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In a recent investigation about highly collapsed stars with dense neutron
cores having small radius (10° cm.) and exceedingly high density (101 g. cm.™%)
F. Zwicky* has considered the classical treatment of proper and effective
masses of material spheres. His conclusion is that, gravitation being a
‘co-operative phenomenon’, the classical theory cannot effectively bring out
the distinction between the two kinds of mass even with the help of Einstein’s
familiar relation,

E = Mc? Q)]
Here M 1is the mass equivalent of the energy E and c is the velocity of light.
The object of this note is to show that the Newtonian theory is powerful
enough to bring out the distinction between proper and effective masses
unambiguously. It is achieved by deriving the formula (7) from first prin-
ciples. It is not at all suggested that the formula so derived should be used
in preference to the corresponding relativistic formula in considerations of
heavy masses. The new formula has an interest of its own as it gives an
upper limit on the effective mass of a homogeneous sphere which is similar
to Schwarzschild’s limit. Incidentally, one finds that Volkoff’s? solutions
for a material sphere which give arbitrarily large masses and radii are either
mathematical abnormalities, being without Newtonian analogues, or physi-
cally significant inasmuch as they show the superiority of general relativity
over the other theory.

Consider first a homogeneous sphere of terrestrial dimensions and weight.
For in this case one does not go very much astray in taking the conventional
definition of homogeneity; also the difference between the proper and
effective masses is negligible. If p is the density and a the radius the proper
mass is supposed to be M:

M= p a0 @
The gravitational potential energy is
3 M2
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where G is the constant of gravitation and hence on using (1) the effective
mass may be stated as M’:
3 M2 G
M=M-3I— —. 4
5 a c* )
As Zwicky has pointed out the formula (4) is inaccurate and very misleading
for large condensed masses such as the supernove. The inaccuracy arises
through ignoring the distribution of the mass equivalent of the gravitational
potential energy the magnitude of which, in its turn, is dependent upon the
nature of distribution itself.

The difficulty envisaged by Zwicky can be surmounted by discussing
the whole question from a more fundamental standpoint. We will discuss
the case of a homogeneous sphere although the same argument can be
pursued rmutatis mutandis for a more complicated distribution. In an ideal-
1zed case onc may consider a flat space-time populated by particles of
atomic dimensions each of the same size and mass m. FEach particle is
supposed to be outside the spheres of influence of all others so that it
satisfies Newton’s first law. To avoid the complication of mass varying
with velocity all the particles may be supposed to be at rest. The mass
of a particle is then the pull of the rest of the universe on it and it is defined
as its proper mass for that state. Let a homogeneous sphere of radius » be
built up in the same space-time frame so that the number of particles per
unit volume is constant, being n. Obviously it will not be right to say that
the effective density or mass per unit volume of the sphere is /mn which is
really the proper density. Let m’ be the average effective mass of a particle
in the sphere of radius r. Similarly let m’+ 3m’ be the average effective
mass when the spehre is of radius »+ dr. In building up the shell of thick-
ness 8r the gain in proper mass is

4 mmy28ymn,
while the loss due to the gravitational energy® is

4ar2mnG 4

o
mr2d rmn
32

* 1t is important to recognise that this loss is
dare m'n G

2
o2 A4 r2 8 rmn (A)
and not 2 o G
wﬂ-47’-2 Slamn (B)
3c?
This distinction is in fact the crucial point of the present paper. The particles, 477r2 drn in number
are brought from infinity to the surface of a sphere of radius r. The sphere has the proper mass

47r r*mn|3 and the effective mass 47r*m’nf3. In calculating the gravitational potential of the
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Hence we have
47 , 4 T 72
T (r+38r)3 (m' +3m’) n =§ P m'n + 47 r® §r mn— %7__(2 m'n G4 r2 8r mn,
c
or
y dor 13 o 2
4 r2drm'n + 3 & m'n=4x r2dr mn— d'—;—):~ m'n G-4m r2 dr mn,
c2
so that
L dm’ =m—m —mm'nk r? )
3 dr ?
where
47 G
K= . 6
- 3 c? ©
Solving (5) we get
3k mn , i C 9
i T = mnr?
m’-———-m-—-;ge f dkm2rtne dr (7
0
If we put
3k mn
2 A
MDm [ 2 4
m=m—- —— —-——/\r7+~—/\2r9~--]- 8
rd [5 35 315 , ®
With
G=6-66x 108 g.-* cm.3 sec.”?
and
c=3x 10 cm. sec.”*
K=3-1x 10-%g-1 cm. (9)
Hence even if a very high value is chosen for the density mn say,
mn=10* g.cm.7? (10)
we find .
A=4-6x 104 cm.~2 (11)
The successive terms of the series in (8) thus fall off very rapidly. Denoting
the effective density by p’ and the proper density by p, we have
3K L[ 2 4
mn =p=p—"2p2|l—2= 3Kp) r'+ — (3Kp)2 r*+ - - ] (12)
sphere at its surface it is the latter that must be used. The proper mass has no meaning for
dynamical or kinematical purposes: it merely represents the sum of the masses of the constitusnt
particles when their mutual interactions are neglected, the gravitational mass of a sphere is wjnat
is called the effective mass and hence we have to choose (A) in place of (B). The distinctlgn
between effective and proper masses, which arises through intzraction, could not be logically main-
tained if (B) were the correct expression.
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The relation between the effective mass M’ and the proper mass M of a
homogeneous sphere of radius r follows from (12):

, _ 3MG [ 3MG 7 4 3MG\
M'=M ’)Tc_'[" 3%( 2) T 3T3 ”Ts"'c“) 4 ]
or
3M*G , 18 M*G*_ 12 M'G?®
M'=M-— S T3 AE 38 o (13)
For the sake of clarity it may be stated that
M/ 472' pr .3 M__.. 3 pr-3 ( (14)

Although p’ is a function of # its definition allows us to connect it with
M’ in the same manner as p with M.

For a given proper density p we can determine from (7) the maximum
aM’

value of the effective mass M’'. When = 0,
5 dp’ ,
3 9P 2. () -
r P +3r3p'=0
or
r dm’ .
5 - Tm' =0 (15)
Therefore, from (5), we get
47Grim'n
—y— = 1 (16)
or
Mf
— =7 (17)
The Schwarzschild limit is given by
%9 —2r (18)

which may be compared to (17). The classical limit has numerical conse-
quences of the same order as the other.

When Liapounoff® obtained his celebrated result that a gravitating
homogeneous liquid assumes a spherical form in free space, the gravitational
energy being a minimum for the sphere, this distinction between proper and
effective masses was unknown. There is reason therefore to expect that
his result is not valid for large masses. Bodies of the massiveness of the
nebule (10 ©® or 10%% g.) are not at all spherical but largely flat. One is
tempted to link this empirical fact with the classical result that a homogeneous
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sphere which is being built up with proper density p has an effective mass
increasing with radius till (17) or its equivalent,

, 3 re\d 1

=L @) 2
is reached after which the effective mass diminishes with radius. If the
spherical form can be preserved only at the cost of effective mass when the
critical stage in the building-up process is reached it is not so surprising that
the heaviest objects of the universe, the nebule, appear as flat bodies with
central cores. It is interesting to note from (19) that for M’ of the order
of an average nebular mass, p’ is of the order of unity.

Summary

It is shown that the classical theory effectively brings out the distinc-
tion between the effective and proper masses of a homogeneous sphere.
The formula derived to clarify this point leads to an upper limit on the effective
mass of a sphere which is analogous to Schwarzschild’s. The bearing of
the limit on the flatness of nebul® is pointed out.
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