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1. INTRODUCTION

IT is well known that the gravitational potential is constant in the cavity
of a thick heterogeneous shell of matter, having a distribution of spherical
symmetry, and that the gravitational force is consequently nil at each point.
The relativistic field of such a shell has been obtained by J. T. Combridge
(1926). A more general discussion may be found in a later treatment by
A. J. Carr (1933). The relativistic analogue of the classical result of a
constant potential in the cavity is found to be in the Euclidean metric repre-
senting its space-time. There is however another result which is purely
relativistic, having no classical analogue for this gravitational situation. It
1s the Doppler effect in the cavity. That the Riemannian metric of a gravi-
tational field gives rise to a Doppler effect is a fact that has been known since
the ‘early days of general relativity. In the present note we consider an
observer situated within the cavity of a spherical shell and a light source
situated outside the shell. The observer, moving as he is in a flat space-
tume, experiences the shift on account of the conditions of continuity to be
satisfied at the boundaries of the shell. Apart from any possible cosmo-
logical application of this, we find that the result which has not been explicitly
stated before is novel enough to be placed on record here. Moreover the
cavity in this case presents the only known example of a Euclidean pocket
in a Riemannian space-time. In the relativistic analogue of a thick homeeoid
of matter, in the cavity of which there is no gravitational force, a similar
Euclidean pocket is expected to exist. But this problem, as far as we know,
has not yet been worked out. We give here just the few essential details
showing how the pocket arises and how the constant of Doppler effect is
fixed by the boundary conditions. This constant depends upon the con-
stant L appearing in the following discussion. We find that Combridge’s
treatment is defective on account of his assumption L =1.

2. THE FIELD

For a shell of radii @ and b (b > a > 0) we assume the distribution of
matter to be of spherical symmetry and obtain the metric

ds?= — eMdr?— r? (df2 + sin? 0d¢?) + eVdt? , (1
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where, in the usual notation,

A=1-2m@), @

m()="72 [T Ardr, 3)
f F (r) dr

& =1L (1 —Zm®)e’ , @

FO) =52 r(1-2m) a1, ©)

for a< r< b, in the usual notation. L is an arbitrary positive constant
which is fixed by the boundary conditions. The only non-zero components
of the energy-momentum tensor are T3, Tp?, T5%, T,* and consistency demands
that T,2= T,3 Combridge has taken as the mass equivalent of the distri-
bution,

- 4—77-42-@ S/ be r2dr. (6)
The total energy of the distribution in the shell is
2 , b
[ 2 @) 4 ;-2)]“= 4, )

according to a formula given by G. K. Patwardhan and P. C. Vaidya (1943).
Since Ty' vanishes at r = g and r = b, we find that m, and m, are connected
by

L/ ) dr
Lt-e - dnm, = dumy,. 8)
We can make m,= m, only by taking
- abe (r) ar
L=e )

and thus the continuity of g,, is ensured at r = b, provided we take
Schwarzchild’s line-element for r > b,

a= —(1 -2’”0) drt— r® (d8+ sin*dds?) + (1 —-2’"0) di2. (10)

Both Carr and Combridge envisage the case where the integral in (9) vanishes.
But it is clear that this takes away the physical interest from the problem.
It may be noticed that because Combridge did not introduce L in (4) ke did
not get the Schwarzchild line-element in the usual form for r>b. We
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consider it vital not to restrict L as Combridge has done by putting L=1.
The continuity of g,, at r = a gives ]
— S F{)dr
ds®= — dr2— r2(d6® + sin20dd?) + e dr? (11)

for 0< r< a.
3. THE DoPPLER EFFECT

We now see that if a pulse of light starts from a stationary source dis-
tant r >> b in the region outside the shell and is received at any stationary
point on the radial line* within the cavity, there is a violet-shift as given by

b F () dr
-1 }\2 ¢ (A— 8X)2
(1 - ) c: 2
or
oA b m
D=3 SFO @ -, (12)

to the first approximation. For a shell of the mass of the sun and of the
thickness of the radius of the sun, the constant positive term on the right
in (12) is of the order of 10-%. If the second term is neglected, the Doppler
effect may be treated as constant for distant sources of light. It is also clear
that if the positions of the source and the observer are interchanged, a red-
shift is experienced.

SUMMARY

The relativistic field of a thick spherical shell of matter is worthy of
notice inasmuch as it provides the only known example of a Euclidean pocket
in a Riemannian space-time. The boundary conditions are used to obtain
correct expressions for the metric in different parts of the field and an in-
accuracy of Combridge’s treatment is removed. The constant of the Doppler
effect which is a violet-shift, follows from the boundary conditions in an

unforced manner.
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[*Note added in proof.—It may be noted that Tolman’s formula, 116 -8 (Relativity, Thermo-
dynamics and Cosmology, 1934, p. 289) gives the same result, so far as the pure gravitational

effect is concerned, even if the observer is not on the radial line.—V. V. N. and A. P.]
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