of dispersion. In this paper, an attempt is made
to apply dispersion theory to explain the birefringence of crystals, and in
particular dispersion formule have been developed both for calcite and
aragonite.

In a series of papers on thermo-optic behaviour (Ramachandran, 1947 a
to f*), the author has given a theory of the temperature-variation of refrac-
tive index (dn/dt) of an isotropic solid, and has applied it to a number of cases.
The theory is based on the idea that the refractive index variation is due to
two effects, one arising from the change in the number of dispersion centres
and the other from the shift of the dispersion frequencies. The theory, in
this form, has been applied by Radhakrishnan (1947 b) to successfully

* These will be referred to as A1, ...., A 6 in this paper,
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explain dn/dt data for quartz, a feebly birefringent crystal. It is obvious
that the theory needs modifications, if it is to be applied to strongly bi-
refringent crystals. These have also been considered in this paper, and the
modified theory has been applied to the cascs of calcite and aragonite.

2. DISPERSION OF BIREFRINGENT CRYSTALS

According to the quantum mechanical theory of dispersion, developed
by Kramers and Heisenberg, the refractive index » of a substance for light
of frequency v is given by the expression

2
nto 1= 35 2 N, f, | (1)
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where N, is the number of oscillators per unit volume of frequency v, and f,
is the oscillator-strength or transition probability corresponding to the parti-
cular frequency, the summation being performed over all the natural fre-
quencies of the system. In a gas composed of optically isotropic molecuies,
the transition probability and frequency will be independent of the direction
of the electric vector. If, however, the molecules are anisotropic, then there
is no a priori reason for supposing that this would be the case. In parti-
cular, along the three principal directions, the transition probabilities may
be different. In a gas, however, such differences will not result in any
anisotropy in the refractive index, since the molecules are orientated at
random. Actually, the gas will exhibit an isotropic refractive index which
will correspond to a mean transition probability obtained by averaging over
all orientations. The inherent anisotropy of the molecule is however
exhibited in light-scattering, as shown by depolarisation measurements of
the scattered light. '

In crystals, on the other hand, the situation is different, since the various
atoms are all situated in fixed positions (thermal agitation apart), and the
different ions are also orientated in definite directions. Consequently, one
would expect a specific correlation between the refractive index and the
direction of the electric vector. In the particular case when the atoms occupy
positions in a cubic lattice, the optical properties are isotropic. In all other
cases, anisotropy is present, with the crystal exhibiting uniaxial or biaxial
optical properties. Following the analogy of anisotropic molecules men-
tioned above, one may say that such anisotropy arises from differences in
the electronic transition probabilities (for each frequency) along the three
principal directions. Thus, if n,, n,, ny are the refractive indices along the
three directions, they would be given by formule of the type:

ni-1=x Nofir g 23 @)
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The differences in the three directions arise only in the factor f;,; in parti-
cular, it may be zero for a particular direction.

In applying these ideas to a practical case, it will be necessary to know
the quantities N,, f; and v, for calculating the refractive indices. Our
present knowledge is, however, not sufficient to calculate these purely from
theory. v, can be obtained from experiment by studying the absorption
spectrum of the crystal, and probably f;, could also be obtained from a
study of the relative strengths of absorption for different directions of the
electric vector. For cubic crystals, the procedure usually adopted is to
determine the quantity N, f, in Eq. (1) empirically from the measured values
of refractive indices for different wavelengths. Where the absorption
frequencies v, are known, they are incorporated in the dispersion formula;
otherwise they are also deduced from the measured refractive indices. One
can employ similar methods for anisotropic solids, using Eq. (2) as the basis
for the calculations. Putting (e/mm).N, f;,= a;,, and using the wavelengths
A, of the dispersion frequencies, this takes the form:

np—1=23 ifi_%ﬁ i=1,2,3. 3)

r

In this, one has only to find the A’s and a4;,’s. For calcite and aragonite,
the ultra-violet absorption frequencies have not been measured, so that they
also have to be obtained from the data. It is found that by using three ultra-
violet frequencies with wavelengths 1535, 1000 and 500 A.U., both the ordi-
nary and extraordinary indices of calcite can be fitted over the whole range
of wavelengths from 2000 A.U. to 2 . The a;,’s are different for the ordinary
and the extraordinary rays, and the interesting fact comes out that the fre-
quency at 1535A.U. is practically inactive in the extraordinary, the strength
for this being only about 1/20 of that for the ordinary. The same frequencies
also suffice for fitting the refractive indices of aragonite from 4000 to 7000 A.U.,
and the oscillator strengths in this case show a close analogy to those for
calcite.

3. DisPERSION FORMULZE FOR CALCITE

For calcite, which is a uniaxial crystal, there are only two principal
refractive indices, viz., ordinary (n,)and extraordinary (n,), dispersion
formule for which will have the forms:

net—1=2a, A2|(A*— A%, @)
n2—1=2a, 22— A3, (5)

in which the A’s are the same in both the equations, but @, and Qg are
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different. As already mentioned, no studies have been made of the ultra-
violet absorptions of calcite, but the infra-red absorptions are well known
(Nyswander, 1909; Liebisch and Rubens, 1919). For the ordinary ray,
reflection maxima are found at 6-46, 6-96, 14-17, 80-3 and 94 n, while for
the extraordinary ray, the maxima are at 11-3, 28-0 and 94 u. Of these,
the one at 14-17 u is very weak. Also, the frequencies near 30 and 90
are sufficiently far away for their effects to be neglected in the region
(0-2 to 2p) in which we are interested. Hence, in the dispersion formula,
only the nearer infra-red frequencies at 6 -7 (mean of 6-46 and 6-96 )
and 11-3 u respectively are empoyed for the two rays, a, being zero for
6-7u and a, for 11-3px. For the ultra-violet, three frequencies are em-
ployed, which were found by trial and error to be at 500, 1000 and 1535 A.U.
the dispersion formule for the ordinary and extraordinary are:

21— 0-43257 A® . 0-82932 )\2__+ 0-43376 A2
Mo — 1= Xe7 (075002 T AT= (0-1000)F T XT— (0-1535)2
0.61855 A*
Y= (67 (©)
o 00458990 . 0-69835A%  0-02680 x*
M 1= XE(0-500)2 T X2 (0-1000)2 " X2_ (0-1535)
0-30018
T X1 3y 7

The fit of the formul® can be judged from Table I, in which the values
calculated from these formule are compared with the measured values. The
refractive indices of calcite have been measured by many workers (for refer-
ences, see Landolt-Bornstein Tables, 1923). For comparison here, the
values of Martens are taken from 0-19898 n to 0-65628 1« and those of
Carvallo beyond. The measurements of other workers lie close to these.
In the ultra-violet, below 0-3 4, Martens’ values slightly depart from other
workers’, but since only Martens’ data are available below 0-214 u«, his data
are taken for the whole range. Also, the measurements upto 0:656 n are
at 18° C., while those in the infra-red are at 20° C. The difference is how-
ever not of serious consequence, for this would affect the indices in the 6th
decimal place for the ordinary ray and by 2 units in the 5th decimal place
for the extraordinary, as deduced from the dn/dr data of Micheli (1902).
The present formul® are expected to hold for 18°C. The errors (experi-
ment—theory) are also given in Table I from which it will be seen that they
are mostly less than 1 unit in the 4th decimal place, which is the order of
fit found for various cubic crystals (¢ A 2, A3, A4, A 5).
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TABLE I
Ordinary Extraordinary
Wavelength

in microns Dif. Diff.
Nexpe Nk % 104 Hexp. L je % 10%
0-19898 . .. .o 1.57796 1-57809 -1-3
0-20006 1.90284 1-90289 ~0-5 1-57649 1-57656 —0-9
0-214439 184558 1-84558 0-0 155976 1-55970 +0-6
0-219462 1-83075 1-83068 +0-7 1-55496 1.55493 +4-0-3
0-231288 1-80233 1-80229 +0-4 1-54541 1.54537 +0-4
0-257304 176038 1-76038 0-0 1-53005 1-53005 0-0
0274867 1-74139 1.74141 ~0-2 1-52261 1.52261 0-0
0.340365 1-70078 170079 -0-1 1-50562 1-50560 +0-2
0394403 1.68374 1-68373 +0-1 1-49810 1-49801 +0-9
0-441568 1.67423 1-67422 +0-1 1-49373 1-49368 +0-5
0-486133 1-66785 1-66783 +0-2 1-49074 1-49074 0-0
0-58929 1-65835 1-65836 -0-1 1-48640 1-48638 402
0.656278 165437 1-65439 —0-2 1-48459 1-48461 -0-2
1-0417 1-64276 164276 0-0 1-47985 1.-47976 +0-9
1-3958 1-63637 1-63638 —-0-1 147789 1-47784 +0-5

1-8487 1-62800 1.62799 +0-1 - . .o
20998 . . . 1-47492 1-47492 0-0

2:1419 1-62099 1.62078 +2-1 . . e

The formul® bring out the interesting fact that the differences in the
two refractive indices are to a large extent due to differences in the activity
of the frequency at 1535 A.U. in the ordinary and extraordinary rays. As
shown by the formule, the strength of this frequency is nearly 20 times
larger for the former than for the latter. The remoter frequencies, although
practically 1sotropic, still show small differences for the two polarised rays.

The question arises as to how accurately the dispersion frequencies
are determinable by the empirical method used here. It is obvious that the
numerators in Egs. (6) and (7) depend on the position of the dispersion fre-
quencies. To fit the data for the ordinary index, it was found that the
nearest frequency at 1535 A.U. could not be altered by more than about
+ 15 A.U. without seriously affecting the accuracy of the fit—this in spite
of changing the second frequency at 1000 A.U. by nearly 50 A.U. either
way and the remote one by 100 A.U. If these two are fixed, the nearest
one could be determined correct to 5 A.U. So also, the fit of both the indices
was appreciably affected if the frequency at 1000 A.U. was altered by more
than 60 to 80 A.U. either way. On the other hand, the exact position of
the remote frequency does not appear to be important, for a good fit to be
obtained. It may lie anywhere from about 300 to 600 A.U.

It is obvious that one should expect more than just three absorption
frequencies in the ultra-violet, considering that, in various halides, a large
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number have been observed (Hilsch and Pohl, 1930; Schneider and O’Bryan,
1937). The three frequencies employed here are only a representation of
these. However, it may be stated with confidence that the first absorption
would be found near 1535 A.U. and that it would exhibit a large difference
in strength between the ordinary and extraordinary rays.

4. DiSPERSION FORMULZE FOR ARAGONITE

The three principal refractive indices of aragonite have been measured
by various workers, but all for the visible region of the spectrum only.
(Rudberg, 1829; Pulfrich, 1887; Miihtheims, 1888; Offret, 1890; Scouvart,
1912; Marbach, 1913). It is therefore not possible to obtain accurate dis-
persion formule in this case. The measurements of different workers
(though individually accurate to 1 x 107%) often differ by 2 to 3 X 1072,
since different specimens were used by them. Consequently, one must use
the measurements of a single worker in calculating the dispersion formula.
The data, which cover the largest range of wavelengths, are by Rudberg
(loc. cit.), which are used in this section.

We denote the three principal refractive indices by n;, ny, ny, where
ny, < hy < ny. These three will correspond to the directions of the electric
vector parallel to the ¢, @ and b crystallographic axes. As has been pointed
out by Bragg (1924), there is a close resemblance between the optical pro-
perties of calcite and aragonite, as will be seen from below:

Calcite Aragonite
n, = 1486 (|| to trigonal axis) my= 1530 (|| ¢, the pseudohexagonal
. axis)
ne, = 1658 (1 to axis) ny=1681 (]| a)
ny=1-686 (|| b)

The infra-red behaviour of the two substances also show a close similarity.
The nearer infra-red absorptions for light with electric vectors parallel to
the three axes are as follow (Nyswander, 1901):

la 6-654, 14-06 p (weak)
“b 6'46.“‘3 6'70#3 1417:“( ) )
|| ¢ 1!-55,&

A comparison with calcite shows that 7, corresponds to n. and that n, and n,
correspond to n,. Since the dispersion data are not extensive enough to
obtain the frequencies, and since the infra-red frequencies are close to those
of calcite, the ultra-violet frequencies of aragonite were taken to be the
same as those of calcite. In the infra-red, however, a frequency at 66w
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was used for #, and n,, and one at 11-55u for n,. The dispersion formule
obtained were of the form

: . 2 .2 ) 2
ni— 1 = ik A + A,‘_)_”_u_cz,%.\’\w___,_.;+ G At -
g A2— (0-500)* " A2— (0-1000)2 © A2— (0-1535)
2
Cia A* 8
_I‘ Az____ )\42 ( )
in which the constants for the three directions are given in Table II.
TaBLE II
) 1 l 2 l 3
e .| 0-51143 0-51091 0-49082
i .| 0-77665 0-88367 0-89499
i .| 0-02250 0-37976 0-40139
74 .| 0-33671 0-542177 0-53266
N, . 11-55 u 6-6 p 6-6

The fit of the formule can be judged from Table III where the values
calculated from them are compared with the measurements of Rudberg
(loc. cit.). A comparison of the values of the constants with those of calcite
reveals again the close similarity between calcite and aragonite. The

requency at 1535 A.U. is very weakly active in n,, while strongly so in n, and
n,, so that the strong birefringence of aragonite is also produced principally
by the highly polarised electronic transition corresponding to this frequency.

TaBLE 111

73, o ny
Wavelength in
microns

Measured | Calculated| Measured | Calculated | Measured | Calculated

0-39685 1-54226 1-54226 1-70509 1.70509 1-71011 1.71011
0-43078 1-53882 1-53884 1-69836 1-69840 1-70318 1-70320
0-48613 1-53479 1-53479 1-69053 1-69054 1-69515 1-69515
0-52701 1-53264 1.53260 1-68634 1-68633 1-69084 1.69082
0-58929 1-53013 1-53013 1-68157 1-68152 1-68589 1. 68589
0-65628 1+52820 1-52820 1-67779 1-87776 1-68203 1-68204
0-68700 1-52749 1.52749 1.67631 1:67637 1-68001 1.G8061

5. THERMAL VARIATION OF THE REFRACTIVE INDICES

(a) General —We shall now apply the dispersion formulz considered
in Section 2 to calculate dn/dt of anisotropic crystals. Differentiating
Eq. (2) one obtains

. 2 .
’ dn; e 2[ fir ng,‘,_}_];~2
r

v,2 — v gt

Nr df;r___ 2Nr.f:'r‘ Yy d Vy 9
— v dt T (v, — B g ] )

"H T mn
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Obviously, dN, /dt = — yN,, where y is the coefficient of cubical expansion.
In A 1to A6, it was assumed that, for isotropic solids, the oscillator strength
did not alter with temperature. For anisotropic solids also, one would
expect an analogous result to hold, viz., that the total oscillator strength
does not change with temperature. This does not however preclude the
possibility that the individual strengths f;, along the three principal direc-
tions can alter. Thus, Eq. (9) can be written in terms of the a;,’s and A,’s
in the form

: 2 )2

o By = D+ N 2 g 11,23, 10
where x, = (1/A,) (d,/dt), following the notatlon of A1toA6. It will be
noticed that this equation differs from that for isotropic solids (cf. Eq. 11
of A1) only in the presence of the Jast term, which is absent in the other
case. However, the assumption of invariability of the total strength with
change of temperature gives the condition

5 ) 1)

A possﬂﬂe explanation of the changes that occur in the individual oscillator
strengths is furnished by the following considerations. Taking the special
cases of calcite and aragonite, the planar CO, ions will undergo tilting oscilla-
tions, which will increase in amplitude with rise of temperature. As a result,
a certain amount of polarisability will be transferred from the plane to the
perpendicular direction. It is also possible to conceive of other factors,
which would result in a * transfer > of oscillator strength from one direction
to another. Taking a phenomenological view, the transfers may be corre-
lated with the differences in the lir.zar thermal expansions along the three
directions. Thus, one may take that the transfer of oscillator strength
between two directions is proportional to the difference in the expansions
along those directions, i.e.,

day, _ day,
- T e (a — ) 12)

with two other similar equations, where a,, a,, ay are the coefficients of
linear expansion along the three principal directions. Solving the three
equations of (12), subject to proviso (11), one obtains

% dal,-_ K, ( Gyt a3)

at )
da2r a3+ a
A2 S K,(az— o ;) _ )

o o (ot
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where K, is a constant. Thus, the problem of evaluating the dn/dt’s along
the three directions reduces to the evaluation of two constants, viz., y, and
K, for each of the dispersion frequencies. It may be mentioned that the
number of constants are in no way larger than for isotropic solids. For,
if there are r dispersion frequencies, r constants (y,) have to be determined
to explain the dispersion of drn/dt of one index, while here 27 constants have
to be found out to explain the variations of dn/dt of three indices.

(b) Calcite.—Calcite being a uniaxial crystal, has only two principal
refractive indices, #, (= n,= n3) and n.(= ny). Using Egs. (10), (11) and
(13), one may obtain the following expressions for the thermal variations
of the two indices:

dn,, 2a,, A2 M K, »

2n,, Z’{?f =-—y (nw —1) —}-—2 (fzwr X"g;‘z‘ %(a,,—-— C".L)Z ?\ 9 (14)
d 2a, 22 X K, A2

2n, Tt =— y (12— 1) +z(;r Tyt (an— a) & -, (15)

where a,, and a, are the coefficients of thermal expansion parallel and per-
pendicular to the optic axis.

dn/dt from 2000 to 6000 A.U. for both ordinary and extraordinary
indices have been measured by Micheli (1902) for a mean temperature of
61-5°C. Reed (1898) has measured dr/dt from room temperature to 350° C.

for the sodium D line. We shall base all our calculations on these measure-
ments.

As will be seen presently, the contribution to dn/df due to the shift
(if any) of the infra-red frequency will be very small and is therefore neglected.
y has the value, 15-77 xX107¢ and a,,— a,, 31:91 x 10-% (Fizeau’s data from
Liebisch, 1891). The values of the K,’s and the X,’s, found so as to get a
good fit with the dn/dt data are:

K (500) = 0, K (1000) = 0, K (1535) = 1-006 y
X (500) = 0, X (1000) = 10-8 x 105, X (1535) = 30-2 x 10—6} (16)

Following the procedure in A 1 to A 6, the remote ultra-violet frequency was
taken not to change with temperature. It was found that small values of
the order of 1% of that of K (1535) could be given to K (500) and K (1000),
without upsetting the fit of the dn/dr values. However, since they were very
small, they were put as zero. A probable explanation of the small values of
these K’s is given below under aragonite.

The values of dn,/dt and dn_/dt, calculated with equations (14) and (15),
using the constants given in (16) are shown as continuous curves in Fig. 1.
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Fig. 1. Variation of dn/dt of calcite with waveleagth for the ordinary and extraordinary
rays. The continuous curves 'are from theory. The circles represent the measurements of
Micheli.

The circles are the experimental data of Micheli (foc. cit.). It will be noticed
that, with only three arbitrary constants, viz., X (1000), x (1535) and K (1535),
the whole range of data from 2000 to 6000 A.U. for both the rays are satis-

factorily explained.

Considering now the refractive index variations at higher temperatures,
Reed’s data are confined only to one wavelength, so that they cannot be
used to verify the theory. However, some interesting deductions can be
obtained from them. We shall assume that X, is the same at all tempera-
tures, so that the transfer of oscillator strength is proportional to (a,— ay),
ie., the rate of change of the axial ratio. The values of both this quantity
and that of y at higher temperatures can be obtained by extrapolating
Fizeaw’s formule for the coefficients of expansion. Then, using Egs. (14) '

“and (15), X (1000) and X (1535) can be calculated for different temperatures.
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Their yvalues calculated in this way from Reed’s data as given in the Inter-
national Critical Tables, Vol. VII, p. 24, are given in Table IV. The X’s
show a peculiar variation, the one for the 1535 A.U. absorption being prac-
tically independent of temperature, while the other one rapidly increases
with temperature. It may be mentioned that too much importance should
not be attached to these finer details, both because of the assumptions in
the calculations and also because Reed’s temperature measurements are
not very reliable (¢f. Sosman, 1927, where Reed’s measurements of dn/dt
for quartz are compared with those of other workers).

TABLE [V
Temperature °C. x (1000) x 106 x (1535) x 10¢ Baseclnzgtgxz?sure-
61-5 10:8 30:2 Micheli
61-5 106 269 Reed
152-1 14.-6 28.7 ,
248-5 19-3 2.5 i
349 24.-0 26-6 .

It will be interesting to compare the X-values of the ultra-violet fre-
quencies with those of the infra-red frequencies as deduced from Raman
effect data (Ornstein and Went, 1935; Kopcewicz, 1937; Venkateswarulu,
1942). Calcite has two low frequency lines at 155 and 282 c¢cm.™, due to the
tilting and transverse oscillations of the CO; ions, which have large X values
of 400x 10-% and 250 10-8 respectively. This, as well as the fact that they
become broader at higher temperatures, suggest that they are highly tempera-
turesensitive, and support the idea mentioned earlier that the transfer of
oscillator strength is at least partly due to the increase in amplitude of the
tilting oscillations. The CO; ion has 4 internal oscillations of higher frequ-
ency, two perpendicular and two in the plane of the ion. One of the first and
both of the second type appear in the Raman effect as fundamentals (1087,
714, 1432 cm.™%), while the fourth one occurs as the octave (1749 =
2 x 874 cm.7Y). The results of different workers regarding the temperature-
shift of these frequencies show discrepancies. Kopcewicz has, however,
found that the degenerate vibrations shift with X’s of about 18 x 10~% and
8 x 1078, which, as is to be expected, are of the same order as the X’s of
the ultra-violet frequencies. He finds the shift of frequency in the other two
oscillations to be much smaller. However, in the analogous case of NaNO,,
Nedungadi (1939), using a Hartmann diaphragm method, found X to be
of the order of 15 x 107% for the symmetric planar vibration. It will be
useful to make more exact studies of the temperature-variation of the Raman
lines of calcite, using the same method.
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It may be mentioned that even if X of the infra-red frequencies is about
30 % 10-%, the contribution to dr/dt by them for wavelengths below 6000
A U. is less than 0-001 x 107%, so that its neglect in the calculations made
above is justified.

(¢) Aragonite—The thermal variation of all the three principal indices
of aragonite have been measured by two workers (Offret, 1890; Marbach,
1913) over the temperature range from 0° to 300° C. Their data are shown
in Table V. It will be noticed that their meaurements are not sufficiently
accurate for any conclusions to be drawn regarding the variation of dn/dt
with wavelength. One can only get approximate values for the three principal
variations, corresponding to a mean wavelength, which are shown in the
last row. The mean wavelength, 0-582 u, is so close to the D line, 0-589 u,
that the calculations can be carried out for the latter.

TABLE V
Wavelength in iy drtg dng

microns - 10° 7 10 — - 10° Reference
0-471 - 1-2 - 25 - 2-9 Marbach
0-480 - 1.3 - 2.5 - 2.7 Offret
0-671 - 14 - 25 — 2.8 Offret
0-706 - 1.1 - 2.7 — 3.0 Marbach
0.582 - 1-2b - 2.55 — 2.85 Mean

Eq. (10) with the values of da;,/dt given by (13) can be used directly to
calculate the refractive index variations. On account of the fact that the
dispersion frequencies are the same as those of calcite, one may take the X’s
also to be the same as for calcite at the same mean temperature of 150° C,,
viz., X (500) = 0, X (1000) = 14-6 x 1078, X (1535) = 28-7 x 10-°. But, one
is not justified in assuming the values of K, to be the same as for calcite.
However, the following consideration will show that K, will be significant
only for the nearest ultra-violet frequency. It is obvious that, if an oscillator
is isotropic with a,, = @,,= as,, then there will be no transfer at all with
change of temperature, i.e., K, will be zero. Also, it is reasonable to suppose
that the less anisotropic the oscillator is, the less will be the magnitude of
the transfers in oscillator strength. One may take the following function
2, as defining the anisotropy of an oscillator:

. P (alv_ azr)2
7T (At Gart Qs)? (17

In this, the denominator is proportional to the mean oscillator strength,
and the numerator vanishes only when a,,= a,,= as,, i.e., when the oscilla-

Q
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tor is isotropic. In Table VI ate given the values of £, for the three ultra-
violet frequencies with both calcite and aragonite.

TABLE VI

Calcite Aragonite

Wavelength | Anisotropy | Wavelength | Anisotropy

A.u. Au.

1535 0-4144 1535 0-4208

1000 0-0062 1000 0-0024
500 0-0008 500 0-0004

It will be seen from the table that the anisotropy of the second fre-
quency at 1000 A.U. is only of the order of 1% of the first one, and that for
the remote frequency it is negligibly small. So, if one takes the transfer
of oscillator strength to be proportional to the anisotropy, it would explain
the fact found with calcite, viz., that the transfer is very small, except for
the nearest frequency. It may be mentioned that, in applying the author’s
thermo-optical theory to the case of quartz, Radhakrishnan (loc cit.) did
not assume any transfer in the oscillator strength, but was yet successful
in explaining the data. This is because the anisotropies of all the oscillators
in quartz are very small, the largest being 0-00231, so that, just as with the
remoter ultra-violet frequencies of calcite, one may put the transfer to be
zero without committing a serious error.

For aragonite also, therefore, we shall take K (1000) and K (500) to be
zero, so that only one constart has to be determined, viz.;, K (1535). This
was found to have the value 1-30 as compared with 1-01 for calcite. The
rates of change of the three indices, calculated with this and the values of
X mentioned above, are dn,/dt = — 1:31 X 1075, dn,/dt = — 2-40 x 1073,
dnsfdt = — 2-97 X 1075, which may be compared with the experimental
values given in Table VI, viz.,, — 1:25, — 2-55 and — 2-85 x 10~® res-
pectively. The agreement between the two must be taken to be reasonably
good, considering the approximate nature of the calculations.

6. GENERAL DISCUSSION

The theory of thermo-optic behaviour of an anisotropic crystal given
in the previous section hold only for biaxial crystals of the orthorhombic
system and for all uniaxial crystals, In the case of crystals of lower symmetry,
not only do the principal refractive indices alter with temperature, but the
directions of the principal axes also undergo changes. A theory of thermo-
optic behaviour of the type developed by the author becomes too comph—

cated for such cases.
A7
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The explanation of birefringence as arising from the existence of
(partially) polarised electronic transitions should, however, be capable of
being extended to all birefringent crystals. In particular, it will be inter-
esting to see whether it is applicable to the case of nitrates, which have a
structure very similar to that of the carbonates. So also, many aromatic
organic compounds exhibit marked anisotropy in their optical properties, due
no doubt to the presence of planar rings, and their birefringence must also be
capable of being explained on the basis of polarised electronic transitions.
It is expected to consider these in a later publication.

It might be noticed that the idea of an inner Lorentz field has not been
explicitly assumed in this paper, and that the dispersion formule have been
written in the (n®*— 1) form. The problem of evaluating the magnitude of
the Lorentz field in an anisotropic crystal is a complicated one and depends on
the anisotropy of the particular crystal. Besides, even the necessity for intro-
ducing the Lorentz field in dispersion theory for isotropic crystals is not very
clear. As has been pointed out by the author (AS), the dispersion formula
for a crystal lattice, developed by Ewald (1916) and Born (1918, 1922) are
of the (n®— 1) form. Besides, for the alkali halides, the frequencies used in
the dispersion formula agree with the observed absorption frequencies only
in the (n*— 1) form and not in the (n*— 1)/(n*+ 2) form (A 5). Also,
Kurtz and Ward (1937) have given some reasons to believe that the Lorentz
field is probably non-existent. Because of these considerations, we shall
leave the theoretical question, whether the Lorentz-Lorenz form is to be
used for dispersion formule or not, an open one. The (12— 1) form has
been used in this paper, because it has been successful for various cubic
crystals such as diamond, fluorspar, zinc-blende and the alkali halides (cf.
A 1— AS5) and also for quartz (Radhakrishnan, 1947) using the observed
frequencies.

In conclusion, I should like to express my sincere thanks to Prof. Sir
C. V. Raman for the deep interest that he took in this investigation.

SUMMARY

It is suggested that the birefringence of crystalline bodies can be ex-
plained as arising from the existence of polarised electronic transitions, so
that the probability of transition is different for different directions of the
incident electric vector. As a result, in the dispersion formule for the three
principal refractive indices of a biaxial crystal, the oscillator-strengths will
be different, although the dispersion frequencies are the same. The appli-
cation of the idea to the cases of calcite and aragonite (two strongly
birefringent crystals) enables one to construct dispersion formule involving
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three ultra-violet frequencies at 1535, 1000 and 500 A.U. The formule,
which fit the dispersion data for both rays of calcite from 0°2 to 3 u, show
that a large part of the birefringence arises from the large anisotropy in the
strength of the nearest ultra-violet frequency at 1535 A.U. A similar result
is also found for aragonite.

The dispersion formule are also successful in explaining the thermo-
optic behaviour of both calcite and aragonite, when they are utilised in the
author’s theory of thermo-optic behaviour, which has so far been applied
only for isotropic solids. For anisotropic solids, an additional principle
has to be used, viz., that, while the total oscillator strength does not alter
with temperature, the individual strengths along the three principal direc-
tions can change, resulting in a mutual transfer. It is suggested that this
transfer is related to the differences in thermal expansion along the three
directions, which finds some support in the case of aragonite. A physical
explanation of the transfer can be found, wholly or partly, in the tilting
oscillations of the CO; ion.

The theory is successful in explaining the remarkable fact that, while
dn/dt for both indices of calcite is positive, that for all the indices of arago-
nite is negative, the difference being attributable to the much larger coefficient
of thermal expansion of the latter.
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It is a remarkable fact that while dn/dr’s for both the indices of calcite
are positive, those for aragonite are negative for all the three indices. It
may be noticed that we have used the same dispersion frequencies with nearly
‘the same weights for both the crystals and also taken the frequencies to
change with temperature to the same extent. Nevertheless, the theory is
able to explain gquantitatively the positive and negative values of dn/dr in the
two cases. The difference arises principally because of the much Ilarger
coefficient of thermal expansion of aragonite, the coefficient of cubical expan-~
sion for which is 70 x 106 as compared with 16 < 10~¢ for calcite. This
gives rise to a large negative contribution to dn/dt and makes it negative for
all the indices of aragonite. The small difference in the value of K (1535)
assumed in the two cases, viz., 1.0 and 1.3 respectively, is not of serious
consequence. The value 1.3 was taken for aragonite to get the best fit with
the data. Even if it were taken as 1.0, the dn/di’s would have wvalues
— 1.50, — 2.35 and — 2.80 x 10%, which do not differ much from the

observed ones.




