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Abstract. Neutron and x-ray diffraction studies of Sb.S; indicate extensive diffuse
scattering in the plane perpendicular to the chain axis of polymer-like (Sb,S), mole-
cules. The crystal structure of the paraelectric phase is said to be orthorhombic
with space group D3} with four molecules per unit cell. © The observed diffuse scatter-
ing may be due to static disorder or some dynamical effects. In this paper the authors
have examined the possible dynamical origin by recourse to lattice dynamical studies.
Dispersion relation of phonons along the three symmetry directions a*, b* and c* is
evaluated based on a lattice dynamical model incorporating Coulomb, covalent and
a Born-Mayer-like short range interactions. Group theoretical analysis based on the
group of neutral elements of crystal sites (GNES) was essential in order to examine
and aid in the numerical computations. The group theoretical technique involving
GNES extended to ‘pseudo-molecular’ systems is also discussed in this context,

The phonon dispersion relation shows that there are rather flat TA-TO branches
of very low frequency in the @ and c¢ directions which may give rise to diffuse scatter—
ing. The branches along the b-axis are quite dissimilar to those along a and ¢ axes
because of anisotropy. Variation of the potential parameters leads to instability of
the lowest TA-TO branch. This is suggestive of a temperatures or pressure-depen-
dent phase transition. However since these modes are optically “silent’ one needs to
carry out either high resolution neutron scattering or ultrasonic studies to confirm
various aspects of the theoretical studies.

Keywords. Antimony trisulphide; lattice dynamics; phase transitions; neutron
diffraction; x-ray diffraction; paraelectric Sb.Ss.

1. Introduction

One and two-dimensional materials have been subjects of investigation during the
last decade to understand their various anisotropic properties. Physically they
behave as fibrous or as layer-like crystals: mechanically and electronically they
have large variations as a result of anisotropy. Light scattering techniques, x-ray
diffraction and neutron scattering techniques have been used to study a variety of
these systems (Wieting and Schluter 1979). New families of the low-dimensional
systems are being discovered and getting investigated.

The V-VI-VII compounds like the sulfoiodide SbSI and V,VI, compounds (sesqui-
chalcogenides) like Sb,S; have been of interest since they not only exhibit low-
dimensional features but also because they are semiconductors exhibiting other
unusual properties like photoconductivity, pyroelectricity and ferroelectricity
(Bohac and Kaufmann 1975; Grigas 1978; Fridkin 1980). In fact the two systems
SbSI and Sb,S, have close similarities to each other since they have chain-like structure
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and crystallise with the same space group D%?, with four molecules per unit cell in the
paraelectric phase. SbyS; also has some semblance to members of another family of
layered crystals, namely As,Ss, etc. which have attracted lot of interest due to their
semiconducting properties in their crystalline and amorphous states.

SbSI and Sb,S; have been studied extensively by infrared and Raman scattering
techniques. Neutron inelastic scattering technique has been used in investigating
SbSI. Sb,S; has not been studied so far by neutron techniques, which would be
helpful to determine the dynamics of the system completely. So also, detailed lattice
dynamical calculations have not been carried out to interpret light scattering and
neutron data either in SbSI or Sb,S;.  'We took up recently experimental and theore-
tical investigations of Sb,S; and report in this paper results of our investigations.
In § 2 we describe details of crystal structure of Sb,S;. Section 3 deals with group-
theoretical analysis of lattice vibrations of this system. We have used the group of
neutral elements of a site for this analysis. In this connection we have discussed how
this approach can be used for a ‘molecular’ system. Results from group theory were
essential to help in numerical calculations reported in the later sections. Elastic and
inelastic meutron scattering results and results from x-ray diffraction are outlined in
§ 4. Lattice dynamical calculations based on a model involving covalent, Coulomb
and short range (repulsive) two-body interactions are reported in § 5. Section 6
deals with interpretation of the experimental observations using the results of lattice
dynamical calculations. We shall discuss lattice dynamical aspects of SbSI in a
forthcoming paper.

2. Structure of stibnite (Sb,S;)

At room temperature, the mineral stibnite (chemical composition Sb,S,) crystallises
in orthorhombic form with four molecules per unit cell (Hoffmann 1933; Wyckoff
1948; Scavnicar 1960; Bayliss and Nowacki 1972; McKee and McMullan 1975).
The space group can be referred to as Dy (Pnma)* with the atomic positions given by,

de: 4+ (b w,+@+ithi—w

The parameters » and u are given in table 1(a) and the atomic positions of all the

Table 1(a). Atomic coordinate parameters in Sb.Ss (from Bayliss and Nowacki

1972). ,
Atom v u
Sby 0-0293 03261
Sbyy 0:3505 05360
S 0-0497 0-8769
Sy 0-8749 0-5614
Sqx 0-2079 ’ 0-1917

*Both Hoffmann (1933) and Scavnicar (1960) note that in the x-ray diffraction studies there are
systematic absence of (hoD)for b+ 1 odd-and (okD)-for k and I odd-reflections. In the ortho-
rhombic ‘system these extinctions are consistent with Pbmn (D3}) and Pbn2, (C3,) space groups.

However, they conclude that Pbnm is the most probable space group on the basis of morphology,
lack of pyroelectric effect and etching figures-all indicating a centrosymmetric space group. This
observation is also said to be supported by the exact correspondence between intensities of (hko)
and (hk2) reflections. : _



Neutron, x-ray and lattice dynamical studies 595

twenty atoms in the unit cell are listed in table 1(b) for ready reference. The crystal
structure is shown in figure 1. Lattice constants as given by different experimenters
are given in table 1(c). We have used the lattice constants and atomic co-ordinate
parameters as given by Bayliss and Nowacki (1972) for the lattice dynamical
calculations. **

Following Scavnicar (1960) the structure may be described essentially as consisting
of several ribbons of (Sb,S,), forming sheets infinitely extended parallel to b axis.
In each sheet each antimony and each sulphur is surrounded by three atoms of the
opposite kind. In the three-dimensional configuration, it may be noted that one
half of the Sb atoms (referred to as Sby;) are surrounded by five S atoms (Sy;;) each

Table 1(b). Labelling and coordinates of all atoms in the unit cell.

Atom Mole- Atomic Atomic Mole- Fractional coordinates
No. cule No. Species Type No.  Type No. x y z
1 Sb, 1 00293 025 03261
2 Sbyy 2 0-1495  0-75  0-0360
3% 1 S; 3 1 09503 075 01231
4 Sy 4 01251  0-75  0-4386
5 Si 5 02079 025  0-1917
6 Sb, 1 05293  0-25  0-1739
7 Sby; 2 06495 075  0-4640
8 2 S 3 1 04503  0-75  0-3769
9 Sn 4 06251  0-75  0-0614
10 J St 5 0-7079  0-25  0-3083
11 Sby 1 09707 075  0-6739
12 Sby; 2 08505  0-25  0-9640
13 3 St 3 1 00497  0-25  0-8769
14 Sy 4 08749 025  0-5614
15 St 5 07921  0-75  0-8083
16 ) ' Shy 1 04707  0-75  0-8201
17 | Sby; 2 03505  0-25  0-5360
18 & 4 S, 3 1 0-5497  0-25  0-6231
19 [ Sy 4 03749  0-25 09386
20 J St 5 02921 075 06917
Table 1(c). Lattice constants of SbSs.
a br c Reference
. 11-28kx 3-83 11-20 Hoffmann (1933)
113104 3-8389 - 11-299 Wyckoff (1958)
11-33(2) 3-84(1) 11-25 Scavnicar (1960)
11-3107(9) 38363 11-2285 Bayliss and Nowacki (1972)
11-3018 3-8341 11-22711 McKee and McMullan (1975)

**It should be pointed out however that we have noted that the literature dealing with study of
macroscopic properties and optical spectra lead to contradictions regarding space group of the
crystal in various temperature ranges as described in appendix 1. However the high temperature
phase is believed to be paraelectric having space group Dif with four molecules per unit cell. In
view of small changes that may occur in lattice constants as a function of temperature, we believe
that results of our studies of paraelectric phase would still be useful irrespective of the paraelectric,
to ferroelectric phase transition temperature. : -
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Figure 1. Crystal structure of SbaSs projected on to ac plane in (a) and on to bc
plane in (b). Interatomic pairs considered to be covalently interacting in the lattice
dynamical model are joined by dark bars. Dotted lines indicate cleavage planes as
per mineralogy. In (b), projection of only the atoms in the central SbySs unit is
shown. The numbering corresponds to atomic labeling given in Table 1(b).

of these S atoms being linked to the Sb atoms. The other half of the Sb atoms (Sb;)
and remaining S atoms (S; and Sp;) exhibit trivalency and bivalency respectively.
The coordination polyhedra for five-coordinated Sb is a square pyramid, the Sb
atom being slightly displaced outwards of the pyramid base. As pointed out by
Scavnicar (1960), there are two types of bondings in the crystal as indicated by the
bond lengths. There are shorter bonds of Sb-S separations 2.46 to 2.85 A which
may be considered to be strong. These bonds help to group one half of the contents
of the unit cell (four Sb atoms and six S atoms) together. The arrangement of the
atoms in this group allows a {010} 2-fold screw axis at its centre. Symmetry
operation of this screw axis results in the formation of the infinite (Sb,Se)s ribbon or
chain parallel to the b axis. The b-axis, therefore, turns out to be a unique axis in
the system, sometimes referred to as needle axis or chain axis. The ribbon-like
(Sb,Se)s polymers related by the 2-fold screw axes at (300) or (00%) can be regarded as
forming a zig-zag sheet which is roughly perpendicular to the ag-axis. These sheets
give rise to description of the crystal as a layered crystal (Wieting and Schulter 1979).
The second type of bondings typified by Sby-Sy distances of nearly 3.17 A and
much weaker Sb-S interactions at distances of 3.37 A and 3.94 A bind the ribbons

into vertical sheets and these sheets into a three-dimensional network.
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3. Group theoretical aspects of dynamics of Sb,S,
3.1 General aspects '

Maradudin and Vosko (1968) and Venkataraman and-Sahni (1970) have outlined
methods of studying symmetry aspects of lattice dynamics of atomic and ‘molecular’
systems. Recently Sieskind (1978) has pointed out that one can make use of site
symmetry to simplify group theoretical analysis further. He has shown that the
matrices associated with reducible multiplier representations {T(q, S)}, corresponding
to various space group operations {S} of the crystal that constitute the group of the
wavevector Gy({), g being a wavevector of phonons, separate into as many independent
square matrices T, (q, S) as the elementary cell holds various homologous ‘ions’.
With respect to T(q, S), the crystal appears as a combination of sub-crystals formed
by homologous ions which reside at the homologous sites. Sieskind (1978) has
shown that the T, (q, S) matrices may be classified into classes of formally identical
matrices called isostructural matrices. These classes are derived from consideration
of so-called ‘group of neutral elements of crystalline sites (GNES)’. Such a descrip-

tion allows one to build easily the projection operators P needed for reduction of the
dynamical matrix to block diagonal form. We have followed the method of Sieskind
(1978) as it helps in analysing the problem considerably and elegantly. Whereas
Sieskind’s paper deals with atomic case only, we discuss first how the scheme can be
adopted for ‘molecular’ systems. In the subsection 3.5 (v) dealing with reduction of
dynamical matrix, we have outlined how one can consider equivalent and non-
equivalent atom-pairs to arrive at the structure of the dynamical matrix in this scheme.
The results of particular interest to us are (i) the structure of the dynamical matrix to
check against numerical results and (ii) symmetry vector matrices needed for block
- diagonalisation of dynamical matrices for simplifying the eigenvalue problem.

The primitive translation vectors of the orthorhombic lattice of Sb,S, are defined
by a; =ai, a, = bj and a; = ck where i, j and k are unit orthogonal vectors and
a, b and c are cell dimensions along these directions. The reciprocal lattice is also
orthorhombic; the reciprocal lattice vectors are given by b, = (2n/a) , b, = (2=/b) j
and by = (2r/c)k. The Brillouin zone is shown in figure 2. The symmetry operations
of the space group-D}f are given in table 2. The point group operations associated
with this spacegroup are hy, hy, hy, hy, ko, hog, hoy and hyg in Kovalev (1965)’s
notation. The space group operations decompose into a direct product of two
groups one of which contains only the symmorphic group associated with hy and hyg

¥
Z 8 T/1
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X D s/
X

Figure 2. Brillouin zone of orthorhombic lattice.
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and another non-symmorphic group associated with A, hg, kg and hy.  That is
Di: (b, hys) ® (hys hay gy Ba)s
(g, hys) ® (g hy) @ (s B
The generators of the Djg group may be chosen as hg, By and by, Under the effect

of space group operations the atoms in the unit cell get exchanged or are left invariant
and this can be determined by examining the coordinates of the transformed atom

(L), starting from an atom (;C) using the equation,

K
x(ll'()-—*Sx(IIc):Sx(llc)—l—v(S). | €))

" Table 3(a) shows the effect of symmetry operations on the twenty atoms in the unit
cell in terms of the atom labels given in column 1 of table 1(b).

Discussion of group theoretical aspect of crystalline lattices hinges on the construc-
tion of the reducible multiplier representation {T(g, S)} of the space group

Table 2. Symmetry operations of the space group D3,

- , Effect of Matrix
. Seitz’s Kovalev’s -
Operation : . point group Repre- Character

.Notation Notation on (xy7) sentation

S E;/(000) hy (xyz) 1 0 0
0 1 0 3

0o 0 1

Sy Ci(x)/(% 3 ) ke , x32) 1 0 0
. 0-—-1 0 -1

' 0 0-1

Ss C:()/(0, %, 0) hs (xy2) -1 0 0
0 1 O -1

0 0-1

Si Cy(2)/(0, 0, D - h (€579) -1 0 0 ,

v 0—-1 0 -1

0 0 1

Sy 1/(0, 0, 0) hs (%72) -1 0 O
0-1 0 -3

o 0-1

Se o3 5 B hse Gyz) -1 0 O

0O 0 1

S‘? 0'}’/(Oa '}9 0) hsn (xiz) 1 0 0
. 0—-1 O 1

’ 0o 0 1

SB az/('&; 0: %) ' hgg (xyf) ’ 1 0 0
‘ o 1 0 1

0 0 -1
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operations {S}. The most general form of the matrix T(q, S) is given by* (Rao et al
1978, referred to hereafter as Paper 1),

TH; @, 5) = GHS) 81y S, 81, Fylie, S)] exp [iG - {x(9) — v(S)}] ()

applicable in external mode formalism. i and i’ correspond to translation and
rotation 7 and r of the constituent units. C'(S)=1 for i=¢; C/(S)= || S l| for i=r.
a and B refer to cartesian components. S, p is an element of the rotational matrix §
associated with the operator S, q is any wavevector of the lattice, v(S) the fractional
translation associated with the operator. If unit « is permuted with «’ under sym-
metry operation S, 8[«, Fy (x, S)]=1; otherwise it is zero.

‘Table 3(a). Effect of symmetry operation on atoms in unit cell.

Atom No. gets transformed to atom no. given here under effect of
(see Table 1(b)), S, S, Ss A S, Ss S, S,
1 1 6 11 16 11 16 1 6
2 2. 7 12 17 12 17 2 7
3 3 8 13 18 13 18 3 8
4 4 9 14 19 14 19 4 9
5 5 10 15 20 15 20 5 10
6 6 1 16 11 16 11 6 1
7 7 2 17 12 17 12 7 2
8 8 3 18 13 18 13 8 3
9 9 4 19 14 19 14 9 4
10 10 5 20 15 20 15. 10 5
11 11 16 1 6 1 6 11 16
12 12 17 2 7 2 7 12 17
13 13 18 3 8 3 8 13 18
14 14 19 4 9 4 9 14 19
15 15 20 5 10 5 10 15 20
16 16 i1 6 1 6 1 16 11
17 17 12 7 2 7 2 17 12
18 18 13 8 3 8 3 18 13
19 19 14 9 4 9 4 19 14
20 20 15 10 5 10 5

20 15

Table 3(b). Effect of symmetry operations on ‘pseudomolecules’ in the unit cell.

gets trapsformed into ‘pseudomolecule’ no. given here

‘pseudo-molecule’ no. under symmetry operation
S 1 S 2 S 3 . S 4 S B S 8 S 7 S 8
1 1 2 3 4 3 4 1 2
2 2 1 4 3 4 3 2 1
3 3 4 1 2 1 2 3 4
4 4 3 2 1 2 1 4 3

*The form of T(q, S) given here diﬂ‘qrs from that given by Venkataraman and Sahni (1970) by a
phase factor. The form given in (2) is appropriate from the point of view of commutability with
dynamical matrix M(q) given later. _
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3.2 Simplifications introduced by GNES

The matrix T (g, S) can be written symbolically as
T(qS) =5%QT @5 | | 3)

a tensor product of two tensors, §® of dimensions 3 and T’ (g, S) of j-dimensional
Euclidean space; j=v + 2u where v refers to number of atoms and p number of
¢molecules’ in the unit cell. We note that even if one cannot consider aset of atomsas
forming a ‘molecule’ from the point of view of rigidity of the cluster as a whole, one
can still use the fact that if a set of atoms is transformed from site to site without any
interchange of atoms amongst themselves, such a group may still be identified as a
‘molecule’ for group theoretical purposes as it would result in considerable simpli-
fications in group theoretical analysis. Specifically, simplifications will result by
adopting a ‘molecular’ view in such cases even if we are interested in developing a
strictly atomic model of dynamics. We wish to adopt an atomic model of lattice
dynamics for SbyS; as there are no indications spectroscopically to allow us to
treat Sb,S; as a rigid unit. But Sb,S, can be treated as a molecular unit for group
theoretical analysis since the space group operations do not interchange any of the
constituent atoms in this loosely bound (non-rigid) cluster. In order to avoid any
confusion with truly ‘molecular’ units, henceforth we shall designate the non-
rigid clusters, which can be treated as units for group theoretical purposes as ‘pseudo-
molecules’. We generalise Seiskind’s approach to external mode formalism for
group theoretical analysis.

If p, and p, identify atoms and ‘molecules’ in the unit cell and if n(p,) and n(p,) be
the number of homologous crystalline atomic and ‘molecular’ sites of type p, and p,
making C,, and Cp, distinct families in the unit cell, T/ (g, S) can be written as a direct
sum of 7 (py) and 71 (py) dimensional square matrices T, (¢, S) and T, (¢, S) of
general element T, (x«', q, S) (p=p, OF P2)

o, ® Co.® '
rgSH= > T&H® 2 Th@S) @)
P1=1 pg"—-“l

For Sb,S;, assuming ‘pseudo-molecular’ nature, p, = 0, po=1, n(p;)=0 and
n(p,) = 4. Therefore,

: 10 _
T® (g, S)= Y Tp, @ 5)=T1 (% S5)- O

P=1
4x4

We now examine the T, (q, ) matrices of the homologous sites p. The discussion
follows essentially the approach of Sieskind (1978). As already indicated, p could
be either p, or p,. Equation (1) shows that «’ results from « as a result of the space
group operation S. Hence each operation Sis a permutation operation and T (¢, §),
matrices associated with S for any q are each related to a permutation matrix T,(S)
which is derived from T,(q, S) by replacing each non-zero element in the matrix

2
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T,(q, S) by unity. Two different matrices T ,(q, S) and T,(q, S') leading to the same
permutation matrix are termed isostructural matrices. One can show that the
T,(q, S) matrices arrange themselves in -equivalent classes of . isostructural
matrices, The set N(p) of operators in the space group G which leave invariant all
the homologous sites of type p is called GNEs. Consequently for all S e N(p), T,(S)
is the identity matrix. Furthermore, N(p) makes a partition of the operators in G,
into a collection of cosets of N(p). So with each element of the factor group is
associated a permutation matrix Tp(S,,’,, s (=1, IL,...., ), (c=1,2,... .,gN(p)).
The order of the factor group G/N(p) gives the number f of distinct permutation
matrices; for the site p, f=g/gN(p), where g and &n(p) Tepresent the order of the
groups G and N(p) respectively. For SbyS;, N(py); {hy, han}s pa=1; f=glg N2
=8/2=4. Therefore, there are four different classes of matrices T, (Sﬂ’ o =L, 11,
I, IV and o=1, 2. T(S) indicates a permutation matrix of type p,=1 corres-
ponding to the operation S. In writing the Tl(Sm ) matrices we resort to a simplified
notation, namely we write only the permutation aspect of the ‘pseudo-molecule’ by
writing unity instead of &;,» C*(S) which occurs in (2). We adopt this procedure
because we wish to use only the atomic model for lattice dynamics of Sb, S;.  If one
wishes to examine the external modes of a true ‘molecular’ system, terms 8, CH(S)
have to be retained in T,,(S).

In table 4 we have given correspondence between operations that belong to different
classes of GNEs in terms of S o and in Kovalev (1965)’s notation. Table 5 gives
explicitly the permutation matrices Ty(S,,s) for Sb,S;. We note that Ty(S, o) is
independent of q and a.

Table 4. Correspondence between labels S, o and Kovalev’s notation.

Class = ’ : I II I v

GNES label o 1 2 1 2 1 2 1 2
s Sp,1 Sy Smi Sme Smi Sme Sv,i Siva

Kovalev’s h, By h, Hag hs hag hy hog

Table 5. Permutation matrices T} (S, o) for Sb,S; (6 = 1 and 2).

(a) Class (77 =)I v {hls ,127} = SI, o (b) Class II: {hg, h23}
‘ i1 0o o0 o 0 1 0 o
0 | 0 ol 1 0 0 )
T (5, o) =0 0 1 0 Ty (Sy, o) = |0 0 0 1
0 0 0 1 ' 0 0 1 0

(c) Class III: {h, by} ‘ (d) Class IV: {h,, hy5)}
0 0 1 0 0 0 0 1
0O o0 0 1 0 0 1 0
T1 (SIII’ o') = |1 0 0 0 T]_ (SIV, O') = {0 1 0 0
0 1 0 0 1 0 0 0
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3.3. The projection operator P.

The projection operator P is defined by

, d "
P,[q 2= -}? 2 T8 A S) T4 S (©)
Sn

where = Aq, A, Sy) is the matrix element of the irreducible representations {q-)‘}
associated with Gy(q) for the operation S,(S» € Gy(q)-

d . ’
P 0 =3 > a2 S) {5 @ T@ SO} )
Sn

f & N(py)
d : :
- 7? z S{ : ; TTLP.’ (qa A’ S'rr, (J) {S:rs) ® Tpl (q’ S )} A

&N(p2)
® z T;kl.p.' (q’ A, S-n', o) {S((:rs) ® Tpg (q’ S.,r)}

I &Ny
_ z { z * @A S, ) sgs)g ®T,, (@ S,)

@i Z ey (d, A S, o) s;‘”% ®T(@S) ®

If
g Enm , , ’f
PIJ:}L' (q’ A: '”) = "‘]'3" z T:“,’ (q’ A’ an-, o')‘ s(o?) (?)
. =

then
f

P @AD= D 2 @AMO T, (@ S)
a=1
and

Pp,,_,,’ (q9 A) = PF'F“' (q> Aa p1)®P}Lp-' (q: A9 Pz) ' ’ o (10)

T, (g, Sm, o) matrices.

Since we shall be concerned with symmetry properties of lattice modes for wavevectors

st
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within the Brillouin zone, the phase factor exp [iG-{ x(x) — v(5)}] that appears in
T (q, S) (equation (2)) is unity as G =0 for q within the Brillouin zone. Hence
T, (9, S»,) matrices are as given in table 6 for Sb,S,. In writing these matrices it
may again be noted that the ‘pseudo-molecular’ concept is implied and hence factors
3, C'(S) do not appear.

3.4 Projection operators and symmetry vector matrices for specific wavevectors
We shall now consider four specific wavevectors, namely, q,=0; q;=(Q;, 0, 0);
q3=(0, Q,, 0) and q,=(0, 0, Q;). We shall construct projection operators and then

derive the symmetry vector matrices for each of these cases. Table 7 provides the

Table 6. T, (q, Sy, o) matrices for Sb,S; (pseudomolecular) (g within brillouin zone).

hy 0 0 0 hy, O 0 0
0 hy 0 0 0 hay 0 0
T,(q, 8,y =|{0 0 hy, O T.(1, S, =|0 0 hyy ©
0 0 0 h, 0 0 0 h;,
0 h. © 0 0 hoy 0 0
o . h; 0 0 (V) . hyg O 0 0
Ty (@ Sy, y) =0 0 0 h, T, (4 Sy, 2 =|0 0 0 hag
0 0 h; 0 0 0 hye O
0 0 hs 0 0 0 hyy ©
0 0 0 h; 0 0 0 hss
T, (q, Sm, 1) =|hy O 0 0 T (q, Sm, z) = | hag 0 0 0
0 hs 0 0 ) 0 hss 0 0
0 0 0 he 0 0 0 hys
0 0 h. 0 0 0 hye O
Tl ((], SIV, 1) = 0 ’14 0 : O T]_ (q, SIV, 2) = O hzs O 0
hy 0 0 0 hyey O 0 0

Table 7(a). Irreducible representations for groups of wave-vectors G,(q)
) a=0 Gyq): {1y has sy By hasy Pagy Fag, Bag}.

b b hs b by el B

L ) 1 1 1 1 1 1 1 1 ay ay, g
r. i 1 1 1 =1 -1 =1 —1
I's @By 1 1 -1 =1 1 1 =1 =1 Ry ay
e (Bw) 1 -1 1 -1 1 =1 1 —1 Ry agz
I's . By 1 -1 =1 1 1 1 —1 1 Ry ay
I's (B 1 1 -1 =1 =1 -1 1 1 Ty
n @Bw 1 -1 -1 1 -1 1 1 =1 T,

1

s (Bw -1 1 -1 -1 1 -1 1 T
(i) g =4q; =(Qy, 0, 0) Go@s): {My, sy hoy, hog} 2 direction
(i) q=q; =0, @, 0) Go(as): {hy, s, hssy hag} A direction
) q=¢q. =0, 0, Q3  Go@): {h, he, hss, he} A direction
2 Ay A 1 1 1 1
Ze A A, 11 -1 —~1
S As As 1 —1 1 —1
24 Ad A; 1 '—1 —1 1

o s i b
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Table 7(b). Compatibility relations in paraelectric Sb,S,.

0r, 01,y . 0T
% 20 3, % 15 A } 20 A,
10 Fs 5 PB 10 P‘I
5T 5T 5T7:) -
”} 10 3, 2} 15 Aq 2; 10 A,
STs) 7 . 1014) S5Ts
10 Fl 5 FB 5 Fa .
% 20 Xs } 15 As } 10 A,
10 P1 N 10 F7 5 Fs
5 ST : 10 .
F“% 10 Z, 5} 15 As I“g 20 As
ST 10T 10 T

irreducible representations for the groups of the four wavevectors. We note that for
Sb,S; since p;=0 and p,=1, P, , (@, )=P (¢, A, po=1).
q,=0

——

Go ()2 {Prys hos Py gy By, Bog, o and Hag}.

Since the irreducible representations are all one-dimensional (i.e. p=p'=1) we have
to compute Py; (0, I, 7) using eq (9). The result is as given below (p,=1):-

T - Pu (03 Fm 77) '

o~ I n o v
: rl tl t2 "-t]_ "“"tg
T ts -1 t3 —1y
T ty —t3 ~13 ts
Fl stl —1, ""t1 ) tz
I's ts ty —tg it
FC 4 I ty Iy
. 91 —1, S 1 —1,
Ts ty - s I ts
- 100 100 1000
where t=% |0 00|, =3 |000)|, =% |0 10
0 01 0 0-1 0 0O
From (10), we have

Pu (03 rn) = pu (09 Fm I)Tl (S[) + P11 (Os Fm II)T]. (SII) +
pu (0 T IDT4(Si) + pual0, T VT (S1)-

The projection operators obtained using this expression are given in table 8(a).
Once the projection operators are determined it is straightforward to derive the
symmetry vectors belonging to different representations. They are the independent
vectors obtained by operating the projection operators on the set of basis vectors.
Collection of symmetry vectors, representation by representation, provides the
symmetry vector matrix needed for block diagonalisation of the dynamical matrix.
In the present case, the symimetry vector matrix ¢ (0) (derived by inspection) is

given by,
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‘ ‘ K
[ 1 0 0 0 1 0 0 1 0 1 0 O]xy
0o 0 1. 1 0 O 1 0 O 0 o 1 y} 1
6 1.0 0 0 1 0 0 1 0 1 0}z
1 00 0~-1 0 0 1 0-—-1 0 O{x
6 0-1-1 0 0 1t 0 O 0 O 1 y}2
6-1t 0 0 01 0 0-1 0 1t O]z
®1
T2 0O 0 t-1 0 0-1 0 O 0 ©O0 1 y}S
0-1 0 0 0—-1 0 0 1 0 1 0]z
-1 0 000 1 0 0 1 0-1 0 0}x
0O 0-1 1 0 0-1 0O O O O 1 y§4
0 1 0 0 0—-1 0 O0-1 0 1 O}z
o St NS (e -
T'hn T Ts I I's T T Ts
Table 8. Projection operators for specific wavevectors.
(a) PO, I,) r=1through8.
4 ty —h —IL 3 —13 3 —Is sy —13 —1 ts
th L —ly -4 —1Is - Iz —Iy Iy —13 I Iy —1y
-l 1 ty ta ty —1g Iy —13 —1I 1y s —1y
—t3 —h B 4 —1I3 ly 13 t3 Is —t —1y 13
I , I I's
ty —t; —Hh ts 13 sy =l It 4 I, 4 Iy
—1 t t; —t 1 s —t3 —l3 ty L Iy h
et 21 ty L —t —ly —l ty t3 t t, t 1,
s —l — t —l =1 I3 ts 19 4 ty h
| s Ts
 —Hh L —fh ty 3 | n t.
““tz tl "'tg tl ts Ia ta t3
ty =1y L =1 143 ty Iy 13
""tg t]_ "'tg tl ta !3 ta t3
I‘v Fs :
(b) P(qs, ;) r = 1 through 4. '
L t 0 0 t3 =tz 0 O Hh —t, 0 0] t ty 0 0
tz tl 0 0 '—'ts ta 0 0 “‘ta tl 0 0 !3 . ts O O
0 0 tl tg 0 0 ts "'t3 0 0 tl ""tz 0 0 ts . t‘s
0 0 tz tl o 0 —ta 18 0 0 —1y tl 0 0 t3 tﬂ
z, 2 Zy Z,
(¢) P(gss Ar) r =1 through 4
h ot ot L] | b=t ty =t |t —h —fs 1 ity —ty —1,
ty h | |—h 4 —l | |—fh Kty ~t b ot —t —t1y
s W h ot i —ta 4L —hi =B f fh —h| |—ty =ty B 1
s i L 4L "W B -l 4 e =B —& 4l |~ & 1, 1
AI ) A,2 AB :A‘
(d) P(qis Ar) r=1through 4 - '
t1 0 0 173 s 0 0 —I3 123 0 0 ‘ Iy t 0 0 ‘—‘t2
0 1 91 tz 0 0. t§ -1y 0 - 0 ta_ 13 0 0 1y — 1ty 0
0 ta tl 0 O "“13 ta 0| 0 : ta tﬂ O 0 _-tﬂ tl 0
th 0 0 K| |-t 0 0 g 5 0 0 4| |-, 0 0 o
A A : o As I A

P—6
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The index « associated w1th each ‘pseudo-molecule’ and correspondmg displacements
x, y and z are 1nd1cated The factor ® 15 indicates that for use in dynamical calcu-
lations one can change over to the atomic ' model by repldcing each set of three rows
of displacement veclors! associated with every representation and every ‘pseudo-
molecular’ index x(=1,2, ..., (py) by a 5x 5 dimensional diagonal matrix with the
diagonal ‘elements’ bemg the correspondmg set of three rows of displacement vectors.
The enlargement factor ﬁve is equal to the number of atoms in the pseudo-molecule
Sb,S;. i
Classification: Using th¢ relation,
e, | . o :
Cr, @ = ézx {7 (@ SO} x {T(q Sp}; Sie G, (@) (1)
S o . v

‘the number of times the représentation r; appears in the 3]-d1men51onal space can be
derived. We have, the 60 modes at ¢; classified as

'10r1+5r2+5'r3+10r4+5r5+1'0r6+10r7+5r8.

For the other ‘wavevectors we ‘shall briefly give the results in the followmg The
procedure is mfmlar to what we have outhned above for q;.

q, = (05,0,0) o h '
‘ : Go (q1) 1 {hy, hyj hz7 and hpg}
R A SR I 1§

. 7 0, 25 m)
z\n\ o SR

2 - h S
Za oty - g :
23 oLy —1
P Iy Iy
, 1 0. 0 , 1 0.0 0 0 .0
f= |0 0?0), ‘z2=~’ofo 0| and :3=]0 10|
- 1o 0-1 210 - 0i—1 00 .0

PIO]ﬁCthn operators are given in table 8(b) The symmetry Vector matrlx for the
‘pseudo-molecular’ Sb,S; is given by,
K

t 00 0 0 01 0 0 0 0 O}xy -
, 0 0.0 0 1 0 0 0 0 0 1 Oyzl ,
v 0 1.0 000 00 L>0 0 0 0|z) : g
1 0 0 0 0 0-1 00 0 0-0[xj: ‘
o o_?:o 0—-1 0 0,0 0 0 1 o0yl 2
=§() qlo=1 0 0 0 0 0°1 0 0.0 olz)°
Q) = ' - L
‘ V200100000100,0::.,.@“",_
0000 01 0 0 0 0 0 1~y§3“
0.0 0 1-0-0 0 0.0 1 0 0fz) -
00 0°1t 000°0 0 0=1 0 6 O0flxy i -
000 0 0 0—-1 0.0 0 0 0 ly}‘i
0.0 :0~1 0-0.0 0.0 1 0 0lz) :.
(A R U S T
v 2 s 2
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_Classiﬁcation:‘ 20 X, + 10 5, 4-20 X, + 10 Z,. The full symmetry vector matrix
1s obtained as explained earlier for the case of q,

qs = (0: Qas 0) .
' Gy (@) ¢ {Itu, hay Iag and hyg}

 + 1 1II I_II v

. DPu (@3 Apy ™ )

k I I 111 v

A 13} Iy SRR £ I

As h —1Iy I3 —1

A3 Iy —t —1 t

As by Iy —~1I3 — 1l

i .

1 00 M0 01 -+ ~1 0 0 -1 0 0
where #,=(0 1 0, =0 1 0‘, ty = 0 1 0| andfy,=] 0 1 0
00 1 o o-1f{. .| 0o o0-1 1o 0o 1

Projection operators are given in table 8(c). The symmetry vector matrix for q,
is given by,

K
1 0 01 0 0 1 0 O 1 O O|x
o 1.0 0o 1 0 O 1-0 0 1 O y% 1
0 0 1. 0o 01 0 O 1 0 O0 1|z
1 0 0—-1 0 0=~1 0°0 1 0 Ofx
01 0 0-=1°0.0=1-0,0 1 o-'-y}?_.
. y 0O 0—-1t 0 0 1 0 O 1°0 0O-1|z : L
€@=%| 4 6.1 00 100 1 0 0l ®%
o1 0 0 1 0 0-1.0 0-1 0y§3
0O 0-1 0 0-1 0 O 1 O0 O 1}z
-1 0 01 0 0-—-1 O O 1 O Ofx
01 0 0—~1 0 0 1 0 0—1 0 y} 4
0o 01 0 0~1 0 O 1 0 O0-1jz
e ) e P R B e Ve
; Ax As As As
B | SRR . .
Classification: 15 A; + 15 Ay + 15 A; + 15 A,
q, = (0: Oa Qa)
Go (qa) :hy, Ay 7ae and hy
7= 1 IVIV 1
: @ Aw ™)
A 11 I‘ " v
AL ."tl' . Lo
A B £ —13
As I3 . .
A b —h
o 100 -1 0 0 _ 00 0
i Where t]_ = \ 0 0 0 tg = O 0 0 and ts = 0 1 0
001 0 01 0 01
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‘Projection operators are given in table 8(d). The symmetry vector matrix for q,
is given by

K

1 0 00 00 0 01 0 0 0/ «x
0 0 001 01 0 00 0 0 y}l

01 00 0.0 0 0 0 1 0 O z

0 0 1.0 0 0 0 O 0 O 1 O X
00 0 0-0 1 0 1 0 0 0 O y}Z

1100 01 0 0 0 00 0 0 1|z

¢ @) =13 ‘ : ® 1;

00 0=1-0 0 0 0 0 O0 O 1 0~ x
00 0 0 0-1 0 1 0 0 0 0 y} 3

0o 0 01 0 0 O O 0 0 0-1 z

-1 0 0 0 0 0 0 0 1 0 0 O X
00 0 0-1 0 1 0 0 0 0 0 y} 4

0 170 0 0 0 O 0 0-1"0 0 z

Ay A; A A;

Classification: 20 A, + 10 Ay + 10 Az + 20 A,

3.5 Reduction of dynamical matrix

The dynamical matrix M(q) defined by (Rao et al 1978)
uf 9 [ - milir 0r . [0
Mg (KK') —-zd) (,c K,) exp {zq-x (K <) (12)

commutes with T(q, S) defined by (2) for all Se Go(q). Since we shall be interested
in an atomic model of lattice dynamics in Sb,S;, we shall restrlct i and i’ to trans-

- lation only and with this understanding dr0p the superscripts ii’ in the following.

T(q, S) (Eq. 2) reduces to “
T,5 (@ <, S) = S,q [k, Fy (<, S)] exp [iG - {x (0 = v
=S8l By (6, S, W
for q within the Brillouin zone. The commutation relation is,
(g, S) M@ =M@ T@S),
ie. [® ® T(q, S)] M(q) = M(g) [S® ® T(q, S)]. (14)

These relations help to reduce the dynamical matrix. The procedure outlined by
Sieskind is quite elegant and useful and we have followed this approach. Sieskind
(1978) considers the general element of TY(q, S) which is independent of a, B=1, 2, 3
and specialising to the case where there is one and only one non-zero element in each
row and column in $® matrices (as it, happens in D3%), we have,
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3 g 3
> > SOTI(Kkq, S)Mﬁ(nK 0="3 z Ma,, (K;c,q) I (K'K' % S) <3{;
y=1 k=1 V—-—l K'=1

or

. 3.
T9 (K &, q, S) S(‘”M g (< K, q) = TJ ( K’ q, S) M (KK, Sm'
o q

k=1 . K“_l, o = 1'
or
Kzlej (K, 0, 8) % My (<K', @) = z: M (K, @ SHT! (< K', q, 5) | (15

where £, @ are characterised by «, 8 and S but are independent of X, X', «, «" and Sfé
=-1. With respect to T/ (q, S) it is cqnvenient to consider the matrix with nine

elements M, (K, Q) (e, 8 =1,2,3 and K, «’, q fixed) as the entity M'(K «’, q)

independent of a and B and its corresponding matrix M’ (q) Consequently, elimi-
nating the factor 3} B equation (15) may be written as,

zwm&%medrm szkwﬁ&KWJL

k=1 Kk'=1 )
o0 TaIMN@-NOTE@S. e

Therefore Sieskind (1978) points out ‘that the reduction of M () separates mto three.
separate steps: effects of T, (g, S), class effects and effects of §®

(i) Effects of T, (g, S) on M’ (K«', q) .

Let us recall that T/ (q, S) is a block diagonal matrix which can be wriften as a direct

sum of n(p)- dlmenswnal square matnces T,(q,S). For the pseudomolecular’

sz S, » : N
T4 (q, S) = T,, (4, S) Where p, = 1 and n (py) = 4.

In the latter case, M’ (q) = My, (q) of sizé¢ 4 X 4.
Hence, we have

T, @& SM Q=M (T, (@5, | an
Where we have dropped the subscrlpt 11 on M'.
(ii) Class effects

In case of Sb,S;, the four-dimensional permutation matrices Ty (S, ;) arrange them-
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selves in four classes = = I, II, Il and IV. We shall examine the consequences of
using the relation (17), namely,

Tl (q3 S,r’ a) M’(q) = M'((]_) T], (q: S,,., o/

or since the relation is independent of q and o, one can write, .

May MaD .. .| (aran
M@ R
RO e T = L ey | me).

Using T, (S, ) given in table 5, we get several relations; for example, considering
7 = 3, we have,

M'(33) = M'(11); M'(34) = M'(12); M'G1) = M'(13); M'(32) = M(14), oc.

Such relations indicate that the 3 X 3 matrices associated with the pair LL, say, are
related to the 3 X 3 matrices associated with the pair MM, say, as given by these
relations. How they will be related will be clear only by considering the effect
of §®,

(i) Effect of S®

The last step in reduction of the dynamicai matrix M (q)“takes into consideration
effects of S on M(q). Successive applications of the point group operations to the
relations obtained by class effects by means of the following relation,

3 3 , ; .
2, Sty My UL, q) = > M, (MM',q) S | (18)

y::]_ V.—:]

would help reduce M(q) further. Note that in this equation, we do not have phase
factors as in the case of Sieskind (1978), since T (q, S) matrices that commute with
our dynamical matrix will not have phase factors within the Brillouin zone. We
have summarised in table 9 results obtained for “pseudo-molecular * Sb,S; by
combining class effects and effects of $9),

(iv) Effects of antiunitary operators
Sieskind (1978) has not explicitly considered effect of time reversal symmetry which
will help further in reduction of dynamical matrix through the use of antiunitary

operators. We note that since these are operations §_ e G, such that §_q =
— q + G, one can use the relation,

T (4, S)M@ T (g, 5) = M* () (eq. 19 of I) - )
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to examine the reduction of dynamical matrix further. T (g, S_) is defined by the
elements,

T (€, 4, S =8y C1 (S S-4p8 I, Fy (<, 5]
:, X exp [i G- {XA(K) - v(.S‘;)}]. ? S E (20)

For q within the Brillouin zone (G=0) and specrallsmg to the case of translatrons
only, we have, , ! T .

mﬁ(”,q, ~),_S_mﬁS[K F WSOl “_ @

anologous to (l 3) for umtary operators. Use of antmmtary operators can be included
in the analysis by making ulse of table 9 itself, The only point to note is that the
class effects involve complex conJugatlon of M(q) on one 51de of the relations as
indicated in (19) l :

(v) Dynamical matrix elemen}‘s assaczated wzz‘h equzvalem‘ and non—equzvalent atom'pairs

In order to go over to the atom1c model from the pseudomolecular model the
prescription to be followed (to determme the dynamxcal matrlx) is that M (LL’) is
to be replaced by the matrlxi . !

LU\ (LR (LD
() ()

* . - i Ld ‘ -

M(LL) PN M(L.L);
V2 , S rq}

where p and q run over thé number of types of atoms in the ¢ pseudo—molecules

L and L’. Each of the matrlces M (I;,Lq ) are of ordcr 3% 3, the structure of Whrch

.
ot e e g e
-

can be determined as follows. We can classify the dynamlcal matr1x} elements per—
taining to the atom- pairs (i’f; ) into two types (a) elements that relate equlvalent §

atoms, that is with indices p=gbutL # L and ) elements that relate non- equi-
valent’ atoms that is, with p #¢, but L=L' orL;éL’ Then the structure of the

matrix M (Il;z )1s obtained by using table 9 as follows Usmg the Jndrces LL', we can

use the appropriate relations that are given in table 9 for GNES elements that occur in
Go(@) or Go(— q) (that is through class I). Incase of equlvalent atoms pairs, in
addition, the Hermitian nature of dynamlcal matrix helps in further reduction. In
order to exploit this property one can use the remammg class relations; that link, say
1L’ to L'1, through unitary or antiunitary operatrons Such relations are underlined
in table 9. Similar reductlon via Herm1t1an property . of dynamical matrices is not

i e e+ oAnR

B




: - O =GFOW  UDW = W
At | Spp Sty — Yepr— @ = (€W * QDA = (s
TEI W OBw | = DWW EOW = @OW * EDIW = T

\g * na.s ung ﬁn:.l»
GO =W GDW =D Al

wp Uy :EIT D

ng.l. aﬁgl u.n:. aﬁzl ﬂ.n: .:2

@O = MW S CDIW = GO

Auw | Spy Sspyr o Tspy jnu | RSy Sspyr_ Tepy DA = A - ADW = (EOA
SWOTW Y| = (DWW BW— B Yp— | = DN O = W ° FDA = RO
Yy iy Ty W Yw— Ty EOW = (W * CDW = (I 11T
EOW = A : (EDIW = GOW -
e | Sy Sy — Topy— e [Spy SSpy Tepy— GOW = (A * FDIW = DWW
“W— W YW | =(NW 1% W “W—|=CNDW GO = @A * QDA = @OW
W— "W Yw SW— YW— YW @O =A@ = (JON 11
S 10yexedo Lieyunpue st 5y g1 Joyerado A1eyun sy Loy gy
[ 1Y .
S A3 G S MW 0 "W AW W W
X T YW A = (D 0 "W o= CiDw W W "W = (IDW Al &we 03 (DWW = (IDA 1
m ﬂ: uwg Wﬁx : :: 0 :: nmve‘ -uz S\ﬂ
@S .n,sst =UNWN TS (19)s (uu) W = (DI (19 § $13959 SSB[0 0) onp sUWONEPY  ssep)
T=02 [=o
S J0 19919

(b) A U0 (5, PUB 5193 s8I0 JO SIOPI POUIQUO) *6 |qB,

o
—t
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>

applicable to non-equivalent atom-pairs. In order to write down the entire dyna-
mical matrix, one may use the remaining class relations given in table 9.

3.6 Structure of dynamical matrix corresponding to specific wavevectors

M =0 G;(q): {hp hgs by, hyy has, hog, hag, hzs}

!

Note that the GNES 4y, € G, (qy). Since q; = 0, all elements Mg (iﬁ,) are real;

the form of M (éi,) due to the GNES Ay, is

. R
MR 0 MR

LL’ R

M(kk,)-—— o Mk o ,
R R| (LL'\

My O Mgy (kk’)

for any (i'i,) Hermitian nature of M(q) leads to the additional relation.
0 :

LL LL'
My, (kk ) =My (kk )

for equivalent atom-pairs.

!

So, the form of M (Ik;i,) matrices for elquivalen‘t and honequivalent,atom pairs_are{

given by, h

- o 2R R R
ME o ME| MR o MR

‘ rR R
0 M, 0 and |0 My, 0:

kk

LL
\kk'
respectively, containing 4 and 5 independent elements each. The superscripts R oi' I
n Mféf indicate that the element M ap is purely real or purely imaginary.

(i) ©=(0,00  Gyg): {h,hs har, o)} ‘
- Elements in Gy(qs) belong to classes I and IT only and the GNES hy; is a unitary

operator. The form of M (}Ic’i,

R LL R R
Mla ,0 . Mfa‘ ( ) Mal 0~ Msa

) due to the GNES is
My 0 My

M(i,l;,).: 0 M, 0




614 K R Rao et al-

for equivalent-and nonequivalent atom-pairs.
Because of the class relations the equivalent atom-pairs get related to each other
There are two types of relatlons

’

1. M (i’i’ ) related to M (élf

due to Hermitian nature of M (q).
Spemﬁcally,

i
. !

)under unitary operatlons which get simplified further

MR o My
11 R
M(kk)= 0 MR 0

0 MR (”)

*
M kk

My 0 =M,
and M(22)= 0 MR o

kk
‘ ' R| (1T
My 0 MR ( ! k)

each having 5 independent elements.

2. M (i]f) related to M (ékL ) under unitary operations: Hermitian property:
23\ |

cannot be invoked. Example M ( kk) =M ( Iilt) under class II operations but they

are not related to each other through Hermitian relation. However, in these cases,’

antiunitary operators help to snnphfy the form of M I];]f ) since Hernntlan property

can be invoked over these antlumtary class relatlons As an. example we note that
kk

class IV. This relatlon 18 governed by the Hermitian relation also.
Exphmtly,

M ( 41) and M ( kk) are related to each other through an antiunitary operatlon in

Mll 0 - M13 *

M(;}C)= 0 M,, 0

- ”
— My 0 My, ( kk)
through antiunitary class relation and
My 0 My |*
M (2}() =| 0 M, 0
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through Hermitian relation. Hence finally we have

Mn . 0 —Mls *

MG}J: 0 M, 0

(14
e ol (9

M (]1;;) is therefore of the forfh

_M13 0 M33

615

having 8 independent elements. Similar simplifications can be visualised for other

atom-pairs.

For nonequivalent pairs, no further reduction beyond what is given by GNES hy,

4

is possible and hence each M (i‘i,

(i) g3 = (0, 0, 0) Go (‘13)113 {hy, b, hog, hzs}

) will have 10 independent elements.

We note that the GNES hyy is an antiunitary operator in this case. Hence,

R I R
My M’m My
LL' I R v
M( )= My My, Mza

kk'
) (3

R I
Mg VM 32 33

kk'

for any (illc', ) The classes I, II, III and IV relate the equivalent atom-pairs. Com-

bined with the Hermitian property, M (ii’ )is given by.
R 74 R
M, My, My

LL' . 7 R I
M(kk )= =+ M, My, My,

EMy ML Mg (I];]f'

with 6 independent elements. (- signs depend on class relations). No further

reduction is possible for non-equivalent atom-pairs and each M (]I:cli’

independent elements.

'

)Wﬂi have 9
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(iv) q, = (0,0, 0y G, (49); {hls hys o, h27}
Because of the GNEs Ay, being a unitary operator,
M, 0 My

M(é’iﬁ):O M, O

LL'
MSI 0 Maa ( kk’ )
for any LL
kk' )
Classes I and IV are allowed with unitary operators. Hence as in case of (ii), M
14 11 ,
( and M have the form

kk kk
Mﬁ 0 Mg
0 MR 0
eay 0 afl ()

and have 5 independent elements each. Others not related by Hermitian property
in Class IV but through antiunitary operators will have the structure

My, 0 Mg | *
0 My; 0
My 0 My,

and will have 8 independent elements each. :
The nonequivalent atom pair matrices will have no further reduction than what is
already provided by 4y, and will have 10 independent elements each.

3.7 Number of independent elements in M(q)

According to Casella (1975), excluding accidental degeneracies, if there is no addi-

tional degeneracy due to time reversal symmetry, the number of independent ele-

ments in M(q) is 3 n* where n, is the number of times the rth irreducible multiplier
r

representation appears in M(q). (Note thé.t n; = C'ri of (11)). But if there is addi-

tional degeneracy due to time reversal symmetry, the number of elements can be
< 3 nk To check effect of time reversal symmetry, the following procedure is
- ; ‘

adopted: ; S
(i) Check if — q is in the star of q, that is, there exists * connecting operator’ S_in G
such that §_q = —q + G. If — qis not in the star of q, number of independent
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elements is given by Ny = I n} (i) If — q is in star of q, the number of elements is
r .

given by,
NH=Z%n,(n,+l)+Z%nﬁ-’rz%nr(”r"'l) (22)

rea reb ree

where a, b and c refer to Wigner-Herrin g time reversal test, -

. g, casea
S ep {~i(5Ha+Q VEILE) =0 casobd
a —g, casec (23)

Specific cases

For counting the number of independent elements using the knowledge of the struc-
ture of dynamical matrix itself, we note that the structure of any M(LL') for Sb,S;
is given by,

o2 3w Sbp Sty St Sy Sm

o i/

2 ‘ Sby ///

M(%)= - Z

x ~ / 4
| 3 ML) //
S9) MLt //7
° /
; 7
. v

this being one of the 4 X 4 blocks of the ¢ pseudomolecular > dynamical matrix M(q)
shown on the left side. In the pseudomolecular scheme, four blocks, say the ‘ones
~ that belong to the first row shown cross hatched (in M (q)), are independent and the
~ other blocks are related to these through class relations. At the atomic level each of
the four molecule-molecule blocks consist of five independent equivalent atom-pair
blocks along the diagonal shown diagonally hatched and ten independent non-
equivalent atom pair blocks shown horizontally hatched. The latter are related to
remaining blocks. Hence N[M (¢)] the number of independent elements in the

" atomic model of dynamics is given by,

(number of equivalent (Sum of nﬁmber of inde-
atom-pair blocks in one  pendent elements in eachi of

N[M@] = molecule-pair block) % the equivalent atom-pair
namely 5 : blocks one per LL' of the.
first row) o

(number of non-equivalent (Sum of number of inde- )
4+  atom-pair blocks in one X ‘pendent elements in each of
molecular pair block) thé fion-equivalent atom"} - (24)
namely 10 pair blocks one per LL' of ‘
the first row) ) J
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On the other hand one can determine the number of independent elements via the
rules of Casella (1975). The latter scheme is useful in counterchecking that the
number of independent elements derived (and their identity consequently) is correct.
| By numerically evaluating only the independent elements and deriving the others
AR through table 9 reduces the computational time considerably; hence the importance
e of this discussion. We give in tables (10(2) and 10(b)) details of determination of the
' number of independent elements for the specific wavevectors of interest here.

‘4. Experimental

1 The neutron investigations are carried out using a large natural crystal of Sb,S; in
. the form of mineral stibnite. The size of the crystal is nearly 5 X3 x 1 cm3. For

[ O

Table 10(a). Determination of number of independent elements in the dynamical
matrix a la Casella

o q qa . qs da
H ; S e Go(q) ) hi, hza ﬁa, hla hzs, haﬂa hz’n hzs hh hzs hZ’J‘: hzs hl’ ha, has; hzo kls h4) ]1269 h27
! S Pys by by hay hag, hogy Bags Bag s, Pog, B, Bog by hay Biys, By hs, h;% hass hag -
(S) 1111111 1..1111 1111 1111
1 forr=1to8 forr=1to4 forr=1to4 forr=1to4
Type 1I(a) IR () Ii(a) II(a)
m(=Cz)) 10,5, 5,10, 5, 10, 10, 5 20,10,20,10  15,15,15,15 20, 10, 10, 20,
Nirype (€9.22) 280 530 480 530

Table 10(b). Determination of number of independent elements in the dynamical
_matrix according to equatlon 24 .

r o , @ " 92 : G 'R
r—1 2 3 4 1 2 3 4 1234 1 2 3 4
No. of independent 4 4 4 4 55 8 8. 66 6 6 S5 8 8 5
clements for equivalent , "
atom pairs in M (1 1) ' o ©
No. of independent 5 5.535. 10 10 10 10 9 9‘ 9 9 10 10 10 10
elements for non- . : ) o
equivalent atom pairs
in M (I I8}
 Total no. of i in- 54 +4+4+4)@

“dependent elements 105+5+5+5)
in M(q) =280 530 "480 - 530

¥
13
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x-ray studies three fibrils taken out at random from this crystal as well as a syntheti-
cally grown crystal were used. - :
The first studies were aimed at measuring low frequency TA modes polarised along
{010 since one expected such modes to exhibit interesting features characteristic of
a layered system. The experiments were carried out using a triple axis neutron
spectrometer at Cirus reactor, incident neutron wavelength being fixed at 1-4 A.
A Cu(110) monochromator and a Cu(110) analyser were used. - Constant Q and
constant AE scans did not reveal any neutron groups associated with phonons in
the measurements around (040) when search was made for TA(00£/£00) modes with
polarisation along b-axis. Instead a smoothly varying background was observed.
The ‘elastic’ diffraction studies indicate that one cannot identify a or ¢ axis uniquely,

Ki
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@ﬁ»‘
| ) «
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YS l | ¢S M
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L (o | g = 45718
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35 (800)/(008) ,
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= 0 40] 80’ ©o120 160
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—
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- o \,J|U |Iu‘»1\ll“ \“ln. min

20 30 40 50 60 70 80 90
¢—> (Degrees)

Figure 3. (a) With b-axis in the plane of spectrometer, a rocking curve of crystal

set for (040) reflection. (b) With b-axis in the plane of the spectrometer, a scattering

angle scan with the crystal left oriented at peak of curve given in 3(a). (¢) With

b-axis normal to plane of spectrometer, search for (800)/(008) reflection by crystal

rocking, when detector is set for (800)/(008) reflection. (d) With b-axis normal to
; the plane of spectrometer, a scattering angle scan with the crystal left at an arbitrary
Lt . . orientation about b-axis. The vertical bars correspond to expected (h0I) reflections
" - from a powder of Sb.S;. C : Co - 4
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‘as (h00) and (001) reflections are always observed in the experiment. Figure 3 shows

specifically the (040) Bragg peak as an example of (0k0) reflections. Rocking the
crystal when the detector is set to the correct scattering angle yields a broad Bragg
peak. Keeping the crystal oriented for reflection from (040) a scattering angle scan
yields only the Bragg peak corresponding to (040) and nothing else as is to be expected.
This was so for all (0k0) reflections examined. On the other hand a search for
reflection like (800) or (008) while it gave a Bragg peak at the nominal scattering angle,
a rocking of the crystal (when detector was set for the scattering angle) resulted in a

continuous high intensity above background (see figure 3(c)). Secondly keeping the

corystal fixed at an arbitrary orientation in the ac plane, a scattering angle scan yielded

1 1 |
wol \! -
| K=4 |
100+ 1 -
28+,} :
sof | 4
l P
0 ] i | 1

1000

500

100

T

INTENSITY (arbitrary units)

50

T

100

T — 7 N s
(Horl)

Figure 4. ‘Elastic’ neutron diffraction patterns from different layers along the b-axis
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Figure 5. Zero layer data at large scattéring angles. The expected (/0) reflections
are indicated in the upper part of the figure.

a pattern as if from a powder. The pattern could be indexed in terms of (h0I)
reflections only. From these observations we conclude that the crystal is ordered
_along the b-axis but is disordered about the b-axis.

The ‘elastic’ neutron diffraction patterns corresponding to different (0k0) layers
are shown in figure 4. One may notice that the Bragg peaks are extended in the
reciprocal space considerably in the ac plane. These features resemble the ‘elastic’
diffraction patterns from CsD,PO,. (Semmingsen et al 1977). The zero-layer
data at large scattering angle could be indexed as in figure 5.

Figure 6 shows details of the Bragg intensity around (040) lattice point. The
diffuse intensity is extended in the ac plane and quite narrow along the b-axis. Such
a pattern is expected of quasi-one-dimensional systems.

' The x-ray diffraction patterns were studied to investigate this feature further.
Mo-K, filtered radiation was used using a x-ray generator operating at 30 kV, 40ma.
Three specimens taken at random from the large crystal in the form of fibrils of thick-
ness ~0.5 mm as well as a synthetically grown crystal of similar thickness were used
in these studies. Rotation photograph about b-axis is shown in figure 7. The
large number of spots in each layer may be associated with disorder in the
system. Once again we notice that the crystal is ordered along the b-axis. On
prolonged exposures, we also mnotice additional diffuse lines in the rotation
photographs. Returning to the neutron experiments they also revealed presence
of these lines. We have not investigated the origin of these lines further. The

- Weissenberg pattern about b-axis in the zero layer is shown in figure 8. One may
‘notice that each of the Bragg spots is associated with diffuse streaks. Figure 9 shows

the nature of diffuse streaks in the Weissenberg pattern of the g-axis. Clearly the
diffuse streaks are much less. Therefore, we note that the diffuse streaks are promi-

~nent in the ac plane. Such diffuse streaks could be due to static or dynamical effects.

P—7
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Figure 6. Diffuse ‘elastic’ intensity around (040) lattice point. " (a) The scans along
Q, corresponding to different Qxs. (b) Scan along QOx for Q,'= 0; open circles
correspond to K = 4 layer data of figure 5 for comparison.

The inset in the middle shows an elliptical contour corresponding to the “base-
width® of scans in (a). Note that the ellipse is extended beyond (140) along a/c and
its width along the b-axis is only about 10%; of 1/d (010).

Inelastic neutron scattering measurements alone can help to identify the real cause of
the various anomalous features in the diffraction patterns discussed so far. §fu 1w e
However, even in a second attempt to look for TA modes along a*/c* polarised

‘along {010} we have not been successful. . Only a large smoothly varying background

extending from nearly v=0 to 3 or 4 THz is seen. Measurements along the b-axis
around (040) do indicate a few phonon modes rather weak in intensity as shown in
figure 10. These phonons may be associated with longitudinal modes along {010).
Measurements carried out at ~ 100K did not improve the situation. ‘Elastic’
diffraction patterns also did not change qualitatively at this temperature.

5. Dynamical calculaﬁons

The lattice dynamics of layered crystals is generally studied using the axially symmetric
force constant model in which the force constants are derived by fitting the lattice
dynamical expressions to elastic constants, light scattering data and neutron data
(Wakabayashi and Nicklov 1979). Generally, the range of interactions is limited to
nearest neighbour and next nearest neighbours and Coloumb interactions, if any, are
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Figure 7. Rotation x-ray photograph about b-axis.
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Figure 9. Weissenberg pattern about g-axis in the zero layer.
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Lo L 40 THZ
e 35THz

. — .3.0THz '

Frgure 10 Phonons observed along b-axrs around (040) by melasuc neutron scattermg

not exphcrtly taken into account Once the force constant parameters are determrned
by least squares ﬁttmg, thcy are used to derive the phonon dispersion relation in high
symmetry and off-symmetry directions and also to obtain frcquency drstrrbutlon

We have employed a different approach for study of Sb,S,. Since elastic constants
are not available in literature for Sb,S,; and since light scattering data is amblguous,
we thought it best to calculate the phonon dispersion relation using a model in which
interatomic potentials are based on microscopic considerations. To begin with, we
assumed that Sb,S; can be treated as a partially i ionic system and hence assocrated the
interatomic pair potentral to be of the form

V(r) Z]_Zze
. . dme,

+aexp{ br/(R1+R2)} (25)

with a=1822 eV and b=12-364 (see also Balkanski et al 1971). Here Z; and Z, are
charge parameters and -Ry; and R, radii parameters. associated - -with' the atom pair
whose potential is given by this equation.  This simple model (a variation of the
well-known rigid ion model) has been successfully used-in our investigations of
several complex ionic systems (Paper I and Rao and Chaplot (1979)). The potential
given in (25) was used to calculate the lattice frequencies of Sb,S; along the three
symmetry directions X, A and A using the computer program DISPR (Chaplot 1978)
discussed earlier in paper I. Through extensive calculations we find that the model
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does not yield real frequencies in spite of variation of parameters over reasonable
range. Hence we assumed that one has to take into account the strong, covalent

~ pature of bonding within individual chains and hence reformulate the dynamical

model with the potential function given by,
V() = — CD, g——_’L'——w%, 26
® exp 3= 5= = 10 (262)

with C=10, D,=347 eV, n=130 and ry=2-36 A for Sb-S pairs separated by
distances less than 2+6 A.

Z,Zy e
and V(r) = . + aexp{— br/(Ry + Ry} (26b)
&oF

same as (25) for all other pairs. This means we consider Sby — Sy, Sb; — Sy
and Sby; — Sy pairs within a ‘molecule’ to be covalently bonded and all other inter-
actions to be specified by (26b). 1t is to be noted that Sby — Sy is included in the
latter. The range of interactions for coulombic and short-range interactions are
optimised by DISPR. As elastic constants are not available from literature and as light
scattering data is ambiguous we have used only the maximum value of observed
optical data (Balkanski et al 1971; Kartha 1981) as indicating the upper limit of lattice
frequencies as a criterion to choose the parameters of the model, apart from reasonable
cohesive energy of the crystal*. Potential parameters have been arrived at as described
in paper I and by Chaplot (1982). The final parameters that enter the potential
function 26(b) are given in table 11. We observe that, as in our study of KNbO;
(Chaplot and Rao 1980, 1981) that the low frequency modes were sensitive to variations
of one parameter; in SbySs it is the radius parameter of Sby. This parameter was
varied to ensure that all frequencies are real. The dispersion relation given in
figure 11 can be taken as first order estimate to interpret experimental data but cannot
be taken as absolute vatues for detailed comparison since there is scope to vary the
model parameters to provide better estimates as experimental data become available. -
As already mentioned in the introduction, we have used the group theoretical results
given in § 3 for checking dynamical matrix, block diagonalising the dynamical matrix
for numerical solutions (the eigenvalue problem could not have been solved without
block-diagonalising first to accommodate the problem within the capacity of the
computer memory) and for obtaining the eigenvectors. The eigenvectors derived
from the numerical calculations have been used in calculation of inelastic neutron
scattering structure factors also which are of great value for any future neutron

experiments.

*Now from hindsight we know that the choice of covalent nature of binding amongst Sby-Sy
and Sb;-S;y and Sb;-Syy; can be associated with the fact that the corresponding bond lengths are
of the order of sum of covalent radii of atoms forming the pair and choice of ionic cum short range .
interaction between Sby; and Sbyyy can be associated with the fact that the corresponding bond

length is of the order of sum of their ionic radii as given by Shannon and Prewitt (1969), Shannon
(1976) and Shannon and Prewitt (1981). All other interactions will be non-bonded and given by
the usual ionic and short range interactions. Perhaps a better choice would be to consider two
different covalent functions for covalent bonds associated with Sby and 'Sbyq. We have not carried

out numerical-calculations so far -with such a choice.. - -« .
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Table 11. - Charges and radii parameters for Sb,Ss

) Atom ) )
Parameter .

Charges(e) 1-:2 1-2 —0-8 _ ~0-8 ~0-8
Radii (A) 1:35 1-8 245 2-45 2:45
) ‘ Table 12.- Calculated cléstic constants for Sb,S; (in 101 dynes/cm?)
From slopes of dispersion relations of acoustic phonon
Elastic constant branches along '
! 3(100). : A(010) A(001)
i .
f
Cy 4-72 —_— —
Cye —_ , 9-34 —
Cgs - bt 6:33
Cu - 1-96 _ 2:32
C55 3'08 —_ ‘ 2'43
G 0-21 039 =
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Figure 11. Theoretical dispersion curves of phonons along X, A-and ‘A directions
in the paraelectric phase of Sb,Ss. ’ &
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6. Discussion

As discussed in § 4, experimental neutron and x-ray scattering studies have resulted in
the following observations:—disorder in the ac plane, presence of diffuse intensity in
this plane, difficulty to observe low frequency TA modes in the plane polarised along
the b-axis and additional diffuse lines. These features can be associated with a
variety of possible static (like polytypism, disorder in the crystal, incommensurable
-structure) or dynamic (like very low frequency TA modes that cannot be resolved
from the elastic intensity, overdamped modes, etc) causes. We comment on those
aspects that may be dynamical in origin as reflected in the phonon dispersion curves.
From figure 11 we note that— .
(i) along & and A directions there are rather flat low frequency TA-TO modes which
can give rise to diffuse scattering as in the case of KNbO,. Figure 12 shows the iso-
structure factor contours in the be plane which substantiates this conclusion. Unless
one carries out high resolution experiments one may not be able to observe these
phonons clearly separated from the elastic intensity. It may be observed that the
resolution of our spectrometer is rather poor and it is rather difficult to improve the
resolution in view of the low flux of the reactor. ‘ _
(ii) We have noted earlier in.case of KNbOj (Chaplot and Rao 1980, 1981) and
recently in B-KNO, (Chaplot 1982) that temperature/pressure dependence of lattice
modes can be ‘simulated’ by variation of parameters of the dynamical model. Figure
13 shows the results of such parametric variation at wavevectors (0.05,0,0), (0,0.05,0)
(0,0.001,0) and (0,0,0.05). One can identify the ‘soft’ branches that may lead to
phase transitions from this figure. The lower pait of the figure is an enlarged version
of phonon frequencies below 0.4 THz.  Along the b-direction, we have given results
for the wave vector (0, 0.001, 0) since all the eigen frequencies are real at (0, 0-05, 0)
and softening is observable only for shorter wave vectors. Itis interesting to observe
that the TA and To modes along X direction belonging to X, and Z; representations
and To mode along A direction of A, representation soften as a function of the

parameter. We wish to point out that since the TA and TO modes at (0.05, 0, 0) are

soft, the entire TA-TO branch along Z direction is soft. The radius parameter of Sbyy

has to be chosen so as to fit these modes in any calculation to provide correct low-
frequency behaviour. The polarisation vector of this branch indicates that the two

(4,4,0) (3.5,4,0)

{4,3.5,0)

~Figure 12. Dynamical structure factor contours in the ac plane. These contours
suggest possible observation of diffuse scattering in poor resolution experiments
along a and c¢ directions.
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Figure 13. Theoretical changes expected in the eigen frequencies at selected wave
vectors as a function of variation in the crucial radius parameter of Sby;.  The lower
figure is an expanded version of the low frequency range of the upper figure. Note
that the ordinate scale in this part of the diagram covers real and imaginary values of
frequencies, although the Jatter is not physically meaningful. We believe that the
system undergoes a non-ferroelectric phase transition as the lowest TA-TO mode
becomes imaginary. :

FREQUENCY (THz)

0.6

Figure 14. Dispersion curves of phonons along b-axis. Open circles and closed
circles are data from peutron experiments. The full line is a guide to the eye through
these data points. Chain line through the origin corresponds to the LA branch using
theoretically evaluated elastic constants. Dashed lines are some of the theoretically
expected branches in this direction.

chain units take part rigidly in these vibrations along the b-direction (in
phase at q=0 for the TA mode progressively changing over to out-of-phase at q=0
t0 branch).

(iif) The TA-TO branches along a and c directions are almost similar in nature while

those along b-axis are quite dissimilar, a feature related to anisotropy in the system
associated with one-dimensionality.
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(iv) The lowest lying zone-center TO. mode in the o and ¢ directions belongs'to T,
representation which is optically ‘silent’. Hence we believe that the mode associated
with the elastic anomaly referred in (ii) above cannot be observed by light
scattering techniques. From figure 13 we observe that one of the higher frequency
optically active zone-centér TO modes may be responsible for ferroelectric phase
transition. High resolution light scattering experiments have to be conducted to
resolve the ferroelectric mode.

(v) From the slopes of the acoustic phonon branches we infer the values for elastic
constants as given in table 12. The elastic constants may show anomalous behaviour
as a function of temperature/pressure as seen by the parametric dependence of lattice
modes (figure 13).

(vi) Finally, we compare in figure 14 the phonon data which we have experimentally
derived from figure 10 with the low frequency branches along (00£). It is obvious
that at this stage we cannot make any meaningful comment on the theoretical calcu-
lations based on this data. This points to the need of high resolution inelastic neutron
scattering measurements.

7. Conclusions

With the help of lattice dynamical calculations we are able to understand some of the
features of the experimental observations of SbyS, by neutron and x-ray scattering.
In particular, we believe that the soft and flat TA-TO branches along a and ¢ axes
may be responsible for the diffuse streaks.

High resolution inelastic neutron scattering experiments are required to be carried
out to measure the soft TA, TO and other modes in the system. The structure factors
calculated using the dynamical model discussed here may help in the experiments.

Since the zone centre soft lowest To made belongs to the optically ‘silent’ T,
symmetry, we believe that light scattering studies are not appropriate to examine this
mode.

Ultrasonic measurements are required to be carried out to conﬁrm the predicted
softening of the elastic constant.
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Appendix

Crystallographic structural references and especially that of McKee and McMullan
(1976) indicate that above 17.5 C, Sb,S; is in the paraelectric phase and hence D% is
the appropriate space group. This conclusion is based on a work due to Grigas and
Karpus (1968) which stated that there is a first order phase transition at 17.5 C to a
ferroelectric phase.
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The lattice dynamical results have relevance to infrared and Raman spectra and
therefore comparison with such and other related work is in order. The paper by
Grigas et al (1976) deals with measurement of dielectric permittivity and dielectric
non-linearity at micro-wave range in Sb,S;. In these measurements one deals with
reflection coefficients of microwaves in a cavity in which Sb,S; crystals are placed
and one derived « values from the reflection coefficients as a function of temperature.
The results are believed to indicate ‘diffuse’ phase transitions in the range of
290-310 K and 420-450K. . The.authors have concluded that Sb,S, is polar below
420K (space-group Cy) and non-polar above. They also state that the hysteresis
loops observed (Orliukas and Grigas 1974) as well as effects of pressure on dielectric
properties and domain structure (Kachalov et al 1975) imply that Sb,S, is ferro-
electric below 450K and undergoes second order phase transitions. Petzelt and
Grigas (1973) have also studied far infrared dielectric dispersion in SbyS; and
isomorphous compounds Bi,S; and Sb,Se;. Their approach has been to count the
number of modes that are ‘visible’ and associate this number with the number of
modes expected in D,, and C,, symmetries. Their results weie as follows:

Expected no. of 1r modes if space Observed (IR )
group symmetry were
Dzh sz szSa . BigSs Sbgse3
Elle 4 10 3-13 3-10 3-5
Ella 8 13 © 9-13 - 9-12 8

Elib S8 13

“These data’,-according to the authors-, ‘indicate that Sb,S; and Bi,S; are compatible
with both symmetries’. However the authors also state that ‘the gréat number of
observed peaks in Sb,S; in comparison with other compounds supports the C,,
symmetry in the whole temperature regime (100—400K ?) investigated. Bi,S; is probably
less polar than Sb,S; while in SbySe, the symmetry is very probably non-polar’. The

‘authors, in view of their microwave absorption experiments conclude that the

490-450K dielectric anomaly is associated with Dy, -> Cyp symmetry change and
310-290K anomaly to be associated with a new kind of phase transition without
symmetry change (or with a change C,,—C,) as given in Fridkin (1980, p. 139).

In a series of differential thermal analysis experiments carried out in our laboratories
no anomalies could be observed in the 100-450 K range (Rao 1981).

Clearly the situation demands a reevaluation of direct structural data to set at rest
the confusion that prevails in the literature. In passing it may be noted however that
Grigas and coworkers do not comment on their own observation of first order phase
transition at 17.5 C in their subsequent papers.
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