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Abstract. We define holomorphic connection on a parabolic vector bundle over a Riemann
surface and prove that a parabolic vector bundle admits a holomorphic connection if and only
if each direct summand of it is of parabolic degree zero. This is a generalization to the para-
bolic context of a well-known result of Weil which says that a holomorphic vector bundle on a
Riemann surface admits a holomorphic connection if and only if every direct summand of it is
of degree zero.
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1 Introduction

A theorem due to A. Weil says that a holomorphic vector bundle E over a compact
connected Riemann surface admits a holomorphic connection if and only if each di-
rect summand of E is of degree zero [8]. Note that giving a holomorphic connection
on E is equivalent to giving a flat connection on E compatible with its holomorphic
structure.
Let S be a finite subset of a compact connected Riemann surface X. Let E� be a

parabolic vector bundle over X obtained by putting a parabolic structure on a vector
bundle E over the divisor S. A holomorphic connection on E� is a logarithmic con-
nection

D : V ! KX nOX ðSÞnV

with the property that the residue of D over any s A S is semisimple and it is com-
patible with the parabolic data for E� over s (the details of the definition are in Sec-
tion 3).
We prove that E� admits a holomorphic connection if and only if each of its direct

summands is of parabolic degree zero (Theorem 3.1).
The proof of Theorem 3.1 is carried out using the correspondence between para-

bolic bundles and vector bundles equipped with an action of a finite group estab-



lished in [3]. In fact, Theorem 3.1 follows from the corresponding result on such bun-
dles which has been established in Theorem 2.3.
In Section 4 we generalize Theorem 3.1 to higher dimensional projective mani-

folds (see Proposition 4.2), and obtain a criterion for the existence of a holomorphic
connection on a parabolic vector bundle with parabolic structure on a normal cross-
ing divisor.
Thanks are due to the referee for comments that helped in improving the paper.

2 Flat connections on vector bundles with group actions

Let Y be a compact connected Riemann surface. Let KY denote the canonical bundle
of Y.
A holomorphic connection on a holomorphic vector bundle V over Y is a first order

di¤erential operator

D : V ! KY nV ð2:1Þ

satisfying the Leibniz identity which says that Dð fsÞ ¼ fDðsÞ þ qf n s, where f is
any locally defined holomorphic function on Y and s is any local holomorphic sec-
tion of V. If qV : V ! W0;1

Y nV is the Dolbeault operator defining the holomorphic

structure of V, then Dþ qV is a flat connection on V. Conversely, for any flat con-
nection on V compatible with its holomorphic structure (that is, the ð0; 1Þ-part of the
connection coincides with qV ), the ð1; 0Þ part of it is a holomorphic connection on V.
Fix a finite subgroup GHAutðYÞ of the automorphism group Y.
A G-linearized vector bundle W over Y is a holomorphic vector bundle equipped

with an action of G compatible with the obvious action of G on Y [5]. In other words,
G acts on the total space of W and for any g A G the action of g is a vector bundle
isomorphism of W with ðg�1Þ�W . Given two G-linearized vector bundles W1 and
W2, a G-homomorphism fromW1 toW2 is a OY -linear homomorphism h :W1 !W2

that commutes with the actions of G, that is, h � g ¼ g � h for all g A G.
A G-holomorphic connection on W is a holomorphic connection that is preserved

by the action of G. In other words, for a G-holomorphic connection D and for any
g A G, the isomorphism of W with ðg�1Þ�W , defined by g, takes the connection D to
the connection ðg�1Þ�D.

Proposition 2.1. If the vector bundle W admits a holomorphic connection, then it admits
a G-holomorphic connection.

Proof. The space of all holomorphic connections on W is a convex space. Given a
holomorphic connection D on W, consider the average

D 0 :¼ 1

aG

X
g AG

g�D

whereaG denotes the order of the group G. The holomorphic connection D 0 is clearly
a G-holomorphic connection. This completes the proof of the proposition. r
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A G-linearized vector bundle W will be called decomposable if there are two
G-linearized vector bundles W1 and W2, with rankðW1Þ; rankðW1Þ > 0, such that W
is isomorphic, as a G-linearized vector bundle, to W1lW2. We will call W to be
indecomposable if it is not decomposable.

Lemma 2.2. If W is an indecomposable G-linearized vector bundle of degree zero, then
W admits a G-holomorphic connection.

Proof. In view of Proposition 2.1 it su‰ces to show that W admits a holomorphic
connection. We will recall the obstruction for the existence of a holomorphic con-
nection.
For a holomorphic vector bundle V over Y, let Di¤ 1

Y ðV ;VÞ denote the vector bun-
dle defined by the sheaf of di¤erential operators of order one on V. So we have the
symbol homomorphism s : Di¤ 1

Y ðV ;VÞ ! TYnEndðVÞ. Let

AtðVÞHDi¤ 1
Y ðV ;VÞ

denote the subbundle which is the inverse image of TYn IdV . So we have the Atiyah
exact sequence

0 ! EndðVÞ ! AtðVÞ ! TY ! 0: ð2:2Þ

A holomorphic connection on V is a holomorphic splitting of the exact sequence (2.2)
[1], [4].
Note that the space of all extensions of TY by EndðVÞ is parametrized by

H 1ðY ;KY nEndðVÞÞ ¼ H 0ðY ;EndðVÞÞ�: ð2:3Þ

We will recall a few properties of the extension class for (2.2).
Let bV A H 1ðY ;KY nEndðVÞÞ be the Atiyah class representing (2.2), and let

bV A H 0ðY ;EndðVÞÞ�

correspond to bV by the isomorphism (2.3).
Let I denote the identity automorphism of V. We have

bV ðIÞ ¼ degreeðVÞ ð2:4Þ

which is a consequence of the construction of Chern classes from Atiyah classes [1,
Theorem 6].
If F is a holomorphic subbundle of V, then AtðVÞ contains a subbundle F defined

by the sheaf of di¤erential operators that preserve the subbundle F. In other words,
we have a commutative diagram

0 ���! EndF ðVÞ ���! F ���! TY ���! 0???y
???y

����
0 ���! EndðVÞ ���! AtðVÞ ���! TY ���! 0

where EndF ðVÞHEndðVÞ is the subbundle that preserves F.
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Therefore, bV is in the image of H 1ðY ;KY nEndF ðVÞÞ. This implies that

bV A kernelðcÞ; ð2:5Þ

where c : H 0ðY ;EndðVÞÞ� ! H 0ðY ;EndF ðVÞÞ� is the obvious homomorphism.
Take any t A AutðY Þ, and let

t : H 1ðY ;KY nEndðVÞÞ ! H 1ðY ;KY nEndðt�VÞÞ

be the isomorphism induced by t. Let bt �V A H 1ðY ;KY nEndðt�VÞÞ be the Atiyah
class for t�V . The identity

bt �V ¼ tðbV Þ ð2:6Þ

is obviously valid.
LetW be a G-linearized vector bundle over Y. The group G has a natural action on

H 1ðY ;KY nEndðWÞÞ. Let

b A H 1ðY ;KY nEndðWÞÞ

represent the Atiyah exact sequence of W. From (2.6) it follows immediately that

b A H 1ðY ;KY nEndðWÞÞG:

In other words, b is fixed by the action of G.
The canonical nature of the isomorphism (2.3) ensures that it commutes with the

actions of G on H 0ðY ;EndðWÞÞ� and H 1ðY ;KY nEndðWÞÞ. Therefore, if b corre-
sponds to b by (2.3), then by setting V ¼W in (2.3)

b A ðH 0ðY ;EndðWÞÞ�ÞG:

In other words, b is determined by its evaluations on H 0ðY ;EndðWÞÞG.
Take a section f A H 0ðY ;EndðWÞÞ which is invariant under the action of G. Since

Y is compact and connected, the characteristic polynomial of fðyÞ A EndðWyÞ does
not depend on y.
Consider the decomposition of W obtained from the generalized eigenspace de-

composition for f. Since f is left invariant by the action of G, this is a decomposition
of W into a direct sum of G-linearized vector bundles.
Assume thatW is indecomposable. This implies that fðyÞ has only one eigenvalue,

say l. So,

f 0 :¼ f� l IdW

is a nilpotent endomorphism of W. If f 0 0 0, then there is a proper subbundle F of
W, with F0 0, which is preserved by f 0. Now setting V ¼W in (2.5) we conclude
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that bðf 0Þ ¼ 0. Finally, if degreeðWÞ ¼ 0, then from (2.4) it follows that bðfÞ ¼ 0.
This completes the proof of the lemma. r

A G-linearized vector bundle W1 is called a direct summand of W if there is a G-
linearized vector bundleW2 such thatW is isomorphic, as a G-linearized vector bun-
dle, to W1lW2.
It is easy to see that a holomorphic connection on W induces a holomorphic con-

nection on each direct summand of it. If W1 and W2 both admit holomorphic con-
nections, then obviouslyW1lW2 also admits a holomorphic connection. Therefore,
the following theorem follows from Lemma 2.2 and Proposition 2.1.

Theorem 2.3. A G-linearized vector bundle W admits a G-holomorphic connection if
and only if every direct summand of it is of degree zero.

In the next section we will use this theorem in the context of parabolic bundles.

3 Connection on a parabolic bundle

We first recall the definition of a parabolic vector bundle [7]. Let X be a compact
connected Riemann surface, and SHX be a finite subset. A parabolic structure over
S on a holomorphic vector bundle E over X consists of the following data:

(1) a strictly increasing filtration

0 ¼ F s
0 HF s

1 HF s
2 H 
 
 
 HF s

ls
¼ Es

for each s A S known as the quasi-parabolic filtration;

(2) a sequence of real numbers

1 > ls1 > ls2 > 
 
 
 > lsls d 0;

where lsi corresponds to the subspace F s
i .

A parabolic vector bundle is a vector bundle equipped with a parabolic structure.
As in [7], we will assume the parabolic weights lsi to be rational numbers.
If we denote by E� the above defined parabolic vector bundle, then the parabolic

degree of E� is defined to be

par-degðE�Þ :¼ degreeðEÞ þ
X
s AS

Xls

i¼1
l is dimðF s

i =F
s
i�1Þ:

Given a parabolic vector bundle E� as above, any subbundle of E has an induced
parabolic structure. Also, if E 0 is another vector bundle with parabolic structure, then
ElE 0 has an obvious parabolic structure constructed from the parabolic structures
on E and E 0. See [7] for the details.
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We will now define holomorphic connection in the context of parabolic bundles.
Recall that a logarithmic connection on a vector bundle V over X with singularity

over S is a first order di¤erential operator

D : V ! KX nOX ðSÞnV

satisfying the Leibniz identity [4]. The Poincaré adjunction formula says that the fiber
of the line bundle OX ðSÞ over any s A S is identified with the tangent space TsX at s.
In other words, the fiber ðKX nOX ðSÞÞs is identified with C. Given a logarithmic
connection D, consider the composition

V !D KX nOX ðSÞnV ! ðKX nOX ðSÞnVÞs ¼ Vs:

It is easy to see that this homomorphism of sheaves defines an endomorphism of the
fiber Vs. This endomorphism is called the residue of D at s [4], and it is denoted by
ResðD; sÞ.
Let E� be a parabolic structure on E as described above. A holomorphic connection

on E� is a logarithmic connection D on E, singular over S, satisfying the following
conditions:

(1) for any s A S, the residue ResðD; sÞ preserves the filtration of Es and it is semi-
simple;

(2) the action of ResðD; sÞ on F s
i =F

s
i�1 is multiplication by the corresponding para-

bolic weight lsi . (Since ResðD; sÞ preserves the filtration, it acts on each quotient
F s
i =F

s
i�1.)

We will call a parabolic bundle E 0
� to be a direct summand of E� if there is another

parabolic bundle E1
� such that E� is isomorphic to E 0

� lE1
� . So, in particular E is

isomorphic to E 0 lE1, where E 0 and E1 are the underlying vector bundles for E 0
� and

E1
� respectively. Note that if E2 and E3 are two subbundles of E with E ¼ E1lE3,

then it is not necessary that E� ¼ E2
� lE3

� , where E
2
� and E3

� have the induced para-
bolic structures from E�.

Theorem 3.1. A parabolic vector bundle E� admits a holomorphic connection if and only
if every direct summand of E� is of parabolic degree zero.

Proof. Given a parabolic bundle E� over X, in [3] a (ramified) Galois covering

p : Y ! X

is constructed. Let G denote the Galois group for p. From E�, a G-linearized vector
bundle W on Y is constructed. See [3, Section 3] for the details.
LetW denote the G-linearized bundle over Y (for the automorphism group G) con-

structed in [3, Section 3] from E�. Now [3, (3.12)] says that

par-degðE�Þ ¼
degreeðWÞ

aG
: ð3:1Þ
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Also, there is a one-to-one correspondence between subbundles of E and G invariant
subbundles of W [3, p. 318].
Assume that every direct summand of E� is of parabolic degree zero. Since sub-

bundles of E are in one-to-one correspondence with the G invariant subbundles of
W, using (3.1) it follows that every direct summand of the G-linearized vector bundle
W is of degree zero. Therefore, we conclude from Theorem 2.3 that W admits a G-
holomorphic connection.
Take a G-holomorphic connection D on W. Fix a point y A p�1ðXnSÞ. Let

r : p1ðY ; yÞ ! GLðn;CÞ

be the monodromy representation of the flat connection ‘ :¼ Dþ qW , where n ¼
rankðWÞ and qW is Dolbeault operator defining the holomorphic structure of W.
Since ‘ is left invariant by the action of G onW, the representation r clearly descends
to a representation of p1ðXnS; pðyÞÞ. This gives a connection on the restriction of E
to XnS. It can also be seen directly that the condition that ‘ is G invariant ensures
that it descends to a flat connection on E over XnS.
This connection on E over XnS extends to a connection on E� [2, Lemma 4.11].

Indeed, Lemma 4.11 of [2] says that G-invariant forms on Y descend as logarithmic
forms on X. From this it follows immediately that the above holomorphic connection
on E over XnS gives a holomorphic connection on E�.
Conversely, if E� has a holomorphic connection, then W has a G-holomorphic

connection. Indeed, the pullback of a holomorphic connection on E� is a holomorphic
connection on the restriction ofW to Ynp�1ðSÞ that is left invariant by the action of
G on W jYn p�1ðSÞ. It is easy to see that this connection extends to W over Y. We re-
marked earlier that direct summands of E� are in one-to-one correspondence with
direct summands of W. Therefore, using (3.1) it follows that if E� admits a holo-
morphic connection, then any direct summand of E� is of parabolic degree zero.
This completes the proof of the theorem. r

A polystable parabolic vector bundle of parabolic degree zero clearly has the prop-
erty that any direct summand of it is of parabolic degree zero. Such a parabolic bundle
admits a holomorphic connection which is unitary [7, Theorem 4.1]. Moreover, such
a connection is unique.
If we have a parabolic vector bundle E� whose parabolic weights are real numbers,

but not necessarily rational, then the proof of Theorem 3.1 is not valid. However, if it
is possible to generalize the method of [1] to prove Theorem 3.1 directly, then the
restriction on the rationality of the weights can be dropped.

4 Connections on higher dimensional varieties

Let Y be a connected complex projective manifold of dimension d. A holomorphic
connection on a holomorphic vector bundle W over Y is a first order holomorphic
di¤erential operator

D :W ! W1
Y nW ;
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where W1
Y denotes the holomorphic cotangent bundle of Y, satisfying the Leibniz rule

(as in (2.1)). The basic di¤erence between holomorphic connections on a Riemann
surface and those on a higher dimensional variety is that the connection Dþ qW need
not be flat if d > 1. However, the curvature of the connection Dþ qW is always a
holomorphic section of W2

Y nEndðWÞ.
The higher dimensional Atiyah exact sequence is constructed as follows. Let

Di¤ 1
Y ðW ;WÞ be the coherent sheaf of di¤erential operators and

s : Di¤ 1
Y ðW ;WÞ ! TYnEndðWÞ

the symbol map. Note that there is a natural inclusion TY ,! TYnEndðWÞ defined
by s 7! sn IdW . The inverse image s�1ðTY Þ is called the Atiyah bundle and is de-
noted by AtðWÞ. Since the kernel of s is EndðWÞ, the vector bundle AtðWÞ fits into
an exact sequence

0 ! EndðWÞ ! AtðWÞ ! TY ! 0 ð4:1Þ

as in (2.2), which is called the Atiyah exact sequence. Clearly this construction co-
incides with the one in (2.2) if d ¼ 1. Giving a holomorphic connection on W is
equivalent to giving a holomorphic splitting of the Atiyah exact sequence [1].
Fix an ample line bundle L on Y. Take a holomorphic vector bundle W on Y. In

[1, Proposition 21], the following criterion for the existence of a holomorphic con-
nection on W is proved under the assumption that dd 3. The vector bundle W ad-
mits a holomorphic connection if and only if for every integer m, there is an integer
cdm and an e¤ective smooth divisor C on Y with OY ðCÞ isomorphic to Lnc such
that the restriction W jC of W to C admits a holomorphic connection (note the as-
sumption dd 3). In [1, Proposition 22] an example is given showing that the above
criterion is not valid for d ¼ 2.
Let GHAutðYÞ be a finite subgroup such that the quotientM :¼ Y=G is a smooth

projective manifold. Let

p : Y !M ð4:2Þ

be the quotient map. Assume that LG p�x, where x is some ample line bundle onM.
Note that since p is a finite map, the pullback of any ample line bundle on M to Y
remains ample.
LetW be a G-linearized vector bundle over Y. As in the case of Riemann surfaces,

by a G-holomorphic connection onW we mean a holomorphic connection that is left
invariant by the action of G on W. Assume that d ¼ dimC Y d 3. The following
proposition follows from the criterion of [1] for the existence of a G-holomorphic
connection on W.

Proposition 4.1. The vector bundle W admits a G-holomorphic connection if any only if
for every integer m there is an integer cdm and a smooth divisor C 0 A jxncj such that
p�1ðC 0Þ is a reduced smooth divisor on Y and the restriction W jp�1ðC 0Þ of W to p�1ðC 0Þ
admits a holomorphic connection.
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Proof. In Proposition 2.1 it was proved thatW admits a G-holomorphic connection if
and only if it admits a usual holomorphic connection.
Given m, take c and C 0 as in the statement of the proposition. So, the inverse im-

age p�1ðC 0Þ is a smooth divisor on Y with the property that OY ðp�1ðC 0ÞÞ is iso-
morphic to Lnc, where cdm. Now setting C ¼ p�1ðC 0Þ in the above criterion of
Atiyah for the existence of a holomorphic connection we see that the condition in the
proposition ensures that W admits a holomorphic connection.
Conversely, a holomorphic connection onW induces a holomorphic connection on

the restriction of W to any smooth divisor. It is easy to see that there is a positive
integer k0 such that for every kd k0, the general divisor C 0 in the complete linear
system jxnkj has the property that the inverse image p�1ðC 0Þ is a reduced smooth
divisor of Y. In particular, there is one such divisor for each kd k0. In other words, if
W admits a holomorphic connection, then given any integer m, there is a pair ðc;C 0Þ
satisfying the conditions in the statement of the proposition. This completes the proof
of the proposition. r

Now we consider parabolic vector bundles on higher dimensional varieties.
Let M be a connected smooth projective manifold of dimension at least three and

D0 a normal crossing divisor on M. This means that D0 is a reduced e¤ective divisor
each of whose irreducible components is smooth and furthermore the components
intersect transversally.
Let V� be a parabolic vector bundle overM, with parabolic structure over D0, such

that all the parabolic weights are rational numbers and the quasi-parabolic filtration
is defined using filtrations by subbundles on the irreducible components of D0. (See
[3] for the elaboration on this condition.) The bijective correspondence between para-
bolic vector bundles and G-linearized vector bundles on curves that we used in the
proof of Theorem 3.1 remains valid for higher dimensions [3]. In particular, the para-
bolic vector bundle V� corresponds to a G-linearized vector bundle W on a smooth
projective variety Y with M ¼ Y=G [3, Section 3]. The existence of a smooth projec-
tive manifold Y with the required properties is ensured by the covering lemma of
Kawamata [6, Theorem 1.1.1] (see [3] for the details how the covering lemma is used
in this context).
Let N be an integer such that all the parabolic weights of V� are integral multiples

of 1=N. The Galois covering depends on the choice of N. Let

D0 ¼
Xl

j¼1
Dj

be the decomposition of the divisor into irreducible components. The Galois covering
p for the parabolic vector bundle V� has the property that for each j A ½1; l�, there is
an integer kj such that p

�1ðDjÞ ¼ kjNðp�1ðDjÞÞred, that is, the multiplicity of the non-
reduced divisor p�1ðDjÞ is divisible by N (see [3, Section 3]).
Fix an ample line bundle x onM. Let C 0 be an e¤ective smooth divisor onM that

intersects D0 transversally. The parabolic vector bundle V� can be restricted to such a
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divisor to obtain a parabolic vector bundle over C 0. This is done by restricting both
the underlying vector bundle for V� and the quasi-parabolic filtration. The transver-
sality condition on C 0 is required to ensure that the restriction of the quasi-parabolic
filtration remains a quasi-parabolic filtration. The parabolic divisor for this restricted
parabolic vector bundle V�jC 0 is C 0 VD0. The parabolic weights of the restricted
parabolic vector bundle are defined by the parabolic weights of V�.
We will call a divisor C 0 on M to be good for V� if C

0 intersects the parabolic di-
visor D0 transversally and p�1ðC 0Þ is a reduced smooth divisor. It should be noted
that the condition that C 0 is good for V� depends on the choice of the Galois cover-
ing. We emphasize that given V�, the Galois covering is fixed once and for all. It is
easy to see that there is an integer c0 with the property that for any cd c0, the general
member C 0 A jxncj is good for V�.
A holomorphic connection on the parabolic vector bundle V� is defined exactly as

for parabolic bundles on a Riemann surface.
Now using the bijective correspondence constructed in [3] between parabolic vector

bundles and G-linearized vector bundles the Proposition 4.1 yields the following prop-
osition.

Proposition 4.2. A parabolic vector bundle V� admits a holomorphic connection if any
only if for every integer m there is an integer cdm and a divisor C 0 A jxncj good for V�
such that the parabolic vector bundle obtained by restricting V� to C

0 admits a holo-
morphic connection.

Proof. If for every m there is pair ðc;C 0Þ with the above property, then Proposition
4.1 says that the G-linearized vector bundle W corresponding to V� admits a G-
holomorphic connection. This connection on W induces a holomorphic connection
on V�.
On the other hand, if V� admits a holomorphic connection, then the corresponding

G-linearized vector bundle W admits a G-holomorphic connection. Now recall the
earlier remark that there is an integer c0 with the property that for any cd c0, the
general member C 0 A jxncj is good for V�. In particular, there is at least one divisor
C 0 A jxncj which is good for V�. If we take cdmaxfm; c0g, the corresponding pair
ðc;C 0Þ satisfies the condition in the proposition. This completes the proof of the prop-
osition. r
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