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§1. 1IN a recent paper, which will here be referred to as E. I. H., Einstein,
Infeld and Hoffmann! have given a new relativity theory of gravitation. It
marks an important departure from the well-known general theory which the
authors describe as classical relativity. The essence of the new theory lies
in its possession of the three ideal features which were the desiderata of the
earlier theory. FEinstein2%¢ has stated them in a number of publications
during the last six years or so. They may be expressed briefly as follows :
(A) Field equations should give both matter and motion, (B) the geodesic
postulate® being redundant should have no place in the field theory, (C) the
duality of the field energy and matter*® being unsatisfactory the problem of
gravitating matter should be solved without the use of an extraneous energy-
momentum tensor such as T,,. The three ideas are ihterconnected. It is
essential to understand them if the significance of the results arrived at in this
paper is to be grasped. ‘

A logical working out of these ideas which covers the entire domain of
phenomena of general relativity is a definite advance over the latter theory
inasmuch as a greater economy and generality are achieved in the choice of
the number and nature of the basic postulates and hypotheses. The solution
of the problem of » bodies given in E. I. H. is such a logical working out of
the new ideas. Thus the gravitational equations of motion are obtained
purely from the field equations,

G =0, 1)

the solution being subject to the condition that the space-time frame is flat
at infinity. This method must be distinguished from the earlier and unsatis-
factory attempts of de Sitter, Levi Civita and Eddington and Clark? who had
to use not only the more complicated equations,

Gpv_ %.' Gg,u.v = kTuw . (2)
but the equations of geodesics also, viz.,

d?xk dx® dxP

&t Tép gy g =0 3)
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(The equations so far written appear in the usual notation and therefore no
attempt will be made to define the various symbols.) The latter procedure
is in contravention of Einstein’s ideas and it introduces the difficulties of
infinite self-energy which are quite common in the quantum theories of funda-
mental particles.

§2. The problem® that we take up is this. Following the procedure of
E. 1. H. one gets as a solution of (1),

Eur = 8u (mla M, . 'maz) (4)
and the 3n equations of motion of the particles are obtained, those of m,
being, say,

™ (my, mg,...m,)=0 m=1,2,3. (5
For the line-element given by (4) we have the equations of geodesics which
with the time co-ordinate r as the independent variable can be cast into the
form

g” (ml, Mo, . . .mﬂ)z 0 | m = 1, 2, 3. (6)
If we put my=0in (5)
7 (0, my,...m,)=0 (7)

are the equations of a particle of zero mass in the field of n— 1 particles. If,
however, the geodesic postulate were valid the required equations would be

g7 (0, ms,. . .m,)=0. (8)

In general the two sets of equations, (7) and (8), would not be identical
since the geodesic postulate has been weeded out as extraneous and unneces-
sary in the treatment of E.LH. It is interesting to find out therefore at
what stage the new equations of motion deviate from the geodesic postulate.
When the necessary calculations are carried out we discover the surprising
result that the equations (7) and (8) are identical in form and content to the
second order of masses, that is, as far as the right-hand side of (5) is computed
in E.LLH., in the two-body problem. Thus the geodesic postulate is found
to be consistent with the equations of motion of the new theory at least over
the first two phases of approximation. What will happen at higher approxi-
mations cannot be foretold without doing very lengthy calculations. In what
follows the consistency will be established and an explanation will also be
provided how it arises.

§3. Consider* the flat Galilean space given by the matrices 7, and
1., Whose principal diagonals alone have non-zero members, being 1, -1,

* A full exposition of E.I.H. will be found in the author’s paper referred to as (6).
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~1,-1in order. x° is the time co-ordinate and x!, x?, x® are the space co-ordi-
nates. Throughout the rest of the paper the Greek indices such as p and »
refer to both space and time and run over 0, 1, 2, 3 while the Latin indices
such as m and n take on only the spatial values 1,2, 3. The dummy-suffix
convention is resorted to wherever possible to indicate summation. Thus
for the Galilean space '

ds® =, dx* dx” = (dx°)? = (dx")? — (dx?)*— (dx®)* ©)

Since the velocity of light is taken as unity in this it is convement to use an
auxiliary time co-ordinate = so that

2 _ /\ad’ (10)

dx°

where ¢ is a differentiable function of x# and Ais a small parameter. This
makes d¢/dr of the same order as d¢/ox™.

The line-element of Einstein’s! solution of the problem of two bodies of
masses m,; and m, runs as follows :

ds® = g, dxt dx¥ = (ny, + hy,) dx* dx (1)
where,
2m, 2m, d%ry D2,
—— 2| = T2 -] — 3
ho,,~/\[ 7 rz]—lh[ My 5oy T Mgy T ( )
e MT __’_2]7‘11 ohs '7}719
=) (2 +(aer - ) (= 22)] + o, (12
4m 4/779
han — )3 ( rll WL R 'f”) - 0 ()l'i) (]3)
P = = 22 8 (22 22) 0 (). (14)
In the above expressions §,,, stands for the Kronecker delta so that
Opn =0, m==n
=1, m=n. } (15)
Also
ris?= ("~ f”") (™ — &7), }
2= (= ) (o — ), if (16)
Py = (3 — &) (x7 — &), )

7™, &7 being the spatial co-ordinates of m, and m, respectively at time . An
overhead dot denotes a differentiation with regard to -. The metric (11)
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satisfies the field equations (1) only if the six equations of motion for m, and
ms, are satisfied. Those for m, run as follows :f

. b(l/r,») core s dens A esss_ HMa Smy7d
T S = myh* {[vﬂfﬂff dirg— - E]Wn(lfrlz)

+ 49 (g —im) + 37 — 4 8] (l/fn)

3 ey :
+1 bv)mbaffbn“ E 3 } m=1,2,3. (7

The equations of m, can be similarly written down by interchanging the
mass-constants as also the co-ordinates. The constant A% on the right-hand
side may be absorbed either in m, and m, which are just constants of integ-
ration or by reverting to x° as the independent variable in place of 7.

The equations of a geodesic are given by

d%x* dx® dxP
T I’ﬁ‘ﬁjf—&—:O. (18)
Taking = as the independent variable we restate (18) as

A2m 4 N2 (dPr|ds?)(drds)2 4 g+ 2057 I+ A2 xtse Im= 0. (19)
The three equations (19) together w1th the equation supplied by the metric,
viz.,

A2 (ds(dn)? = oot 2 Guo ANV + A g4, X232 (20)
are equivalent to the four equations (18). From (19) and (20) one concludes
that

0= A2 xm+ I 2Ax7 Tm+ A%p50 I'm

d ’ 2 v D v
— A.‘!xﬂz-% T log (gaa-]- 2 Eno A# - )l-gpgx-zﬁxg), (21)

For the evaluation of the various terms in the last equation it is enough to
note that

gm = ¥ hov (22)
where
oo = Az(-z-rf’;’-l 2’”2) 10 (M), (23)
fon = N3 (f‘;”—“—l e ) +0 (), (24)
Jrmes A2(2m1+2’”°) +0 () 25)

+ The notation is the same as that in Reference (6), the overhead indices being dropped for
suffixes. (17) is the same as (11-67) of Reference (6).
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)

(20)

(27)

) O (A, (28)

te7
d o AT
LAty B VI (RO 2
PN ry r : |80, (29)
Making the necessary substitutions for the vartous terms in (19) we et
\2 g C h o ey
¢ . . H
: AN 4 Iy
Al h (ml;w:} . m,-:v o Q (m, M o d tmy | my
l“‘ AR XL A?"}"" © t\}f“" ?lt" ,'I ":i (j’l“ rl r:‘:
VBT 5 L7 [,1 ‘,}m"h (’Hl) I e A (")1”> ARG o 1y R4
()."-" /'1 e ()K\ v "g ' (5),\:'1‘ rl I’:
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[ (ml mo) +m1(3 fois — % + }712< 5“"5“ rlz)]

d Mo

—die 2 (T + 22 ) + e G (RAT)) o0,

sx 7y

In simplifying (30) we note that

ory__ Oy .

or oxs

d%ry oy - 2

o2 T xS _[—ax? dx7 79
021’2 arg d%ry

= " ow & T sxzane ¢
af(ml) = g ( ) = =5 ()
or (mo) axs ”’)
() =<""‘?’?">ﬁ%(§7‘1})
() = - 055 ()

35— _b_(ml_l_mz) +0 (A2

OXs \ry Iy

o = ?,x,.(’”") +0 (A9

r‘ln

éh— b‘cf rlo) +0 (.

So, on neglecting terms of the order of A® we get from (30)

. i) m m
2 n 1y T2
A [x oX"* (rl +r2 )}

=M {[}'&D‘v’— 4 Xs55 4+ §ops — 4 ml__4 my_ 2 ”72] 9 (’Z’l)
) 1 Fs Fie J OX™”\ry

- s < 4 7m o
+ s :—--4'.?.\'..}.3 § —_ 2 1
(or—deg+ i pe—— > :’bx’” )

+ [4 3 G — %7 + 3 o — 4] oo (””1)

(30)

31)
(32)
(33)
(34)
(35)
(36)
37)
(38)
(39)

(40)



The Gravitational Eguations of Motion in Relativity =~ 193

. .
‘*”*?@”“xﬂ-+3ﬂ%“—4$%ﬂga(?0

dmy d (my T 4 m, ml) 1 brl) ) (mz)
T r, X" rlo) ¥s bx’” F1s dx5) dx5 \Friz
| —1m b_":l) 9 _”ll)
2720\ dx5 ) x5 \ Fya
331' b Vo }
1 — o1 _—— 2 4
T S o P s somssaae €06 1
If by changing the density of the first body we can make approximately,
ml == O, 7’}’11/}‘1 - 0, b/bxm (ml/r]_) = O (42)
we have
Vg="Fyz (43)

and (41) reduces to

0 (my

dxX™ 7'12) = My {[,‘\’-‘X* T3 gd'és —4 jcSé»f—-— 7y .] X (rlo)

s e + 3 4 g (L)

ox?
%710
+ o £ | “9)

This is precisely what (17) reduces to when m, = 0. Hence the consistency
of the new method with the geodesic postulate is established as far as this test
goes. We could have tested the consistency further by comparing (41) itself
with the form of equations for m1; in the field of 7, and ms,, as given by the new
method, when m; is negligible. E.ILH. does not given the three-body
equations and we have therefore to be content with the comparison afforded
by the two-body problem. As far as our calculations of the three-body
problem go (41) is found to be consistent with the corresponding form of
Einstein’s equations of motion.

5(”‘

§ 4. We will now proceed to consider how it is possible to reconcile the
equations of motion obtained from

G,y=0
with the geodesic postulate. The clue is provided by the identities,
(G =1 G g*),=0. (45)

Certain functions Ck,,, () which enter the method of E.LLH. have the property

that when all (kjm -0, G,, also tends to zero. If é:,, == 0 for one value of
mork, G,, 5= 0 also. Now

C,=0 m=1,2,3 (46)
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are the equations of motion of the kth particle of the system in Einstein’s
method. Let us see how G,, can be made to tend to zero so that when the
mass of the kth particle is zero (46) is consistent with the equations of geodesics.
When G, = 0 its value can be expressed in the normal form:

Gyv = Pou/.l.uv - Plv/.z.vv - PZW/.LWv - PSx,u,xva (47)
where u,, is a timelike unit vector and v,, w, and x, are spacelike unit vectors.

Also
G =py+pr+p:tps (48)

and Guy = Uyt — (Vv + Wow, + X, X,). (49)
The identities (45) now become ‘

{(Po';Pl’”Pz“”Pa) utw + (pg— p1+ po+ P3) vV 4 (pg + p1 — po+ pg) WEW” +-

(po+ p1+ pa — p3) x#x”)}, = 0. (50)
G“,,—->b as p, - 0. (51)
Hence (50) will reduce to the equations of é geodesic,
(w), v = 0

when along with p, — 0 we have also

{(po—p1tpaFpalV*v” +po+p1 —paTpa) WHW’ + (po T-p1 +pPo —pa)x*x"}, (52)
{(po— p1— p2— pP3)1’}y '

It is not necessary that the conditions (52) will always be satisfied. It is
the special virtue of Einstein’s method that (52) is satisfied at least upto 0 (A®).
Herein lies an explanation of the consistency with the geodesic postulate as
discovered by us. Incidentally it is of some astronomical interest to observe
that if the bodies of masses m, and m, are looked upon as the earth and the sun
the equation (41) obtained by us gives the motion of the moon in the field of

the others.
Summary

We derive an equation (41) for the geodesics in the field of two bodies
as given by Einstein, Infeld and Hoffmann. It is shown that when #;, = 0 the
equation reduces to that of the two-body problem (17) obtained without any
reference to the geodesic postulate. This is the main result of the paper.
Although Einstein’s new method of deriving gravitational equations of motion
is based on the field equations only we show how it can be consistent with the
geodesic postulate if the field tensor tends to zero in a particular manner.
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