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1. The classical equations for the motion of a test-particle in a field
of force (X,Y, Z) are

x=X,y=Y z=2 (b
What are the restrictions on X, Y, Z as functions of (x, y, z, #) if the orbit

of the test-particle is required to be invariably plane ? This is a simple interest-

ing question and as it does not appear to have been investigated before we
consider it here.

If s denotes the distance of the current point, that is, the position of
the test-particle on the orbit at time # from some fixed point on it we have
& byl
ds ds ds
d*x d%y d*z s
ds® i & | 7T (3)
d3x d3y d3z
ds3 ds? ds®
where « and r are the local curvature and torsion respectively. It readily
follows that if the orbit is to be plane we must have everywhere on it

X y 7 |=0. | 3)
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(1) and (3) lead to
(o (L, Y,
Y (5 5+ 5,7 +—~ —z (L ey } —0.(4)

The last equation can be valid at any point of the field for arb1trary values
of the velocities only if
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From (5) and (6) it follows that:
X[Y = 0(x, y),
Y/Z =4(y. 2), ®
Z[X = (z, x),

where 8, $, ¥ are arbitrary functions. One may safely conclude that X, Y, Z
are of the form:

X=Pf(x), Y =Pg(. Z=Ph(2), )]

where f, g, h are arbitrary functions of the variables concerned and P is an

arbitrary function of x, y, z, . Substituting for X, Y, Z from (9) in (7)
we have

¥_x%_h (10)
> oy oz
Hence
f=24 e, g =2+ e h=2+ ¢, (11)

where A, €, €, €; are arbitrary constants. Thus we find that the orbits are
always plane in the field of force: '

X=M&+e)P, Y=+ )P Z=0z+¢P. (12)

It is obvious that the forces are not derivable from a potential function unless
P is of the form,

P=P(, 1), (13)
where X=2x*+ 2+ +2ex + 26y +9 €z + 7, (14)
% being an arbitrary constant.

. I.t can be easily shown that if the forces (12) are supplemented by a
resisting force the orbit still remains plane.

It is interesting to notice also that the condition for plane orbits leads to
what Bergmann?! calls the classical force law,
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2. The above discussion of a classical field of force suggests an interest-
ing mathematical problem, which appears rather artificial, but which is based
all the same on the established practice in genera] relativity.2 For a relat-
vistic line-element of the form,

ds? = — e dr? — r2(d8?® + sin? 0dé?) + e” dr2, (15)
A=A, 1), v=r(r1), (16)

the geodesies provide three differential equations in r, 6, ¢, ¢ and the first
and second order derivatives of r, 6, ¢ with respect to ¢. If we now assume
that these equations represent the motion of a test-particle in the flat space,

do® = dr* + r3d6* + r® sin? 0d¢?, (17

the time ¢ being regarded as Newtonian, the question naturally arises as to
whether the orbit so obtained is invariably plane. As regards the assump-
tion on which the question is based it may be pointed out that the same
assumption underlies the usual calculation of the motion of the perihelion of
Mercury in general relativity. Without discussing the justification for such
an assumption, which is sanctioned by current usage, we only examine
whether it leads to plane orbits invariably., The vanishing of the left-hand
side of (2) is now equivalent to

ALx2 3
SAL - 9A%2  BA3
S % S0 |=0, (18)

S22\ 5222 §2)3
5 B0t oot

where AL, A% 03 stand for dr/do, dbjdo, ddldo respectively and 8X/8q,
52X/ /80 are the first and second covariant® derivatives of X with respect to o.
From the equations of the geodesies we get

F o Pr A AN ) (82 sin2 060 + e+ Ar =0, (19)

6 — P+ 2 r§ —in 8 cos 8rt =0, .(20)
,
3P+ 27§+ 200064 =0, | (21)
r .
where P e §eh7 M 40T + 4w, (22)

it bemg understood that X' = d\/dr, A = dA/dt here. Thus we find
L = o, Az = 0 8fo, X® = o (23)
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SAL  d?r dé 9
= dat d—cr) ’““9(d)

=Q +Ry, (25)

24).

where
Q = 51~2 [—3Xr24 r(e™— 1) (6 2+ sin? 64 )+ er My +r (26)

R =P —o/os. (27)

In obtaining (25) the independent variable is changed from ¢ to f and (19)
is used. Similarly on using (20) and (21) one obtains

§A2 - &A% (28
o =RO = =R 4. (28)

When (23), (25) and (28) are used in (18) we find that the condition for plane
orbits reduces to

Q s2a2 §2A3 | =0, 29
562 Sa% :
Calculations show that
82A2 AS .
= =S B ~oz =S¢ (30)
where S = % [PR + %'Q + R] 3D

Thus (29) is identically satisfied and all the orbits are invariably plane.

3. We have tried to extend the above analysis to the similar question
arising out of the most general line-element,

ds? = g, dx* dx”. (32)
The three equations of motion* with x* = ¢ as the independent variable are
x‘+[335c¢xﬁ x’I’* X¢x=0,i=1,2,3 (33)

in the notation of general relativity. Here x* means 1. These equations of

motion may be considered, as was once suggested by Rosen,® with reference
to any Euclidean (three-dimensional) metric,

do® = h;; dx’ dx’.
The condition for plane orbits turns eut to be extremely complicated, and

as no particular cases of interest arise we do not report here our formal
result. The case treated in the second section covers the usual gravitational



i

Conditions of Plane Orbits in Classical & Relativistic Fields 455

questions of interest in general relativity, including that of Schwarzschild’s
external solution. None of the investigators responsible for discussing
the motion of the perihelion of Mercury seems to have been aware that once
the relativist commits himself to the use of Riemannian co-ordinates the orbit
of a test-particle, or of a small planet like Mercury, can be plane only in a
special artificial sense. It is in the light of this special sense that we have
carried out the discussion of plane orbits in relativity fields.

SUMMARY

Wec have discovered the most general classical field of force for which
the orbit of a test-particle is invariably plane. If the relativistic equations
of a test-particle are interpreted in the classical sense, a general result is ob-

tained, of which a particular case accounts for the orbit of Mercury being
nlane even according to relativists.
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