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A MEeSSENGER prize of the Institute of Actuaries, Toondon, was awarded
“in 1933, for the first time, to an Indian, Mr. D. P. Misra,! for demonstrating
that multiplicity of the rate of interest is possible for a financial transaction
and for propounding the need of a criterion by which a unique rate of
interest may be determined in such cases of ambiguity. It had been taken
for granted before, presumably without any mathematical proof to support
it, that a financial transaction admits only one rate of interest ; and hence
the examples given by Misra in which two or more rates of interest become
possible evolked much interest among the leading actuaries of the world.

A precise definition of 2a practical financial transaction must first be
stated as it is intended to treat it here mathematically. The definition
proposed by us is this: throughout a practical financial transaction, on
the basis of a uniform rate of interest, the original creditor always remains
the creditor, and the original debtor always the debtor and that the two are
quits only when the transaction comes toan end. This definition is not
satisfied by the examples of Misra wherein multiplicity arises.

The definition of a practical financial transaction may now be expressed
as a set of mathematical conditions. Let a financial transaction start with
A lending a sum g, to B on a certain date, say, January 1st, 1935. If A is
the creditor 2, > O. Exactly a year from that date A lends another sum
4,toBorB returns a sum—a; to A according as 4, is +ve or —ve. If v%
is the rate of interest we may denote 1-+y/100 by =. According to the
definition of a practical transaction @& + @, >0 on January lst, 1936.
If agx + ay =0 the transaction becomes complete and the rate of interest
is 10% (— @yfae — 1)%. If the transaction is not complete on January Ist,
1936, let it be completed exactly # years after the initial payment. If at
the end of the rth year from the begiuning A lends a, to B or B returns
—a, toA according as a,is+ve Or —V& then the following algebraic
conditions hold good :

1 Journal of the Institute of Actuaries, Vol. 64, pp. 71-97. Vide also Dr. Steffensen’s
paper in the same volume.
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fal®) = agx” +axt + ... + a, =0 I

L@ =aw +ax*+ ... 2 a,>0,7r=01,---, n—l} @)
If a,= 0 it means of course that no payment occurs between the parties at
the end of the #th year. The uniqueness will be established when we prove
that if there exists a root of f,(x) = 0, say, x = a > 1 satisfying all the
conditions (I) then there cannot exist B > 1 satisfying f,(x) = 0. This is
an algebraic problem and we proceed to prove now a slightly more general
problem :

If @ > 0 satisfles all the conditions (I) then f,(x) =0 has no other
positive root.
We have

f’/z(x) = [f7£—1+ xfn—z + o+ xrfu—r—l Toeee xﬂ—lfo] . .. (II)
It is clear from (II) that at x =a f',(a) is positive. As in (II) [, (%),
[uoa(%), etc., may also be expressed by similar finite series. Hence f',_;(a),
f'us(a), etc., are all positive. It follows therefore that f7,(x) is+ve at
% = a. Proceeding in this manner it becomes clear that f',(a), fV,(a), -
f#,(a) are all positive and that the higher derivatives vanish. Using the
Taylor polynomial expansion we find that f,(x¥) > 0 for x > « and that
fu(%) = 0 cannot therefore have another root greater than o.

We can also show that there cannot exist another root 8 of f,(x) =0
such that 0 < B < a. For obviously f,(B) = fola) > 0. Hence afy(a) + a, >
Bf,(B) + ay or fi(a) > f1(B). Since fi(a) > 0 we obtain similarly f2o(a) > fo(B).
Applying this process continuously the conclusion is reached that f,(a) > f,.(f).
But f,(a) =0. Hence 8 cannot be a root of f,(x) = 0. |

It is this algebraic proposition that supplies a proof of the uniqueness
of the rate of interest in a practical financial transaction. We have consi-
dered the simple case where payments and returns are made at yearly
intervals, but a more sophisticated case where payments and returns are
made at any intervals which however can be expressed by commensurable
integers reduces to a similar algebraic problem to which the result of the
general proposition established becomes applicable.

Incidentally the general algebraic proposition is also valid if some, but
not all, f,(¥) vanish at ¥ = a. The case is certainly trivial where all f,(x)
vanish at x = «. It is also evident that the root o is not repeated except
possibly when o = 0.

When this investigation was being carried out a new theorem in the
theory of equations occurred to us. In view of the close connection between
the mathematical arguments of this paper and this theorem it may not be
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out of place to state and prove it here briefly. Following the notation of
the paper we state the theorem as follows :

If f,.(x) = 0 has p roots each greater than a, then there are at least p

changes of sign in the series fy(a), fi(a), - -+, fr(a) where a > 0.
Cousider (x—B) f,(%) = thryi(x) for > a. I ¢ al®) = byt + bx” +
ceer +b,,, we may define (%) = boaf + bya't + - .- b, fort=0, 1,---7;

so that fy(a) = (& — B)fis (@) + as pola) = fola) and $,,1(a) = (a—B) #a).

Now consider the signs in the two series:

fola) file) «oveee fr@)
ho(a) dafa)--ree- r41(0)-

The two series begin with the same sign and end with opposite signs.
Corresponding to a change of sign from f;4(a) to fi(a) the sign of Y,(a) agrees
with the latter ;: and corresponding to a continuation of sign in the first
from f,_1(«) to fi(a) the sign of y;(a) remains ambiguous. When a zero value
comes in either series we may take the left hand sign.

Hence it follows that the i-series has at least one more change of
sign than the f-series. If the f-series is perfectly general so also is thre
series, the increase in changes of sign in the latter series being due to the
fact that i,.,(x) = 0 has one more root (viz., f) exceeding a than f,(x) = 0.
This completes the proof of the theorem, which may be regarded as a
generalisation of Descartes’ rule of signs.

Summary.

A definition of a practical financial transaction is given and it is proved
straight from the definition that a practical transaction admits only one rate
of interest. The transactions considered by Misra in his paper are thus
shown to be only mathematically possible. Two new algebraic theorems
are stated and proved.



