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Simplicity of stable principal sheaves

Indranil Biswas and Tomás L. Gómez

Abstract

Let M be a compact connected Kähler manifold, and let G be a connected complex reductive
linear algebraic group. We prove that a principal G-sheaf on M admits an admissible Einstein–
Hermitian connection if and only if the principal G-sheaf is polystable. Using this it is shown
that the holomorphic sections of the adjoint vector bundle of a stable principal G-sheaf on M
are given by the center of the Lie algebra of G. The Bogomolov inequality is shown to be valid
for polystable principal G-sheaves.

1. Introduction

Stable vector bundles on curves were introduced by Mumford in the context of geometric
invariant theory [6], and stable vector bundles on higher-dimensional varieties were introduced
by Takemoto [12]. On the other hand, the notion of an Einstein–Hermitian connection
originated in physics. Hitchin and Kobayashi made a very precise conjecture connecting these
two notions, which is known as the Hitchin–Kobayashi correspondence; in the special case
of degree zero vector bundles over compact Riemann surfaces, their conjecture is an earlier
theorem due to Narasimhan and Seshadri [7]. The Hitchin–Kobayashi correspondence was first
proved by Donaldson for complex projective varieties [3] and, subsequently, Uhlenbeck and
Yau extended it to compact Kähler manifolds [13]. We will now very briefly recall these results
and their generalizations.

A holomorphic vector bundle E over a compact connected Kähler manifold M admits an
Einstein–Hermitian connection if and only if E is polystable [3, 13]. More generally, a reflexive
sheaf on M admits an admissible Einstein–Hermitian connection if and only if it is polystable
[2]. For any connected reductive linear algebraic group G defined over C, a holomorphic
principal G-bundle EG over M admits an Einstein–Hermitian connection if and only if EG

is polystable [1, 10].
On the other hand, the principal bundle analog of a torsion-free sheaf, which is called a

principal G-sheaf, was introduced in [4].
In Theorem 3.1, we prove that a principal G-sheaf admits an admissible Einstein–Hermitian

connection if and only if it is polystable.
A stable vector bundle E over M is simple; that is, any holomorphic global endomorphism

of E is multiplication by a constant scalar. We prove the following generalization of it (see
Proposition 3.3).

The global holomorphic sections of the adjoint vector bundle of a stable principal G-sheaf
coincide with the center of the Lie algebra of G.

This last result is new even for usual principal bundles.
We also prove a Bogomolov-type inequality for polystable principal G-sheaves (see

Corollary 3.2).
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2. Preliminaries

Let M be a compact connected Kähler manifold equipped with a Kähler form ω. The degree
of a torsion-free coherent analytic sheaf F on M is defined to be

degree(F ) :=
∫
M

c1(F )ωd−1 ∈ R,

where d is the complex dimension of M . For any holomorphic vector bundle F defined over a
dense open subset

U
ι

↪→ M

with complement U c that is a complex analytic subspace of complex codimension at least two,
and such that the direct image ι∗F is a coherent analytic sheaf, we have

degree(F ) := degree(ι∗F ).

The real number degree(F )/rank(F ) is denoted by μ(F ), and it is called the slope of F .

Definition 2.1. By a big open subset of M we will mean a dense open subset U of M
such that the complement U c is a complex analytic subspace of M of complex codimension at
least two.

We recall that F is called stable if μ(F ′) < μ(F ) for all F ′ ⊂ F with 0 < rank(F ′) < rank(F ),
where μ(V ) := degree(V )/rank(V ). Under the same conditions, F is called semistable if
μ(F ′) �μ(F ). A semistable sheaf is called polystable if it is a direct sum of stable sheaves.
Therefore, a polystable sheaf is a direct sum of stable sheaves of same slope.

Let G be a connected reductive linear algebraic group defined over the field of complex
numbers. The Lie algebra of G will be denoted by g. Let

g
′ := [g, g] ⊂ g (2.1)

be the semisimple part of g. Set
Z := G/[G, G] (2.2)

to be the quotient group, which is a product of copies of Gm = C
∗.

A principal G-sheaf on M is a triple of the form (EG, E, ψ), where
• EG is a rational principal G-bundle over M , which means that EG is a holomorphic

principal G-bundle over some big open subset U of M ;
• the holomorphic principal Z-bundle over U

EZ := EG(Z), (2.3)

obtained by extending the structure group of EG using the quotient map G → Z in (2.2),
extends to a holomorphic principal Z-bundle over M ;

• E is a torsion-free coherent analytic sheaf on M ;
• the isomorphism

ψ : EG(g′) −→ E|U (2.4)

is a holomorphic isomorphism of vector bundles over a big open subset U over which EG

is a holomorphic principal G-bundle, where EG(g′) is the vector bundle over U associated
to EG for the G-module g′ defined in (2.1).

Lemma 2.2. Let (EG, E, ψ) be a principal G-sheaf as above. The principal G-bundle EG

on U can be extended, as a principal G-bundle, to the open subset UE ⊂ M on which E is
locally free.
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Proof. The integer dimC g′ will be denoted by n. Therefore rank(E) = n. Let FGL(g′) be the
principal GL(g′)-bundle over UE defined by E|UE

. In view of the isomorphism ψ in (2.4), the
subset U ⊂ M is contained in UE . The restriction of FGL(g′) to U will be denoted by F ′

GL(g′).
Let

γ : G −→ GL(g′) (2.5)

be the homomorphism defined by the adjoint action. We note that the isomorphism ψ in (2.4)
gives an identification of F ′

GL(g′) with the principal GL(g′)-bundle obtained by extending the
structure group of EG using γ. In particular, we get a reduction of the structure group of
F ′

GL(g′) to the subgroup γ(G) ⊂ GL(g′).
Let Z̃ ⊂ G be the center. Let Z̃0 ⊂ Z̃ be the connected component containing the identity

element. Therefore Z̃0 is a product of copies of Gm = C
∗. The homomorphism γ in (2.5)

factors as

G
ρ3 �� �� G/Z̃0

ρ′
2 �� �� G/Z̃

� � ρ2 �� Aut(g′) � � ρ1 �� GL(g′), (2.6)

where Aut(g′) is the group of all Lie algebra automorphisms of g′. We will construct the
extension of EG to UE , step by step, using these homomorphisms.

Giving a reduction of the structure group of the principal GL(g′)-bundle FGL(g′) to the
subgroup Aut(g′) in (2.6) is equivalent to constructing a holomorphic homomorphism of vector
bundles

β : E|UE
⊗ E|UE

−→ E|UE

that satisfies the following two conditions:
• the homomorphism β makes E|UE

a Lie algebra bundle over UE , and
• for each point x ∈ UE , the Lie algebra (Ex, β(x)) is isomorphic to g′.
The open subset U of UE is big. Hence the Lie algebra bundle structure

EG(g′) ⊗ EG(g′) −→ EG(g′)

of EG(g′) extends uniquely to a holomorphic homomorphism

β : E|UE
⊗ E|UE

−→ E|UE
(2.7)

using ψ. To check that for all x ∈ UE the fiber (Ex, β(x)) is a Lie algebra, we note that
the homomorphism of sheaves given by β satisfies both the Jacobi identity and the anti-
commutativity condition because they are satisfied over the dense open subset U . This
immediately implies that (Ex, β(x)) is a Lie algebra.

For any x ∈ U , the Lie algebra EG(g′)x is isomorphic to the semisimple Lie algebra g′, and
hence the Killing form of EG(g′)x is non-degenerate. We note that the condition that the Killing
form on a Lie algebra h is non-degenerate is equivalent to the condition that the element in
(
∧top

h) ⊗ (
∧top

h)∗ given by the Killing form on the Lie algebra h is non-zero. Let

s ∈ H0

(
UE ,

(top∧
E

)
⊗

(top∧
E

)∗)
be the section given by the Killing forms for the Lie algebra bundle E|UE

. We know that s|U
is nowhere vanishing. Since U is a big open subset of UE , we conclude that the above section s
does not vanish anywhere. Hence the fibers of E|UE

are all semisimple. Finally, by the rigidity
of semisimple Lie algebras, the fibers of E|UE

are all isomorphic to g′.
Therefore, we get a reduction of the structure group of FGL(g′) to the subgroup Aut(g′) in

(2.6). The principal Aut(g′)-bundle giving the reduction of the structure group will be denoted
by FAut(g′).

The restriction of the homomorphism β in (2.7) to U ⊂ UE coincides with the Lie algebra
bundle EG(g′) using the isomorphism ψ. Hence the principal Aut(g′)-bundle obtained by
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extending the structure group of EG using the homomorphism ρ2 ◦ ρ′
2 ◦ ρ3 in (2.6) is identified

with FAut(g′)|U .
The subgroup G/Z̃ ⊂ Aut(g′) is the connected component containing the identity element,

and U is a dense open subset of UE . Hence FAut(g′) has a natural reduction of the structure
group to G/Z̃. This reduction of the structure group is uniquely determined by the condition
that its restriction to U coincides with the principal G/Z̃-bundle obtained by extending the
structure group of EG using the homomorphism ρ′

2 ◦ ρ3 in (2.6). The principal G/Z̃-bundle
over UE giving the reduction of the structure group of FAut(g′) will be denoted by FG/Z̃ .

The kernel of the homomorphism ρ′
2 is a finite group. Since U is a big open subset of

UE , the homomorphism of fundamental groups induced by the inclusion map of U in UE is
surjective. Therefore, the principal G/Z̃-bundle FG/Z̃ has a natural lift of the structure group
to G/Z̃0. This lift is uniquely determined by the condition that its restriction to U coincides
with the principal G/Z̃0-bundle obtained by extending the structure group of EG using the
homomorphism ρ3 in (2.6). Let FG/Z̃0

be the principal G/Z̃0-bundle over UE giving the above
lift of FG/Z̃ .

Let

q : G −→ Z × (G/Z̃0) (2.8)

be the natural projection, where Z is the quotient group in (2.2). The homomorphism q is
surjective with a finite kernel. We know that the principal Z-bundle EZ in (2.3) extends to M .
The extension of EZ to UE will be denoted by E′

Z . Therefore, the fiber product

E′
Z ×UE

FG/Z̃0
−→ UE

is a principal Z × (G/Z̃0)-bundle over UE . The principal Z × (G/Z̃0)-bundle over U obtained
by extending the structure group of EG using the homomorphism q in (2.8) is clearly identified
with E′

Z ×UE
FG/Z̃0

. We have already noted that the homomorphism of fundamental groups
corresponding to the inclusion map U ↪→ UE is surjective. Hence arguing as before (see the
construction of FG/Z̃0

from FG/Z̃) it follows that the principal G-bundle EG extends to UE .
This completes the proof of the lemma.

Remark 2.3. We put down a few observations regarding the above definition of a principal
G-sheaf.

(1) Consider the special case where G = GL(n, C). Then we have Z = C
∗. Let E be a torsion-

free coherent analytic sheaf on M , and let U be the big open subset of M over which E is
locally free. The principal Z-bundle EZ corresponds to the holomorphic line bundle

∧n
E over

U . This line bundle over U extends to M as the holomorphic determinant line bundle detE.
(See [5, Chapter V, § 6] for the construction of the determinant line bundle of a torsion-free
coherent analytic sheaf on M .) Therefore, in the special case of G = GL(n, C), the principal
G-sheaves are not restrictive compared to the torsion-free coherent analytic sheaves on M .

(2) In view of the homomorphism ψ in (2.4) it follows that the vector bundle EG(g′) over U
extends to M as a coherent analytic sheaf. Since the adjoint vector bundle ad(EG) over U is
a direct sum of EG(g′) with a trivial vector bundle of rank dimC Z, we conclude that ad(EG)
extends to M as a coherent analytic sheaf. Therefore, the direct image ι∗ad(EG) is a coherent
analytic sheaf on M , where ι : U → M is the inclusion map; see [11, p. 364, Théorème 1].

(3) If M is a complex projective manifold, and the principal Z-bundle EZ is algebraic, then
from the given condition that the open subset U ⊂ M is big it follows that EZ extends to M
as a holomorphic principal Z-bundle.

(4) The above-mentioned big open subset U is not a part of the definition of a princi-
pal G-sheaf. In other words, we do not distinguish between the two principal G-sheaves
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given by (E, U, EG, ψ) and (E, U ′, E′
G, ψ′), respectively, where EG|U∩U ′ = E′

G|U∩U ′ and
ψ|U∩U ′ = ψ′|U∩U ′ . However, in view of Lemma 2.2, we may take U to be the unique largest
open subset of M over which the torsion-free coherent analytic sheaf E is a vector bundle. In
this sense, there is a natural choice of the big open subset U .

A principal G-sheaf (EG, E, ψ) is called stable if for every triple of the form (U ′, Q, σ), where
• U ′ ι

↪→ M is a big open subset contained in the open subset of M over which EG is a
holomorphic principal G-bundle,

• Q ⊂ G is a maximal proper parabolic subgroup, and
• the reduction

σ : U ′ −→ (EG|U ′)/Q (2.9)

is a holomorphic reduction of the structure group of EG|U ′ to the subgroup Q such that the
direct image ι∗σ

∗Trel is a coherent analytic sheaf on M , where Trel is the relative tangent
bundle for the natural projection (EG|U ′)/Q → U ′, and ι is the above inclusion map,

the inequality

degree(σ∗Trel) > 0 (2.10)

holds. Under the same conditions, a principle G-sheaf (EG, Em, ψ) is called semistable if
degree(σ∗Trel) � 0. (See [4, Corollary 5.7; 9].)

Remark 2.4. We put down two remarks on the above definition.
(1) If F is a coherent analytic subsheaf of a torsion-free coherent analytic sheaf E over M ,

then there is a big open subset U ′ ι
↪→ M such that the restriction E′ := E|U ′ is locally free, and

furthermore, the restriction F ′ := F |U ′ is a sub-bundle of E′. The double dual (F ∗ ⊗ (E/F ))∗∗

is a coherent analytic sheaf on M extending the vector bundle (F ′)∗ ⊗ (E′/F ′) on U ′. Hence
the direct image ι∗((F ′)∗ ⊗ (E′/F ′)) is a coherent analytic sheaf on M [11, p. 364, Théorème
1]. Consequently, in the special case of G = GL(n, C), the above definitions of stability and
semistability coincide with the usual definitions of stability and semistability of torsion-free
coherent analytic sheaves on M .

(2) If M is a complex projective manifold, and σ∗Trel is algebraic, then the condition in the
above definition that ι∗σ

∗Trel is a coherent analytic sheaf on M is automatically satisfied.

By a Levi subgroup of a parabolic subgroup P ⊂ G we will mean a connected reductive
subgroup of P with projection to the quotient P/Ru(P ) that is an isomorphism, where Ru(P )
is the unipotent radical of P .

A principal G-sheaf (EG, E, ψ) is called polystable if either (EG, E, ψ) is stable, or there is
a pair (L(P ), EL(P )) satisfying the following three conditions.

• L(P ) ⊂ P ⊂ G is a Levi subgroup of some parabolic subgroup P of G.
• EL(P ) ⊂ EG|U is a holomorphic reduction of the structure group to L(P ) ⊂ G over the big

open subset U over which EG is a holomorphic principal G-bundle, such that the adjoint
vector bundle ad(EL(P )) extends to M as a coherent analytic sheaf.

• The principal L(P )-bundle EL(P ) is stable, and furthermore, for each character χ of L(P )
which is trivial on the center of G, the line bundle EL(P )(χ) over U associated to EL(P )
for the character χ is of degree zero.

From the second condition in the above definition of polystability it follows that the direct
image ι∗ad(EL(P )) is a coherent analytic sheaf on M , where ι : U ↪→ M is the inclusion map
[11, p. 364, Théorème 1]. The principal L(P )-bundle EL(P ) over U may be considered as a
principal L(P )-sheaf using the torsion-free sheaf ι∗ad(EL(P )) on M . We note that the coherent
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analytic sheaf ι∗ad(EL(P )) is independent of the choice of U . Also, the condition that the
principal L(P )-bundle EL(P ) is stable is independent of the choice of the coherent analytic
sheaf extending ad(EL(P )).

More details on principal G-sheaves can be found in [4], where they were introduced.

3. Einstein–Hermitian connection

Let E be a torsion-free coherent analytic sheaf on the Kähler manifold (M, ω). Let U ⊂ M be
the big open subset over which E is locally free. A smooth Hermitian metric h on E|U is called
an admissible Einstein–Hermitian metric if the curvature tensor Ω(h) of the Chern connection
corresponding to h is locally square integrable on M , and also

ΛωΩ(h) = c · IdE (3.1)

on U , where c is some complex number and Λω is the adjoint of multiplication of differential
forms by the Kähler form ω. The main theorem of [2] says that a reflexive sheaf E on M admits
an admissible Einstein–Hermitian metric if and only if E is polystable [2, p. 40, Theorem 3].

We will define admissible Einstein–Hermitian connections on principal G-sheaves.
Fix a maximal compact subgroup

K(G) ⊂ G. (3.2)

If E′
G is a holomorphic principal G-bundle over a complex manifold, and E′

K(G) ⊂ E′
G is a C∞

reduction of the structure group of E′
G to the subgroup K(G), then the G-bundle E′

G has a
unique complex connection which is induced by a connection on E′

K(G) (see [1, p. 220; 10,
p. 24]). This unique connection will be called the Chern connection.

Consider the quotient group Z of G defined in (2.2). We note that Z, which is a product
of copies of C

∗, is a finite quotient of Z̃0, the connected component, containing the identity
element, of the center of G. Let EZ = EG(Z) be the holomorphic principal Z-bundle over
U constructed in (2.3) from EG. By the definition of a principal G-sheaf, the principal
Z-bundle EZ in (2.3) extends to a holomorphic principal Z-bundle over M . The holomorphic
extension of EZ to M is clearly unique. Since any holomorphic line bundle over M has a unique
Einstein–Hermitian connection, any holomorphic principal Z-bundle over M also has a unique
Einstein–Hermitian connection.

Let (EG, E, ψ) be a principal G-sheaf on M . Let U ⊂ M be the big open subset over which EG

is a holomorphic principal G-bundle (see Remark 2.3(4)). An Einstein–Hermitian connection
on (EG, E, ψ) is a Chern connection ∇ on the principal G-bundle EG over U satisfying the
following two conditions.

(1) The connection on the principal Z-bundle EZ := EG(Z) (defined in (2.3)) induced by ∇
coincides with the unique Einstein–Hermitian connection on the extension of EZ to M (recall
that EZ extends holomorphically to M , and the extension has a unique Einstein–Hermitian
connection).

(2) The connection on E|U induced by ∇ and ψ is an admissible Einstein–Hermitian
connection on the reflexive sheaf E∨∨ (the connection ∇ induces a connection on the associated
vector bundle EG(g′) in (2.4), and using the isomorphism ψ in (2.4), this induced connection
gives a connection on E|U ).

Theorem 3.1. A principal G-sheaf (EG, E, ψ) over a compact connected Kähler manifold
(M, ω) admits an admissible Einstein–Hermitian connection if and only if (EG, E, ψ) is
polystable.
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Proof. First assume that (EG, E, ψ) is polystable. Let ad(EG) := EG(g) be the adjoint
vector bundle defined over the big open subset U ⊂ M over which EG is a holomorphic principal
G-bundle. We will prove that ad(EG) is polystable.

If (EG, E, ψ) is stable, then imitating the first part of the proof of [1, Theorem 2.6] we
derive that ad(EG) is polystable. If (EG, E, ψ) is polystable but not stable, then we recall
from the definition of polystability that there is a Levi subgroup L(P ) ⊂ G, of some parabolic
subgroup P of G, and a holomorphic reduction of the structure group EL(P ) ⊂ EG over U
such that EL(P ) is stable, and furthermore, for any character χ of L(P ) trivial on the center
of G, the line bundle over U associated to EL(P ) for χ is of degree zero. Therefore, by the
previous reasoning, the adjoint vector bundle ad(EL(P )) is polystable. Using [2, Theorem 3],
the reflexive sheaf ι∗ad(EL(P )) on M admits an admissible Einstein–Hermitian connection,
where ι is the inclusion map of U in M . (We recall that ι∗ad(EL(P )) is a coherent analytic
sheaf on M .) Following the argument in the first part of the proof of [1, Theorem 2.6] and
using [2, p. 49, Proposition 3] it follows that an admissible Einstein–Hermitian connection
on ι∗ad(EL(P )) is induced by a Chern connection on the holomorphic principal L(P )-bundle
EL(P ). Let ∇ be a Chern connection on EL(P ) inducing an admissible Einstein–Hermitian
connection on ι∗ad(EL(P )).

We will show that
• ∇ induces a connection on EG, and
• the induced connection on EG is Einstein–Hermitian.

The proof of the fact that the induced connection on EG is Einstein–Hermitian crucially uses
the given condition that for any character χ of L(P ), which is trivial on the center of G, the
degree of the line bundle over U associated to EL(P ) for χ is zero.

The associated vector bundle EG(g′) in (2.4) is identified with the vector bundle associated
to EL(P ) for the L(P )-module g′. Therefore, ∇ induces a connection on EG(g′). Consider the
connection on E|U induced by this connection on EG(g′) using the isomorphism ψ in (2.4).
It can be shown that this connection gives an admissible Einstein–Hermitian connection on
ι∗(E|U ). Indeed, this follows from the facts that ∇ is Einstein–Hermitian, and for any character
χ of L(P ) trivial on the center of G, the line bundle over U associated to EL(P ) for χ is of degree
zero. Consequently, ι∗(E|U ) is polystable. Therefore, the vector bundle ad(EG), which is a direct
sum of E|U with a trivial vector bundle, is polystable (note that the degree of E|U is zero).

Since ad(EG) is polystable, the reflexive sheaf ι∗ad(EG) admits an admissible Einstein–
Hermitian connection [2, p. 40, Theorem 3]. Now using the argument in the first part of the
proof of [1, Theorem 3.7] together with [2, p. 49, Proposition 3] we conclude that (EG, E, ψ)
admits an admissible Einstein–Hermitian connection.

To prove the converse, assume that (EG, E, ψ) admits an admissible Einstein–Hermitian
connection. Let ∇ be an admissible Einstein–Hermitian connection on (EG, E, ψ). The con-
nection on ad(EG) over U induced by ∇ gives an admissible Einstein–Hermitian connection on
the reflexive sheaf ι∗ad(EG). (In Remark 2.3(2) we noted that ι∗ad(EG) is a coherent analytic
sheaf on M .) Therefore, ad(EG) over U is polystable. From this it is straight forward to deduce
that (EG, E, ψ) is polystable; see [10, pp. 28–29]. This completes the proof of the theorem.

We have the following corollary.

Corollary 3.2. Let (EG, E, ψ) be a principal G-sheaf over a compact connected Kähler
manifold (M, ω) of (complex) dimension d. Let U ⊂ M be a big open subset over which EG is
a principal G-bundle. If (EG, E, ψ) is polystable, then

(2 dimC g·c2(ι∗ad(EG)) − (dimC g − 1)c1(ι∗ad(EG))2)ωd−2 � 0,

where g is the Lie algebra of G, and ι : U ↪→ M is the inclusion map.
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Proof. It was shown in the proof of Theorem 3.1 that the reflexive sheaf ι∗ad(EG) is
polystable. Hence the corollary follows from [2, p. 40, Corollary 3].

Proposition 3.3. Let (EG, E, ψ) be a stable principal G-sheaf on M . Let U ⊂ M be the
open dense set over which EG is a holomorphic principal G-bundle. Then

H0(U, ad(EG)) = z(g),

where z(g) is the center of the Lie algebra g of G.

Proof. Let ∇ be an admissible Einstein–Hermitian connection on the stable principal
G-sheaf (EG, E, ψ), which exists by Theorem 3.1. We recall from the proof of Theorem 3.1
that the connection on ad(EG) induced by ∇, which we will henceforth denote by ∇′, is in
fact an admissible Einstein–Hermitian connection on ι∗ad(EG), where ι is the inclusion map
of U in M .

Proposition 3 of [2, p. 49] says that any section

s ∈ H0(U, ad(EG)) (3.3)

is flat with respect to ∇′. Therefore, any section s as in (3.3) corresponds to an invariant of
g for the adjoint action on g of the closure of the monodromy group for the connection ∇.
(Here monodromy corresponds to parallel translations along all piecewise smooth paths in U .)
Using [8, Proposition 2.1], this implies that if there is a non-zero section s as in (3.3), then the
closure of the monodromy group for ∇ is contained in some proper parabolic subgroup of G.

Let P be a maximal proper parabolic subgroup of G that contains the monodromy group
for the connection ∇. Let

EP ⊂ EG|U
be the holomorphic reduction of the structure group given by the connection ∇ (as P contains
the monodromy group for ∇, the connection gives a reduction of the structure group of EG|U
to P ). Therefore, ∇ induces a connection on EP . The connection on ad(EP ) induced by this
connection on EP given by ∇ will be denoted by ∇′′.

As the connection ∇′ on ad(EG)|U is Einstein–Hermitian, and

ad(EG)|U = (ad(EG)|U )∗,

in particular, c1(ad(EG)|U ) = 0, and we conclude that the constant in the Einstein–Hermitian
equation (the constant ‘c’ in (3.1)) vanishes; see [5, p. 103, Proposition 2.1]. Since the connection
∇′′ is Einstein–Hermitian (as ∇′ is so), and the constant in the Einstein–Hermitian equation
vanishes, we have

degree(ad(EP )) = 0 (3.4)

(see [5, p. 103, Proposition 2.1]). From (3.4) we have

degree(σ∗Trel) = degree(ad(EG)/ad(EP )) = 0,

where σ is the section as in (2.9) for the reduction EP ⊂ EG|U , and σ∗Trel is the vector bundle
as in (2.10). However, this contradicts the stability condition in (2.10). This completes the
proof of the proposition.
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