GENERAL | ARTICLE

The Liquid State

2. Its Structure and Dynamics
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The liquid state is more complicated than either the
gaseous or the solid crystalline state. However, using X-
ray and neutron diffraction onthe one hand and compu-
ter simulation on the other, detailed information has
been obtained on the structure and dynamics of the
liquid state.

Modelling of Liquids

‘There are various models proposed in the literature for a liquid.
These are (a) hard sphere model, (b) the lattice gas model, (c) the

defect solid state model and (d) Bernal’s model of random close
packed structure.

In the hard sphere model, the particles of the liquid are taken to
be hard spﬁeres but with a long range attractive force. Such a
model mimics many of the properties of the liquid including the
existence of a triple point at which the solid, liquid and gas

phases coexist. This is a favourite model for computer
experiments.

In the lattice gas model, one assumes a network of periodic cells
in a lattice as in a crystalline solid. However not all cells are
occupied by a particle of theliquid. This model is mathematically

attractive and can be handled in the same way as the Ising model
for a ferromagnet.

The lattice gas model is an example of a defect solid state model
in which one introduces vacancies at random in a lattice. One
may introduce more complicated defects like random dislocation
networks in the lattice to simulate a liquid.

The random close packing model was obtained by a real life
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experiment. Bernal and co-workers filled a balloon with
thousands of steel ball bearings. After squeezing and shaking
the balloon until they were satisfied that random close packing
was achieved, they poured some paint inside. The balls had light
coating of grease; hence the paint ran off the balls except in
places where the balls actually touched or had a very small gap
(about 5% of the diameter of the ball). When the paint was dry
the balls were removed from the balloon and a statistical count
of the number of paint rings and dots were obtained. From this
the coordination numbers and the radial distribution functions
were obtained. One important conclusion was that in random
close packing the coordination number was around eight with a
statistical distribution. In the ideal close packed structure in a
crystal this number is twelve.

Later Scott at Toronto created a computer replica of a heap. A
detailed analysis of this replica showed that the radial distribution

function for random close packing is essentially the radial
distribution function for a liquid.

In the eighteenth and nineteenth centuries, mathematicians
carried out the study of coordination numbers in terms of
geometry of neighbours. This was done using the concept of
Voronoi polyhedra. Take a point and bisect the line joining it to its
neighbours with planes. The smallest polyhedron enclosed by
the planes is called the Voronoi polyhedron for the given point.
A set of all Voronoi polyhedra fill up space. One can make foam

rubber models of these ‘canonical’ polyhedra and fill up space
with them to make a model of a liquid.

Multicomponent Liquids

We have considered so far a single component liquid. But one
often meets with liquid mixtures containing two, three or more
components. In the simplest case of a binary (two component)
mixture AB, one has to deal with three partial pair correlation
functionsg, ,(r), g,5(r) and ges(r)- g,5(r) gives the neighbours of
type B to an atom of type A. It will not be possible to derive the
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three pair correlation functions using a single diffraction picture
obtained with say X-rays. One should compliment this data by
use of other radiations for obtaining diffraction pictures.
Neutrons are suitable for this purpose as they have a large
penetrative power. Also the scattering power of different atoms
for neutrons is very different from the scattering power of the
same atoms for X-rays. The scattering power of two isotopes of
the same element can be very different for neutrons whereas for
X-rays it is the same. One can therefore get two diffraction
patterns with neutrons (on samples with and without
substitution of isotopes) and one X-ray diffraction pattern.
With three different diffraction patterns one can solve for the
three pair correlation functions of a binary liquid. Figure 1

shows the partial structure factors obtained in this fashion in

the case of liquid CuSn, alloy.

It is obvious that the complexity increases when the number of
components in the alloy is more than two.

Dynamics of Liquids

In a liquid the atoms are moving continuously. The structure of
liquids that we have been discussing is a time-averaged structure.
But it will be interesting to study the complicated molecular
motions experimentally.

Glauber and Van Hove independently generalised the pair
correlation function to take time dependence into account. This
generalised function G(r, ) has the following significance. Given
an atom at the origin at time 0, G(r, ¢) gives the probability of
finding an atom atr at time . Since we are dealing with different
instants of time, a contribution to G(r, t) may come from a
different atom at position r at time ¢ or from the same atom
moving from the origin to position r at time . Corresponding

to this generalised pair correlation function, we have a generalised
scattering factor S(Q, o) defined by

S(Q, ®) = [[dr dz exp[i(Q.r — w)]G(r, £) .
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Just as Q represents the change in the direction of the probe
beam after scattering, 2w represents the change in energy of the
probe particle after scattering. o represents the angular frequency
of the fluctuations associated with the dynamics of the atoms
and molecules in the liquid.

Since the energy of the probe particle is changed in the scattering
process, this is called inelastic scatering. The energies associated
with the fluctuations are small. If one uses neutrons then the
change in energy will be comparable to the original energy of the
neutron. So one can measure the change in energy with good
accuracy. This is not possible with X-rays. Inelastic neutron
scattering is well suited for the study of dynamics of liquids.
Figure 2 shows the dynamic structure factor S(Q, ®) measured
in liquid argon. From this, using Fourier inversion techniques,
one gets the self- and different-atom correlation functions, G,
and G, as a function of r at different times. This is shown for
small, intermediate and large times in Figure 3. One sees that G,

Figure 2 Dynamic struc-
ture factor in liquid argon.

$(Q w)

RESONANCE | August 1997 W

29




