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A BABYLONIAN TOWER THEOREM FOR PRINCIPAL BUNDLES

OVER PROJECTIVE SPACES

I. BISWAS, I. COANDĂ1, AND G. TRAUTMANN2

Abstract. We generalise the variant of the Babylonian tower theorem for vector bun-

dles on projective spaces proved by I. Coandă and G. Trautmann (2006) to the case of

principal G-bundles over projective spaces, where G is a linear algebraic group defined

over an algebraically closed field. In course of the proofs some new insight into the struc-

ture of such principal G-bundles is obtained.

MSC 2000: 14F05, 14D15, 14L10

Let G be a linear algebraic group defined over an algebraically closed field k. A principal

G-bundle over a projective space Pn is called split if it admits a reduction of structure

group to a maximal torus of G. Since a finite dimensional T -module, where T is a torus

defined over k, splits into a direct sum of one-dimensional T -modules, the adjoint bundle

of a split G-bundle decomposes into a direct sum of line bundles. When G is reductive,

also the converse holds:

Proposition 1: Let G be a reductive linear algebraic group. Let E be a principal G-

bundle over Pn and ad(E) its adjoint bundle. If ad(E) splits as a direct sum of line

bundles, then E is split.

For k = C this is proved in [3], Theorem 4.3, using arguments extracted from

Grothendieck’s paper [11]. A proof in any characteristics is presented in Section 5. Using

this result and the method from [7] we will prove the following:

Theorem 1: Let G be a linear algebraic group, and let E be a principal G-bundle over

Pn with adjoint bundle ad(E). Assume that E can be extended to a principal G-bundle over

Pn+m for some m > Σi>0 dim H1(ad(E)(−i)).

If char(k) = 0 or if char(k) = p > 0 and G is reductive, then E is split as a principal

bundle.

Theorem 1 also holds for arbitrary algebraic groups. This follows from the proof of

Proposition 1.1 below. When k = C and G is a (finite dimensional) complex Lie group,

one can use arguments analogous to those below to prove that the adjoint bundle of an

analytic principal G-bundle on Pn(C) splits as a direct sum of line bundles, if it satisfies

the extension assumption in Theorem 1.

1Partially supported by grant 2-CEx06-11-10/25.07.06 of the Romanian Ministry of Education and

Research and by DFG.
2Partially supported by DFG Schwerpunktprogramm 1094
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As a byproduct of the proof of Theorem 1 one gets the following theorem.

Theorem 2: Let E be a principal G-bundle over Pn. If H1(ad(E)(−i)) = 0 for all i > 0,

then ad(E) splits as a direct sum of line bundles. If, moreover, G is reductive then E itself

is split.

Theorem 2 was proved by Mohan Kumar [15] under the assumption that G = GLr(k),

and it was proved in [2] under the assumption that k = C with G reductive. Again,

the first assertion of Theorem 2 remains valid when k = C, G is a (finite dimensional)

complex Lie group, and E is a complex analytic principal G-bundle.

1. Some non-abelian cohomology

The following Proposition enables us to work with Zariski open subsets of Pn instead of

étale covers. As before, k will denote an algebraically closed field.

1.1. Proposition: a) Let G be an algebraic group over k. Then any principal G-bundle

over Pn is Zariski locally trivial.

b) For an abelian variety A over k, any algebraic principal A-bundle over Pn is trivial.

Proposition 1.1 will be proved in Section 4. One should note, however, that b) is not valid

for complex analytic principal bundles with an abelian variety as the structure group.

We use the paper of Frenkel [10] as a reference for basic non-abelian cohomology. Let

X be a topological space and G a sheaf of (not necessarily abelian) groups. For U ⊂ X

open, let eU denote the unit element of G(U).

One defines, using Čech 1-cocycles and their equivalence relation, the first cohomology set

H1(X,G). It has a marked element corresponding to the 1-cocycle (eX) on the open cover

{X} of X.

If c ∈ H1(X,G) is represented by (gij) ∈ Z1(U ,G) for some open cover U of X then one

gets a principal G-bundle by gluing the sheaves G|Ui with gij · − : G|Uji
∼
→ G|Uij . In this

way, H1(X,G) parametrises the isomorphism classes of principal G-bundles (locally trivial

with respect to the topology of X).

A class c ∈ H1(X,G) can also be used to define twists of sheaves of groups which are

acted on by G. For that let A be any other sheaf of groups and assume that there is an

action G ×A → A. Then a sheaf Ac of groups is defined by gluing with the isomorphisms

gij · − : A|Uji
∼
→ A|Uij of the action.

This twisting is obviously an exact functor on the category of G-sheaves of groups.

In particular, a new sheaf of groups Gc is obtained by gluing the sheaves G|Ui with

gij · − · g−1
ij : G|Uji

∼
→ G|Uij with respect to the action of inner automorphisms. Let

φi : Gc|Ui
∼
→ G|Ui be the resulting isomorphisms.
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There exists a bijection H1(X,Gc)
∼
→ H1(X,G) which is constructed by sending (the class

of) (fij) ∈ Z1(U ,Gc) to (the class of) (φi(fij) · gij) ∈ Z1(U ,G). This bijection sends the

marked element of H1(X,Gc) to c.

Let, now, 1 → G′ u
→ G

p
→ G′′ → 1 be a short exact sequence of sheaves of groups on X.

This means that p is an epimorphism of sheaves and that, for every open subset U ⊆ X,

u(U) maps G′(U) isomorphically onto Ker p(U). In particular, every inner automorphism

of G(U) induces, via u(U), an automorphism of G′(U). It follows that, if one twists G′ as

above, one obtains a new sheaf of groups G′c with an exact sequence 1 → G′c → Gc →

G′′c → 1.

1.2. Lemma: Under the above hypothesis, there exists a canonical map

H1(X,G′c) → H1(X,G)

sending the marked element of H1(X,G′c) to c and whose image is H1(p)−1(H1(p)(c)).

Proof. One uses the H1 part of the cohomology exact sequence associated to the short

exact sequence of sheaves of groups : 1 → G′c → Gc → G′′c → 1. �

1.3. Lemma: Let X be an algebraic scheme over k and Y ⊂ X a closed subscheme

defined by an ideal sheaf I ⊂ OX with I2 = 0. Let G be a linear algebraic group, let

OX(G) denote the sheaf of morphisms from open sets of X to G, and let L(G) denote the

Lie algebra of G. Then there is a short exact sequence of sheaves of groups

0 → L(G) ⊗k I → OX(G) → OY (G) → 1.

Proof. Since G is smooth, OX(G) → OY (G) is an epimorphism. In order to identify its

kernel, we may assume that G is a closed subgroup of GLr(k) for some r. The group

GLr(k) is an open subset of the affine space Matr(k) of r × r matrices. Now, one has an

exact sequence

0 → Matr(k) ⊗k I
ε

−→ OX(GLr(k)) → OY (GLr(k)) → 1,

in which ε is defined by A ⊗ f 7→ e + Af as truncated exponential, with e denoting the

unit r × r matrix. Let IG ⊂ k[(tij)1≤i,j≤r] be the ideal of polynomials vanishing on G.

Then, for an element γ ∈ Matr(k) ⊗k I(U), where U is open affine in X, ε(γ) belongs

to OX(G)(U) if and only if F (ε(γ)) = 0, for every polynomial F ∈ IG. One may write

γ = A1 ⊗ f1 + · · · + Am ⊗ fm with A1, . . . , Am ∈ Matr(k) and with f1, . . . , fm ∈ I(U)

linearly independent over k. Now, the Taylor expansion of any F ∈ k[tij ] at the identity

e ∈ Matr(k), which reads as

F (e + A · f) =
∑

i,j

∂F

∂tij
(e) · aij · f = (deF )(A) · f,

yields the formula F (ε(γ)) = (deF )(A1) · f1 + · · · + (deF )(Am) · fm, since F (e) = 0 and

I(U)2 = 0.
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If ε(γ) ∈ OX(G)(U), then it follows that (deF )(Aµ) = 0, µ = 1, . . . , m, for any F ∈

IG. But the intersection of the kernels of the differentials deF : Matr(k) → k for all

the F ∈ IG is exactly the tangent space TeG = L(G). Consequently, the kernel of

OX(G)(U) → OY (G)(U) is L(G)⊗kI(U). We have thus established the exact diagram

0 // L(G) ⊗k I
_�

��

εG
// OX(G) //

_�

��

OY (G) //

_�

��

1

0 // L(GLr) ⊗k I
ε

// OX(GLr) // OY (GLr) // 1

with εG induced by ε. �

1.4. Remark: The action of OX(G) on itself deduced from the action of G on itself

by inner automorphisms induces, via the exact sequence from Lemma 1.3, an action of

OX(G) on L(G)⊗kI. On the other hand, the action of OX(G) on L(G)⊗kOX (identified

with the sheaf of morphisms from open sets of X to the vector space L(G)) deduced from

the adjoint action of G on L(G) induces, via the exact sequence :

0 → L(G)⊗kI → L(G)⊗kOX → L(G)⊗kOY → 0,

an action of OX(G) on L(G)⊗kI. These two actions of OX(G) on L(G)⊗kI coincide since

they obviously coincide in the case G = GLr.

1.5. Lemma: Under the assumptions of Lemma 1.3, let F be a principal G-bundle over

X and let E = F|Y . Then there exists a canonical map

H1(Y, ad(E) ⊗OY
I)

α
−→ H1(X,OX(G))

sending 0 to the isomorphism class of F , and whose image is the set of isomorphism

classes of principal G-bundles F ′ over X such that F ′|Y ≃ E .

Proof. F corresponds to an element c ∈ H1(X,OX(G)). If one uses the adjoint action of

OX(G) on L(G) ⊗k OX , then the corresponding twisted sheaf (L(G) ⊗k OX)c is exactly

ad(F). The conclusion follows now from Lemma 1.3 and Lemma 1.2, taking into account

that, according to the above Remark 1.4, one has an exact sequence :

0 → (L(G) ⊗k I)c → (L(G) ⊗k OX)c → (L(G) ⊗k OY )c → 0,

hence : (L(G) ⊗k I)c ≃ Ker(ad(F) → ad(F)|Y ) ≃ ad(F) ⊗OX
I ≃ ad(E) ⊗OY

I. �

Notice, for further use, that, by construction, the map α in the statement of the previous

lemma is functorial in (X, Y,F).
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2. Proof of Theorem 1

First, let us recall a result which is implicit in Kempf’s paper [14]. For an explicit proof

see [7].

2.1. Lemma: Let E be an algebraic vector bundle on Pn, n ≥ 2, H ⊂ Pn a hyperplane,

x ∈ Pn\H and p : Pnr{x} → H the central projection. If E and p∗(E|H) are isomorphic,

as vector bundles, over each infinitesimal neighborhood of H in Pn, then E splits into a

direct sum of line bundles.

In characteristic 0 one can generalise the above lemma to principal bundles :

2.2. Lemma: Assume that char(k) = 0 and let G be a linear algebraic group over k.

Let E be a principal G-bundle on P = Pn, n ≥ 2, and let H and p be as in the previous

lemma. If E and p∗(E|H) are isomorphic as principal G-bundles over each infinitesimal

neighborhood of H in Pn, then E is split.

Proof. Let c ∈ H1(P,OP(G)) be the class of E . Let RuG be the unipotent radical of G,

Q = G/RuG the reductive quotient and ρ : G → Q the canonical surjection. We will

show that H1(P,OP(RuG)c) = {e} (see (II) below) and that (L(Q)⊗kOP)
c is a direct sum

of line bundles (see (I) below).

Now, according to a result of G.D. Mostow [17] (which is valid only in characteristic 0, see

[5] or [6]) there exists a Levi subgroup Λ of G, i.e., a closed subgroup such that, denoting

by u the inclusion Λ →֒ G, the composition ρ ◦ u : Λ → Q is an isomorphism. Since

H1(P,OP(RuG)c) = {e}, Lemma 1.2 implies that H1(ρ)−1(H1(ρ)(c)) = {c}. In particular,

if cΛ ∈ H1(P,OP(Λ)) is defined by H1(ρ ◦ u)(cΛ) = H1(ρ)(c) then c = H1(u)(cΛ), i.e., E

admits a reduction of structure group to Λ. Let EΛ be the principal Λ-bundle defined by

cΛ. Then

ad(EΛ) := (L(Λ)⊗kOP)cΛ ≃ (L(Q)⊗kOP)
c

is a direct sum of line bundles. Since Λ ≃ Q is reductive and char(k) = 0, [3], Theorem

4.3., implies that EΛ admits a reduction of structure group to a maximal torus T of Λ.

This proves the lemma, modulo the two technical facts (I) and (II) quoted above.

(I) For any closed normal connected subgroup N of G there is the induced exact sequence

of Lie algebras :

0 → L(N) → L(G) → L(G/N) → 0

and the associated exact sequence of locally free sheaves

0 → (L(N)⊗kOP)
c → (L(G)⊗kOP)

c → (L(G/N)⊗kOP)
c → 0.

One sees easily that each of the three bundles occurring in the last exact sequence satisfies

the hypothesis of Lemma 2.1, hence is a direct sum of line bundles. Moreover, since n ≥ 2,

this exact sequence splits, so that (L(N)⊗kOP)
c is a direct summand of (L(G)⊗OP)c.



6 BISWAS, COANDĂ, AND TRAUTMANN

(II) We show now that H1(P,OP(RuG)c) = {e}.

To prove that we consider the central series

RuG = C0 ⊃ C1 ⊃ . . . ⊃ Cn = {e}

of RuG. Each of the groups Ci is a closed connected normal subgroup of G and the

quotients Ci/Ci+1 are abelian and unipotent. This implies that the exponential map

L(Ci/Ci+1) → Ci/Ci+1

is an isomorphism of algebraic groups. Using again the twisting by c, which is induced

by the inner automorphisms of G, we obtain the exact sequences

0 → (L(Ci+1)⊗kOP)
c → (L(Ci)⊗kOP)

c → (L(Ci/Ci+1)⊗kOP)
c → 0

and, according to (I), (L(Ci+1)⊗kOP)
c is a direct summand to (L(Ci)⊗kOP)

c for i ≥ 0.

It follows that also (L(Ci/Ci+1)⊗kOP)
c is a direct sum of line bundles. Since n ≥ 2,

H1(P, (L(Ci/Ci+1)⊗kOP)
c) = 0 for i ≥ 0, and then also H1(P,OP(C

i/Ci+1)c) = {e}. This

proves that H1(P,OP(RuG)c) = {e}. �

We are able, now, to prove Theorem 1. Using the notation from the preparations preceding

the proof of the Theorem in [7], suppose that there exists a principal G-bundle F over

Pn+m such that F|L ≃ E . We shall construct a homogeneous ideal J ⊂ R, generated by

Σi>0dimH1(ad(E)(−i)) homogeneous elements such that, for any i ≥ 0,

F|Li ∩ X ≃ π∗E|Li ∩ X,

where X is the closed subscheme of Pn+m defined by the ideal JS and π : Pn+m\L′ → L the

central projection. The inequality imposed on m implies that there exists p ∈ L′ ≃ Pm−1

such that the polynomials from J vanish in p. The linear span P of p and L is contained

in X, hence F|Li ∩ P ≃ π∗E|Li ∩ P , for any i ≥ 0.

Recall that P ≃ Pn+1 and that the schemes Li ∩P are the infinitesimal neighborhoods in

P of the hyperplane L of P . Therefore, if char(k) = 0, Lemma 2.2 implies that F|P is

split and so is E ≃ F|L.

In the case of a reductive linear algebraic group in arbitrary characteristic, we know that

also ad(F)|Li ∩ P ≃ π∗ad(E)|Li ∩ P (as vector bundles on Li ∩ P ), and then Lemma 2.1

implies that ad(E) splits as a direct sum of line bundles. From Proposition 1 one deduces

that E is split in this case, too.

Finally, J is constructed, as in the proof of the Theorem in [7], by a standard technique

borrowed from infinitesimal deformation theory, using Lemma 1.5 above. Explicitly:

Suppose that J ⊂ R has already been constructed such that F|Li ∩X ≃ π∗E|Li ∩X. We

enlarge J in degree ≥ i + 1 to an ideal J ′ as to obtain also F|Li+1 ∩X ′ ≃ π∗E|Li+1 ∩X ′,

where X ′ is the closed subscheme of Pn+m defined by the ideal J ′S.
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To do so we put Xj = Lj ∩X. Using the notation of [7], the ideal sheaf IXi
of Xi in Xi+1

is isomorphic to OL(−i − 1) ⊗ Ri+1/Ji+1 and satisfies I2
Xi

= 0. By Lemma 1.5 there is a

canonical map

H1(L, ad(E)(−i − 1) ⊗ Ri+1/Ji+1)
α

−→ H1(Xi+1,OXi+1
(G))

such that α(0) = [π∗E|Xi+1] and the image of α is the set of all classes [F ′] of principal

bundles F ′ on Xi+1 such that F ′|Xi ≃ π∗E|Xi. By assumption the class of F|Xi+1 belongs

to this set, hence [F|Xi+1] = α(ξ) for some ξ ∈ H1(L, ad(E)(−i − 1)) ⊗ Ri+1/Ji+1. Let

ξ1, . . . , ξs be a basis of H1(L, ad(E)(−i − 1)). Then

ξ = ξ1 ⊗ f̄1 + · · ·+ ξs ⊗ f̄s

with unique residue classes f̄ν ∈ Ri+1/Ji+1, fν ∈ Ri+1. Let

J ′ := J + Rf1 + · · ·+ Rfs

and let X ′ ⊂ X be the variety of J ′S ⊃ JS.

Then X ′
i = Li ∩ X ′ = Li ∩ X = Xi and Xi ⊂ X ′

i+1 ⊂ Xi+1.

According to the functoriality of the maps α in Lemma 1.5, there is a commutative

diagram

H1(L, ad(E)(−i − 1)) ⊗ Ri+1/Ji+1
α

//

ρ′

��

H1(Xi+1,OXi+1
(G))

ρ

��

H1(L, ad(E)(−i − 1)) ⊗ Ri+1/J
′
i+1

α′

// H1(X ′
i+1,OX′

i+1
(G))

,

where ρ′ and ρ denote the natural quotient maps. By definition of α′ in Lemma 1.5,

[π∗E|X ′
i+1] = α′(0). Since ρ′(ξ) = 0, it follows that

[F|X ′
i+1] = [π∗E|X ′

i+1].

This completes the inductive construction of J and the proof of Theorem 1.

3. Proof of Theorem 2

We use a trick of Mohan Kumar [15], to show that, under the hypothesis of the theorem,

ad(E) can be extended to a vector bundle on Pn+1.

Embed Pn as the hyperplane H of Pn+1 =: P of equation Xn+1 = 0 and let Hi denote

its ith infinitesimal neighbourhood, of equation X i+1
n+1 = 0. Let x ∈ P \ H and let

πx : P \ {x} → H be the projection. Using Lemma 1.5 and the vanishing conditions in

the hypothesis one shows, by induction on i ≥ 0, that if F is a principal G-bundle over

Hi such that F|H ≃ E then F ≃ π∗
xE|Hi. In particular, if y ∈ P \ H is another point

and πy : P \ {y} → H the corresponding projection, then π∗
yE|Hi ≃ π∗

xE|Hi, ∀i ≥ 0. This

implies that π∗
yad(E)|Hi ≃ π∗

xad(E)|Hi, ∀i ≥ 0.
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Both π∗
xad(E) and π∗

yad(E) can be extended to reflexive sheaves Ax and Ay on P . The

sheaf HomOP
(Ax,Ay) is reflexive, hence, for j = 0, 1, Hj(HomOP

(Ax,Ay)(−i − 1)) = 0

for i >> 0. It follows that

HomOP
(Ax,Ay)

∼
−→ HomOHi

(Ax|Hi,Ay|Hi)

for i >> 0. For i >> 0, any isomorphism Ax|Hi
∼
→ Ay|Hi can be lifted to a morphism

Ax → Ay which must be an isomorphism on a (Zariski) open neighbourhood U of H in

P , that is, π∗
xad(E) and π∗

yad(E) are isomorphic over U . But P \U must be 0-dimensional,

hence it has codimension ≥ 2. It follows that π∗
xad(E) and π∗

yad(E) are isomorphic over

P \{x, y}, hence they can be glued and one gets a vector bundle Ã on P extending ad(E).

Since Ã|Hi ≃ π∗
xad(E)|Hi, ∀i ≥ 0, Lemma 2.1 implies that Ã splits, hence ad(E) ≃ Ã|H

splits.

4. Proof of Proposition 1.1

A theorem of Chevalley says that there is a short exact sequence of groups

1 −→ H −→ G −→ A −→ 1 , (1)

where A is an abelian variety over k and H is an affine algebraic group over k; for a

modern proof see [9]. We will show that any algebraic principal A-bundle over Pn is

trivial.

Let EA be a principal A-bundle over Pn. To prove that EA is trivial, it suffices to show

that EA admits a section over the generic point. Indeed, if s is a section of EA over a

Zariski open subset of Pn, then s extends to a section of the pullback of EA over some

blow-up of Pn. Since an abelian variety does not have any rational curves, the section

over the blow-up of Pn descends to a section of EA over Pn.

There is a separable extension K ′ of the function field K of Pn over which EA has a rational

point. Hence EA over K ′ is trivial. There is an inflation homomorphism H1(K ′, A) −→

H1(K, A) whose composition with the natural homomorphism H1(K, A) −→ H1(K ′, A) is

multiplication by d, where d is the degree of the field-extension. So the class in H1(K, A)

given by EA is torsion. We noted earlier that a principal A-bundle over Pn is trivial if

its restriction to K is trivial. Therefore, the class in H1(K, A) given by EA being torsion

it follows that the class in H1(Pn, A) given by EA is torsion. Consequently, the principal

A-bundle EA over Pn admits a reduction of structure group to a finite group-scheme.

Since the fundamental group-scheme of Pn is trivial [18, p. 93, Corollary], it follows that

any principal bundle over Pn with a finite group-scheme as the structure group is trivial.

Hence EA is trivial.

Since any principal A-bundle over Pn is trivial, using (1) it follows that any principal

G-bundle over Pn admits a reduction of structure group to the subgroup H . Therefore,

to prove the Proposition it suffices to show that any principal H-bundle over Pn is Zariski

locally trivial.
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Let EH be a principal H-bundle over Pn. Let H0 ⊂ H be the connected component of H

containing the identity element. Let EH/H0
= EH ×H (H/H0) be the principal (H/H0)-

bundle over Pn obtained by extending the structure group of EH using the quotient map

H −→ H/H0. Since Pn is simply connected, it follows immediately that EH/H0
is a trivial

principal (H/H0)-bundle. Therefore, EH admits a reduction of structure group to H0.

Let EH0
be a principal H0-bundle over Pn. To prove the Proposition it is enough to show

that EH0
is Zariski locally trivial.

We will prove that H0 is acceptable in the sense of [19, p. 188, Definition]. But before

that we will show that EH0
is Zariski locally trivial assuming that H0 is acceptable.

So assume that H0 is acceptable. Since k is algebraically closed, any principal H0-bundle

over Spec k is trivial. Hence using [19, p. 189, Theorem A] it follows that the restriction

of EH0
to some open subscheme of any affine chart of Pn is trivial.

It follows from [8, hypothesis (1), p. 97] or [8, p. 110, Theorem 3.2], and the assumption

that k is algebraically closed, that the principal H0-bundle EH0
is Zariski locally trivial

under the assumption that H0 is acceptable.

To prove that H0 is acceptable, let RuH0 be the unipotent radical of H0. So we have a

short exact sequence of groups

1 −→ RuH0 −→ H0 −→ Q0 −→ 1 ,

where Q0 is reductive. Note that Q0 is connected as H0 is so. From [20, p. 137, Theorem

1.1] we know that Q0 is acceptable. Hence it suffices to show that RuH0 is acceptable.

The unipotent group RuH0 has a filtration of normal subgroups

e = U0 ⊂ U1 ⊂ · · · ⊂ Ui ⊂ · · · ⊂ Ud−1 ⊂ Ud = RuH0 ,

where d = dim RuH0, and Ui/Ui−1 is the additive group Ga for each i ∈ [1, d] (see [13, p.

123, Theorem 19.3]). Therefore, the group RuH0 is acceptable if Ga is acceptable. But

H1
et(A

1, Ga) = H1
et(A

1,OA1) = 0 .

Hence Ga is acceptable. This completes the proof of Proposition 1.1.

5. Proof of Proposition 1

The aim in this section is to prove Proposition 1 for algebraically closed fields k of arbitrary

characteristics. (for k = C this follows from [3])

Proposition: Let G be reductive linear algebraic group defined over k. Let E be a

principal G-bundle over Pn and ad(E) its adjoint bundle. If ad(E) splits as a direct sum

of line bundles, then E is split.

Proof. We recall that if the characteristic of the base field k is positive, then a principal

bundle F over a smooth variety X defined over k is called strongly semistable if the pull

back (F n
X)∗F over X is semistable for all n ≥ 1, where F n

X is the n-fold composition of
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the Frobenius morphism FX : X → X. For our convenience, when the characteristic of k

is zero, by a strongly semistable principal bundle we will mean a semistable bundle.

Since the tangent bundle TPn is semistable of positive degree, any semistable vector

bundle over Pn is strongly semistable [16, p. 316, Theorem 2.1(1)].

Let E be a principal G-bundle over TPn, where G is a reductive linear algebraic group

defined over k. Then E admits a unique Harder-Narasimhan reduction; see [4]. In general

some conditions are needed for the uniqueness part of the Harder-Narasimhan reduction.

(See [4, p. 208, Proposition 3.1] for the existence of Harder-Narasimhan reduction, and

[4, p. 221, Corollary 6.11] for the uniqueness; the fact that any any semistable vector

bundle over Pn is strongly semistable ensures Proposition 6.9 in [4, p. 219] remains valid

without the assumption on the height.)

Now we assume that the adjoint vector bundle ad(E) is a direct sum of line bundles.

This immediately implies that the Harder-Narasimhan filtration of ad(E) is a filtration of

subbundles of ad(E) (in general it is only a filtration of subsheaves with each successive

quotient being torsionfree). Therefore, the Harder-Narasimhan reduction of E is defined

over entire Pn.

Let

EP ⊂ E (2)

be a principal P -bundle giving the Harder-Narasimhan reduction of E over Pn; here P ⊂ G

is a parabolic subgroup.

Any principal G-bundle over P1 is split (see [12]). Therefore, the proposition is proved

for n = 1. Henceforth, we will assume that n ≥ 2.

Consider the short exact sequence of groups

1 → Ru(P ) → P → Q(P ) → 1 , (3)

where Ru(P ) is the unipotent radical of P , and Q(P ) is the Levi quotient of of P . This

short exact sequence is right split. Fix a subgroup of P that projects isomorphically to

Q(P ). This subgroup will be denoted by Λ(P ). We will show that EP admits a reduction

of structure group to the subgroup Λ(P ) of P .

To prove this first note that giving a reduction of structure group of EP to Λ(P ) is

equivalent to giving a section of the fibre bundle EP/Λ(P ) over Pn. Let EP (Ru(P )) be the

group-scheme over Pn associated to EP for the adjoint action of P on the normal subgroup

Ru(P ) in (3). The fibre bundle EP /Λ(P ) is a torsor for EP (Ru(P )). In other words, the

fibres of EP (Ru(P )) have a natural free transitive action on the fibres of EP /Λ(P ). Torsors

for EP (Ru(P )) are parametrised by H1(Pn, EP (Ru(P ))). Therefore, to prove that EP admits

a reduction of structure group to the subgroup Λ(P ) it suffices to show that

H1(Pn, EP (Ru(P ))) = 0 . (4)

Consider the upper central series {Gi}i≥0 for Ru(P ). So G0 = Ru(P ) and Gi+1 =

[Ru(P ),Gi] for all i ≥ 0. This central series is preserved by the adjoint action of P ,
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and each successive quotient is an abelian unipotent group. For an abelian unipotent

group, the exponential map from its Lie algebra is well-defined, and it is an isomorphism.

Also, for any line bundle ξ on Pn we have H1(Pn, ξ) = 0 (recall that n > 1). Therefore it

follows that (4) holds.

Let

EΛ(P ) ⊂ EP (5)

be a reduction of structure group of EP to Λ(P ). Let E ′
Q(P ) be the principal Q(P )-bundle

obtained by extending the structure group of EP using the projection in (3). We note

that the principal Q(P )-bundle E ′
Q(P ) is canonically identified with EΛ(P ).

Let

F1 ⊂ · · · ⊂ Fm−1 ⊂ Fm = ad(E)

be the Harder-Narasimhan filtration of ad(E). From the construction of the Harder-

Narasimhan reduction of E we know that m = 2m0 + 1, and degree(F(m+1)/2/F(m−1)/2) =

0. Furthermore, the subbundle ad(EP ) ⊂ ad(E) coincides with F(m+1)/2, and ad(E ′
Q(P ))

coincides with the quotient F(m+1)/2/F(m−1)/2. In particular, ad(E ′
Q(P )) is a semistable

vector bundle. We noted earlier that any semistable vector bundle on Pn is strongly

semistable. Therefore, ad(E ′
Q(P )) is strongly semistable.

Since E ′
Q(P ) is identified with EΛ(P ), we now conclude that the adjoint vector bundle

ad(EΛ(P )) is strongly semistable.

We recall that ad(E) is a direct sum of line bundles. From the above remark that the

subbundle ad(EP ) coincides with F(m+1)/2 it follows immediately that ad(EP ) is also a

direct sum of line bundles. Since the adjoint bundle ad(EΛ(P )) is a direct summand of

ad(EP ), using the Atiyah-Krull-Schmidt theorem (see [1, p. 315, Theorem 3]) we conclude

that ad(EΛ(P )) is also a direct sum of line bundle.

Since Λ(P ) is reductive, the adjoint group

H := Λ(P )/Z(Λ(P )) (6)

Λ(P ) does not admit any nontrivial character; here Z(Λ(P )) is the center of Λ(P ). Hence

det ad(EΛ(P )) =
∧top ad(EΛ(P )) is a trivial line bundle. On the other hand, we already

proved that ad(EΛ(P )) is semistable and it splits into a direct sum of line bundles. Com-

bining these it follows that ad(EΛ(P )) is a trivial vector bundle.

Let l(p) denote the Lie algebra of the group Λ(P ). Consider the adjoint action of Λ(P )

on l(p). It gives a homomorphism to the linear group

ρ : Λ(P ) → GL(l(p)) . (7)

Let EGL(l(p)) denote the principal GL(l(p))-bundle over Pn obtained by extending the

structure group of EΛ(P ) using the homomorphism ρ in (7). We noted earlier that ad(EΛ(P ))

is a trivial vector bundle. Therefore, EGL(l(p)) is a trivial principal bundle.

Consider the quotient H of Λ(P ) defined in (6). Let EH be the principal H-bundle

over Pn obtained by extending the structure group of EΛ(P ) using the quotient map. The
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homomorphism ρ in (7) factors through H . Therefore, EGL(l(p)) is an extension of structure

group of EH .

Since Λ(P ) is reductive, the homomorphism ρ gives an embedding of H into GL(l(p)).

We already noted that EGL(l(p)) is trivial. Therefore, the reduction

EH ⊂ EGL(l(p))

is given by a morphism

f : Pn → GL(l(p))/H . (8)

Since H is a reductive subgroup of GL(l(p)), the quotient space GL(l(p))/H is an affine

variety. Therefore, the morphism f in (8) is a constant one. This immediately implies that

the principal H-bundle EH is trivial. From this it follows that the principal Λ(P )-bundle

EΛ(P ) admits a reduction of structure group to the center Z(Λ(P )).

Since E is an extension of structure group of EΛ(P ), we now conclude that E admits a

reduction of structure group to a maximal torus of G. �
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[3] I. Biswas, T.L. Gómez, Y.I. Holla, Reduction of structure group of principal bundles over

projective manifolds with Picard number one, Int. Math. Res. Not. (2002), 889–903

[4] I. Biswas, Y.I. Holla, Harder-Narasimhan reduction of a principal bundle, Nagoya Math. Journ.

174 (2004), 201–223
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