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Abstract. Let k be an algebraically closed field. Let P(X11,..., Xun,T) be the
characteristic polynomial of the generic matrix (X;;) over k. We determine its singular
locus as well as the singular locus of its Galois splitting. If X is a smooth quasi-projective
surface over k and A an Azumaya algebra on X of degree n, using a method suggested by
M. Artin, we construct finite smooth splittings for A of degree n over X whose Galois
closures are smooth.

Introduction

Let k be an algebraically closed field and A = k[X;;,1 < i, j < n] the polyno-
mial ring in n? variables. Let P(T) = T" 4+ a;T" ' + .- + a, in A[T] be the
characteristic polynomial of the generic matrix (X;;). We set

A, = A[T1/(P(T)) and B, =A[Ti,...,T,1/1

where [ is the ideal of A[T, ..., T,] generated by the n polynomials o; (77, ...,
T,) — (—1)i ai, 1 <i < n where for each i, o; is the i-th elementary symmetric
function. Let Y, = Spec(A,) and Z,, = Spec(B,). In the first part of the paper we
describe the singular loci of ¥}, and Z,, and we prove that their codimension is equal
to 3. Let X be a smooth quasi-projective surface over k. Let A be an Azumaya alge-
bra of rank n? over X. There is a construction due to M. Artin of a degree n finite
flat map ¥ — X with Y smooth which splits A (cf [8] for the case X projective
and A generically a division ring). We use the method of proof in [8] to construct
a degree n flat map ¥ — X which splits A where Y is smooth and has a smooth
irreducible Galois closure.

1. The characteristic polynomial of the generic matrix

In this section we suppose that & is an algebraically closed field, of arbitrary char-
acteristic. We denote by Sing(X) the singular locus of a given scheme X.
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Let
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where P(T) is the characteristic polynomial of the generic matrix (X;;) with 1 <
i,j <n.LetY, = Spec(A,). We study the singular locus of ¥,,.

Lemma 1.1. Ler 8 = diag(B1, ..., By) be a matrix consisting of m cyclic Jordan
blocks
Ao 10 - - - 0 0
o » 1 - - - 0 0
p=| 2 0
o 0o o - - - A 1
o 0 0 - - - 0 A

with distinct eigenvalues X;. Then, for any i, the scheme Y,, is smooth at (8, 1;).

Proof. We denote by I, the identity matrix of size n. Developing the determinant
of (X;;) — T -1, along the first column we get

+P(T)= X1 —T)PI(T)+ X201 P2 (T)+ -+ -+ X1 Pu(T)

where the polynomials P; are the cofactors of the first column. Let k; be the size
of B;. We see that Py, (T')(B, A1) is (up to sign) the determinant of a matrix of the
form diag(Ix,—1, B2 — A1lk,, ..., Bm — A1k, ), it being understood that the first
block is missing if k1 = 1. Since A1 # A;, this shows that 0 P(T) /0 Xy, 1 = Px,(T)
is not zero at (B, A1). Thus Y;, is smooth at (8, A1) and the same clearly holds for
any other A;. O

Lemma 1.2. Every neighbourhood of a matrix a with an eigenvalue ). # 0 contains
an invertible semisimple matrix with eigenvalue A.

Proof. We may assume that « is in Jordan form. The given neighbourhood of «
contains an open set defined by the non-vanishing of a polynomial ¢ in the coor-
dinates of the generic matrix (X;;). We may assume that the diagonal entries of «
are (A, A2, ..., A,). Since g(a) # 0 we may find values 15, . .., A, all distinct and
different from A and different from 0, such that when we replace A; by A’ in o we
obtain an o’ for which g(a’) # 0. This new ¢’ is in the given neighbourhood and
is semisimple. O

Let Y, be as before. The surjection k[ X1, X12, ..., Xun][T] — A, induces a finite
mapmw : Y, — Azz. The projection C = 7 (Sing(Y,,)) is a closed subscheme of AZZ
ang is contained in the ramification locus of 7, which is the closed subscheme of
A} whose closed points correspond to matrices with at least two equal eigenvalues.
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2 .. . . . .
Lemma 1.3. Let V C A} be the set of semisimple invertible matrices with at least
two coincident eigenvalues. Then V C C.

Proof. Ttsuffices to check that any matrix of the form 8 = diag(u1, ..., n—2, A, X)
is in C. We show that (8, A) belongs to Sing(Y,). Writing X;; = u; + X; for
i<n—-2,X;jj=A+X;fori >n—1,T =A+1tandv; = u; — A we see that
+ P(T) is the determinant of the matrix

v+ Xy —t X1 Xin
X1 v+ Xy —t Xon

Xn—l —t Xn—l,n
Xn,n—l Xn —1

and it is clear that it does not contain any linear term in X;,X;; or T. Thus the
variety it defines is singular at the origin, which corresponds to the point (8, A) in
the previous coordinates. O

Let P, be the affine space of monic polynomials of degree n. Let ¢ : M, — P,
be the characteristic polynomial map associating to any n X n-matrix its char-
acteristic polynomial. We have the finite surjective map o : A} — P, sending
£ = (£1,...,&,) to the polynomial T" 4 o1 (§)T"~! 4 --- + 0,,(£), where, for
1 < i < n, o; is the i-th elementary symmetric function. For a given positive
integer [ < n, the set of polynomials in P, with at least / distinct eigenvalues is an
open dense subscheme of P,.

Lemma 1.4. Let W C M, (k) be the set of all semisimple invertible matrices with
at least n — 1 distinct eigenvalues. Then W is open and dense in M, (k).

Proof. The set M of all semisimple invertible matrices is open and dense in M, (k).
The set P of all the polynomials in P, (k) which have at least n — 1 distinct eigen-
values is open and dense. Hence W = M N ¢l (P) is open and dense in M, (k).

|

By 1.4 the set U = W N C of all semisimple invertible matrices with exactly
n — 1 distinct eigenvalues is open in C.

Lemma 1.5. The set U is dense in C.

Proof. Let (B, 1) be a point of Sing(Y},). By 1.1, 8, which we may assume to be
in Jordan canonical form, contains at least two cyclic Jordan blocks with the same
eigenvalue. We write § = diag(8i, B2, - .., Br) with the 8;’s cyclic Jordan blocks
of size s; and B1, B> having the same eigenvalue A. Suppose that 8 is in the open
set defined by f # 0 for some polynomial function f in the entries X;; of the
generic n x n matrix. Let ,3 = diag (,81 ;32, .. ﬂr) be a matrix where each ,3, has
the same size as §; and the same off- d1ag0nal entries. Suppose further that B has
n — 1 distinct eigenvalues, with f; and 8, retaining the eigenvalue A. Then B is
semisimple and, for a general B, f B) # 0.
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For example, if

A 1 0 0 O
O A 1 0 O
B=10 0 x 0 O
0O 0 0 a1
0O 0 0 0 A
then
A1 0O 0 O
_ 0O x» 1 0 O
B=10 0 A 0 O
0O 0 0 A3 1
O 0O 0 0 Aa
with A, A1, Ao, A3 distinct. O

Corollary 1.6. The dimension of C is equal to the dimension of U.
Lemma 1.7. The dimension of U is n*> — 3.

Proof. Let ¥,_1 C P, be the subset of polynomials having n — 1 distinct roots.
Then %,_1, being the image under o of a closed subset of dimension n — 1, has
dimension n — 1. The restriction of ¢ to U yields a surjective mapcy : U — X, _1.
The linear group G L, (k) acts by conjugation transitively on each fibre of ¢y and
the stabilizer of the matrix diag(A, A, A3, ..., Ay) is GLa(k) % (k*)"~2. Hence
the dimension of U is dim (GL, (k)) — dim (GL2 (k) x (k*)"~2) 4+ dim(Z,—1) =
n?—@G+n—2)+n—1=n*>-3. O

Corollary 1.8. The closed set Sing(Yy,) is of codimension 3.

Proof. The closure of U is C = 7(Sing(Y,)) and r is a finite map. |

2. The generic Galois closure

Let X;; with i, j running from 1 to n be indeterminates and write P(T) = T" +
a;T"' 4+ ... 4 a, for the characteristic polynomial of the generic matrix (X; i)
Let A be the polynomial k-algebra in the X;;. Consider another set 77, ..., T, of
indeterminates and let

B, =A[T,....T,1/1

where [ is the ideal generated by all the polynomials o; (77, ..., Ty) — (—l)ia,- for
1 <i < n.Let Z, = Spec(B,). We want to determine Sing(Z,,).
A k-point of Z,, is a pair («, t) with the characteristic polynomial of «,

P@)(T) =T"+ai@)T" "+ + ay()
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satisfying a; (@) = 0i(t), 1 <i <n.
Letm : Z, — Spec(A) be the first projection and let S = 7 (Sing(Z,)). We want
to compute the dimension of S.

Let (a, t) be a singularity of Z,. Since no o; (71, ..., T,) involves the X;; and no
aj involves the T;, if we order the X;; lexicographically, the Jacobian matrix of
the equations o; (T4, ..., Ty) — (—=1)'a; = O is of size (n% + n) x n and looks as
follows:

aT a7

doi . 3;',,

oT, aT,

J = da; . (=D""lda,

0X11 9X11

da; . (=D""'da,

aXl’”l ’ ann

Since 7 is a finite map, the dimension of Z,, is n2. The point («, ) being a singu-
larity of Z,, the Jacobian criterion implies that the rank of J at («, ) is at most
n — 1. Thus, in particular, the determinant § of the top n x n block of J must vanish
at (a, t). It is well-known that § = iHi<j(Ti — T;). This shows that o has at
least two equal eigenvalues. In other words, denoting by V (-) the vanishing locus
of a given set of polynomials, (, ) belongs to the vanishing locus V (82) of the
discriminant 8% of P(T).

Consider now Sing(Z,) N V(ay, ..., a,). Since Sing(Z,) C V(62) we have

Sing(Z, NV (ay,...,a,)) = Sing(Z, N V(82, a, ..., dy)).

But the vanishing of ay, ..., a,—1 and 52 already implies the vanishing of a,; in
fact, if T" — a, has a multiple root, then a, = 0 (we are in characteristic 0). Thus

Sing(Z,) N V(ay,...,a,—1) = Sing(Z,) N V(ay,...,a,)
and therefore
dim(Sing(Z,)) < dim(Sing(Z,) N V(ay, ..., ay)) +n — 1.

The set V(ay, ..., a,) is the set A/ of nilpotent matrices. On the other hand, the
bottom block of the Jacobian matrix must have rank at most n — 1, which means
that « is a singular point of N. This shows that Sing(Z,) N A C Sing(N) and
from the previous inequality we obtain the next result.

Lemma 2.4. The dimension of Sing(Z,,) is at most dim(Sing(N)) +n — 1.

We now compute the dimension of Sing(N\). As pointed out by George McNinch,
our computation could be deduced from results already in the literature (see for
instance [7], Sect.7) but we prefer to be as self-contained as possible. We begin
with the computation of the dimension of A/
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Proposition 2.5. Let N' C M,, denote the variety of nilpotent matrices. Then the

dimension of N is n> — n.

Proof. Since N is defined by the ideal (ay, ..., a,) of A = k[X11, X12, - -+, Xnunl,
it suffices to show that this ideal has height n. Let I be the ideal generated by

(ar,...an, Xij |1 # J).
We claim that this ideal has height n>. The ring A /I is isomorphic to
K[X11. X220, Xunl /T

where J is the ideal generated by the elementary symmetric functions o1, .. ., 0, in
X11,X22, ..., Xpp.Since k[ X 11, . .., Xnn]is finite over k[oy, . .., 0,], the ideal J
has height nin k[ X1, ..., X,,]. Hence I is supported only at closed points. Since
the a; are homogeneous, it follows that the ideal (ay, ..., a,) has height n. O

Lemma 2.6. A nilpotent matrix a whose Jordan form consists of only one cyclic
block is not a singularity of N. More precisely, the determinant of (BBT“‘:[) is not
J

zero at o.

Proof. Let A be as before and P(T) = T" +a;T"~! 4+ --- + a, the character-
istic polynomial of the generic matrix (X;;). The variety of nilpotent matrices is
N =V(ay,...,a,). We show that at

o1 o0 .- .- .00
oo1 .. .00
oo0o0 .- - -00
a = . . . . . . . .
oo0o0 - - - 01
oo0o0 - - -00
the jacobian matrix (d[;?;k) has rank n. We compute the n x n matrix (33)?;1 )

AP(T

The derivative of a; by X ;1 is the coefficient of T" % in ), Developing the

determinant of (X;;) — T'I, along the first column we find
+P(T) = (X11 = T)P(T) + X201 Po(T) + - -+ + X1 Po(T)

where P;(T) is the determinant of an (n — 1) x (n — 1) matrix M;. At (X;;) = «

we find
Mi(a)=(§1 %2)
with
1 0 0 0
-T 1 O 0 0
B — 0 -7 1 0 0
0 0 0 1
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of size j — 1 and

-7 1 0 0 0
0o -7 1 0 0
By = 0 0 —.T 0 0
0 0 0 -7 1
0 0 0 0o -T

of size n — j. Thus P;(T) = +7"J and aa;;] (a) is £1 for j = i and zero

otherwise. This proves the lemma. O

Lemma 2.7. The set N> of nilpotent matrices whose Jordan form has exactly two
cyclic blocks are dense in the set of nilpotent matrices whose Jordan form has two
or more blocks.

Proof. Let o = diag(B1, B, ..., By) be anilpotent matrix which we can assume
to be in Jordan form with blocks By, ...,B;;, m > 3. Let g # 0 with g € A define
a neighbourhood of «. We can find constants €, . .., €,_1 such that replacing the
zeros between the superdiagonals of B, and B3, between the superdiagonals B3
and B4 and so on, by the ¢; we obtain a matrix «’ such that g(a’) # 0. Clearly o’
has two cyclic blocks. O

Lemma 2.8. If o € N has a Jordan form with two or more cyclic blocks, then a is
a singularity of N.

Proof. We may assume that « is in Jordan form and can be written as
diag(Bq, B2, ..., By)

where m > 2, each B; is a cyclic Jordan block, By is of size p and B; of size g. We
can write the generic matrix as (X;;) = (« + Y;;). Then aa)?f (o) = ;%(0). Butin
ij ij

the matrix a + (Y;;) the p-th line and the (p + ¢)-th line are linear homogeneous
in the Y;;, hence developing the determinant of o + (Y;;) along these two lines we
see that a, (Y;; | 1 < i, j < n) has no constant and no linear term. This shows that
g)‘ﬁl”j vanish at the origin and therefore the Jacobian matrix aaTaf,
cannot be of rank n. |

all the derivatives

Corollary 2.9. The set N> is dense in Sing(N).

The set N> is the union of the GL, (k)-orbits S p.q Of all the matrices of the form
B = diag(B,, B,) where B, is the nilpotent cyclic Jordan block of size p and B,
the nilpotent cyclic Jordan block of size ¢ = n — p. In particular, it is the finite
union of the constructible sets S, ;. The dimension of S, , is n* — s where s is the
dimension of the isotropy group of 8.

Lemma 2.10. The dimension of the isotropy group of diag(B),, B,) is
p+q+2min(p, q).

In particular it is always at least p + q + 2.
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Proof. LetI" C GL,(K) be the isotropy group of 8 = diag(B,, By). Let

(A B
YZ=\c b
be an element of I", written with blocks A, B, C, D of suitable sizes. The condition
yBy ! = B is equivalent to the conditions

AB, = B,A, DB, = B,D, BB, = B,B, CB, = B,C.
We compute the dimension of the linear subspace I'g of M, ,(K) consisting of

matrices that satisfy the four conditions above.
An explicit matrix computation shows that the first condition gives

ay ay az - - - ap_1 a4
0 a a - - - ap2 ap

A= 0 0 aj . . - dp-3 dp-2
o o o - - - ap a
o o o - - . 0 ap

A similar result holds for D, hence the matrices diag(A, D) in I'g span a linear
space of dimension p + q.

Assume now that p < g. An explicit computation shows that the third condition
gives

0 0 by by b by1 b
0 0 0 b b bpa by
0 00 0 b by bpoa
B = .
0 - - -« -« - .. .y by
0 - - - .. 0 by

A similar result holds for C, hence, when p < g the dimension of 'y is p + g +
p+ p=p-+qg+2min(p, q) and clearly this is also the dimension (as a variety)
of I'. m]

Proposition 2.11. For n > 3 the dimension of Sing(N) is n> —n — 2.

Proof. By 2.9 and 2.10, dim(Sing(\)) = dim(N3) = n? — min, 4 (dim(Sp 4)).
The isotropy group of minimal dimension is S; ,—1 which has dimension n 4 2.
Thus dim(N3) = n? — (n + 2). m]

Theorem 2.12. For n > 3 the dimension of Sing(Z,) is at most n? — 3.

Proof. This immediately follows from 2.4 and 2.11. O
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3. Finite splitting of Azumaya algebras

Let X be a smooth quasi-projective irreducible surface over an algebraically closed
field k, K = k(X) the field of rational functions of X and A a central simple algebra
of degree n over K. Let A be a maximal order in A defined over X. We do not
assume that A is a division ring.

Lemma 3.1. There exists an element o in A whose characteristic polynomial is
irreducible, separable and has Galois group S,.

Proof. Letoy, ..., o0, bea K-basis of A (m being equal to nz). Let K C Lbea
separable finite extension of K such that A ®x L = M, (L). Let Xy, ..., X, be
indeterminates and 6 = X101+ - -+ X,,,05,,. After an L-linear change of variables
the characteristic polynomial P5(T) of & is the characteristic polynomial of the
generic matrix, hence it is irreducible and separable over L(X1, ..., X;;), and has
Galois group S, Since it is defined over K (X1, ..., X,,) it has the same properties
over this smaller field. By Hilbert’s irreducibility theorem (see for instance [4],
Proposition 16.1.5) there exist &1, ..., &, in K such that the characteristic poly-
nomial of 0 = &0 + - - - + &,,0, is irreducible, separable, with Galois group S,,.

O

We fix a smooth embedding of X in a projective space. If d is sufficiently large, the
twisted sheaf A(d) is generated by global sections s, . .. sy. For o as in Lemma 1
and a suitable global section g of Ox (d), og is a global section of A(d) and we
may assume that sy = o g. Such a set of global sections will be called admissible.
We set L = Ox(d).

Let s be any global section of A(d) = A ®p, L. Choose an arbitrary affine non-
empty openset U C X over which L is principal: £y = Oy f forsome f € L(U).
Then sf~! € A(U), which is a maximal order over Ox (U). Let

Pro(M) =T"+biT" +--- 4 by

with by, ..., b, € k[U] be the characteristic polynomial of sf —1 We define J U
as the ideal of

sym (£7'],) =Ov e L7, @ L2 @ =0y e Ouf ' @Oy a

generated by f " @ b1 f~" V... @ b,.

Lemma 3.2. Let A be a central simple algebra of rank n® over a field K. For any
o € A and any ¢ € K, the characteristic polynomial P,(T) of o satisfies the
relation ¢ Py(T) = P.o(cT).

Proof. 1t immediately follows from the split case A = M,,(K). O

Lemma 3.3. The ideal J s,y does not depend on the choice of f.
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Proof. We apply 3.2 with f = ug for some other generator g of £|y and u invertible
on U. (We note that the suffixes f or g stand for the elements s/f, s/g in the alge-
bra). We have

Pyy(T) =P py(T) =" Pryu™'T) = T" +ubi T" ' + - + by,
Thus the ideal J,, y is generated by
g @biug "V @ @by =" (T Ob T @ @b

and coincides therefore with J¢ .

Patching the ideals J,y over a suitable affine covering of X yields a global ideal
Js of Sym (£~1) that only depends on the section s. We call J; the characteristic
ideal of s. O

The ideal J; defines a closed subscheme Y of Spec (Sym (E_l)) which is clearly
finite and flat over X.

To simplify notation, if s = Aysy + -+ + Aysy weput A = (Aq,...,Ay) € kN,
J; = Jy and Yy = Y. We denote by 7, : Y5 — X the natural map.

Theorem 3.4. Let X be a smooth quasi-projective irreducible surface over an alge-
braically closed field k, K = k(X) the field of rational functions of X and A a
central simple algebra of degree n over K. Let A be a maximal order in A defined
over X. Let sy, . .., sy be an admissible set of sections of A(d) and for any » € kV,
let Yy be as above. There exists a nonempty open set U C kN such that, for any
A € U, Y, is an irreducible quasi-projective surface.

Before proving this theorem we recall, without proof, two easy lemmas.

Lemma 3.5. Let v : Y — X be a flat dominant morphism, with X integral. Then
Y is reduced if and only if the generic fibre of  is reduced.

Lemma 3.6. Let 7 : Y — X be a flat dominant morphism, with X integral. Then
Y is irreducible if and only if the generic fibre of 7 is irreducible.

Proof of Theorem3.4. We set AN = Spec (k[t1, ..., ty]) and extend the base to
X =Xx AII(V .Let A and £ be the inverse images of A and £ under the projection
w:X — X.Puts =151 +---+ tysy and let J;(T) be the characteristic ideal of
Sand Y the closed subscheme of Spec (Sym(Z‘l)) defined by J:(T). Look at the

diagram
i

X%fHAII{V

The map 7 is clearly finite and flat and the two projections from X x A,?’ are flat,
hence p and g are flat. We set Yx = Y xx Spec(K) and gk : Yx — A% the
restriction of g to Yx. We first note that, by the choice of sy made above, the
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fibre qgl 0, ...,0,1) is integral. By Theorem 9.7.7 of [5], to prove the theorem
it suffices to show that the geometric generic fibre of ¢ is integral. Let € be an
algebraic closure of k(t1,...,ty), Yo =Y X pN Spec(£2) the generic fibre of ¢,

X o =X x;x Qand g : YQ — XQ the extension of . Let S be the integral
closure of k[t1,...,tny] In Q and A = K Q S. We set YA =Y X5 Spec(A)
XA = Spec(A) and TTA YA — XA the extension of . Assume that Yq is not
integral. Since g, is flat, by 3.5 and 3.6 the generic fibre of g is not integral. But
7 is also flat and has the same generic fibre as g, hence, again by 3.5 and 3.5, Y A

is not iEtegral. The characteristic polynomial Ps/r(T) € K[t1, ..., ty] that gen-
erates J;(T) over a suitable open set of~ X is clearly separable over K (1, ..., ty),

hence Y is reduced by Lemma 3.5. If Y is not integral, being reduced it has more
than one component and since 74 is finite and flat, each component maps surjec-
tively onto X o and hence no fibre is integral. Let z be a point of X 4 over the point
©,...,0,1)of AN . Specializing at z we get a contradiction with the irreducibility

of 7,10, ...,0,1) = Spec(K) xx Y(0...0.1)- O
Corollary 3.7. Let U be as in 3.4. For any A € W the field k(Y)) splits A.
Proof. By construction the field k(Y}) is a maximal subfield of A. |

We now assume that A is an Azumaya algebra over X and show how to construct a
smooth splitting, dealing first with the quasiprojective case in characteristic zero.

Proposition 3.8. Assume that A is an Azumaya algebra over X. The dimension of
Sing(Y) is at most N — 1.

Proof. We try to determine the singularities of Y using the following lemma. O

Lemma 3.9. Let f : Z — X be a flat map of schemes. Suppose that X is regular.
If z € Z is a singular point of Z, then z is a singularity of its fibre f~'(f(z)).

Proof. Let C be the local ring of Z at z and A be the local ring of f(z). By assump-
tion the maximal ideal of A is generated by aregular sequence (x1, ..., X;,;). Since f
is flat, C is faithfully flat over A and this sequence is still regular as a sequence in C.
If z is not a singular point of its fibre, then C/(x1, ..., x5,) is regular and hence its
maximal ideal is generated by a regular sequence (Y, . . ., y,.). This implies that the
maximal ideal of C is generated by the regular sequence (x1, ..., Xp, Y1, - -5 Yr)s
hence C is regular. O

By 3.9 the singularities of Y are contained in the union of the singularities of the
fibres of p.

Lemma 3.10. For any x € X the singular locus of the fibre p~'(x) of p has
codimension 3 in p_l (x).

Proof. Let k(x) be the residue field of x € X, € its algebraic closure and F; the
fibre of p at x. The geometric fibre A(X) of A at x is a matrix algebra M, (2) and

Fx = Spec (Q[11, ..., t§][T1/(Px(T))),
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where P, (T) is the characteristic polynomial of 5§ = (#1s1(x) + --- 4+ tnySy (x))/
f(x) for some generator f of L|y, U a neighbourhood of x. Since the sections
si(x)/f (x) generate M, (2) over 2, by a linear change of coordinates we may
assume that s = fje] + - - - + f,y e, where m = n? and {eq, ..., ey} form a basis of
M, (2). Then

Fx =Y, x Spec (Q[ty+1, ..., IN])-

We proved that Sing(Y,,) has codimension 3, hence the same holds for Sing(Fx)
and for Sing(Fy). O

Theorem 3.11. The dimension of Sing(?) is at most N — 1.

Proof. For every x € X the fibre F, of p is a finite cover of Af{v and hence the
dimension of Fy is N. Let Sing(?) be the singular locus of Y. By 3.9, for every
x € X, the fibre at x of p|g. 7y Sing(Y) — X is contained in the singular locus
of F, and has therefvore dimension at most N — 3. Since X is 2-dimensional, the
dimension of Sing(Y) is at most N — 1. O

4. Smooth splitting in characteristic zero

Theorem 4.1. Let k be an algebraically closed field of characteristic 0, X a smooth
quasi-projective irreducible surface over k, K = k(X) the field of rational func-
tions of X. Let A be an Azumaya algebra over X and sy, ..., sy an admissible
set of sections of A(d) as defined in Sect. 3. For any A € k" let Y, be the surface
associated to the section A1s1 + --- + Ansn. There exists a nonempty open set
V C kN such that for any A € V, Y, is a smooth integral quasi-projective surface.
Further, the pull-back e} A is trivial in Br(Y}).

Proof. Lookatgqg : Y — A,I{V. Sinceby 3.11 Sing(?) is at most (N —1)-dimensional,
its image ¢ (Sing(?)) is contained in a proper closed subset of AII{V . Choose an open
set W C A,iv which does not intersect q(Sing(?)) and let W = q‘l Wyn Y. We
now have a map ¢q : W — W of smooth varieties. This map is clearly flat and
surjective and therefore, if k is of characteristic zero, it is generically smooth (see
[6], Chap. III, Corollary 10.7). By definition of generic smoothness there exists a
dense open set U’ C A,](V such that ¢~1(U") N Y — U’ is smooth. Thus for any
A € U’ the fibre ¥y, = q_l(k) NY is smooth. By 3.4,if A € U then Y} is integral,
hence for any A € V = U N U’ the surface Y; is smooth and integral. By 3.7 the
field k(Y)) splits A. But Y) being smooth, the canonical map Br(Y;) — Br(k(Y3))
is injective and thus ;" A is trivial in Br(Y},). O

Remark. In positive characteristic Theorem4.1 is not true for arbitrary sets of
admissible sections. Let for instance X be the affine plane X = Spec(k[u, v])
(the affine line would also suffice) over a field of odd characteristic p and A the
trivial Azumaya algebra M»(QOyx) over X. Then A is generated by its global sections



Smooth finite splittings of Azumaya algebras 399

_lup (0 1 (0 0O _1u1’
S1=\o o ) 2=\o o) %=\1 o) #=\1 1 )

and the generic splitting that we denoted Y is the spectrum of

S =k[u, v, 11,12, 13, 14][T1/(P(T))
where the determinant P(T) of T - Iy — (¢t151 + tasy + 1353 + 1454) iS
T? — (t; 4 2t)T + t4(t1 + 1) — (13 + 13) (12 + t4uP).

The algebra S is smooth over k if and only if P, P/, 9P /9w and d P/dv have no
common zero over the algebraic closure of k(¢1, 12, 13, t4). But in fact, they are
easily seen to be solvable with respect to u provided (3 + t4)t4 # 0.

Still, the theorem is true in any characteristic if we choose more accurately the
sections s1, ..., SN.

5. Smooth splitting in arbitrary characteristic

Lemma 5.1. Let X C P} be a quasiprojective variety and let F be a coherent sheaf
on X generated by global sections sy, ...,sy. Let V = HO(X, Ox(1)) = kxo +
-« -+kx, where xq, ..., X, are the projective coordinates on X. Let W C HO(X, F)
be the k-space generated by s, ..., sy. We denote by my the maximal ideal of the
local ring of any closed point x of X.

(a) Forany x € X (k) the canonical map
V- H° (X, Ox(1) ®o, Ox,x/mﬁ)

is surjective.
(b) For any x € X (k) the canonical map

Ve W — H (X, F(1) @0, Ox../m?)
is surjective.

Proof. The second assertion immediately follows from the first one. As to the first
one, let x € P} be any closed point of X. It will be defined by the vanishing of n
linear forms, which we may assume to be xi, .. ., x,,. Then m, is the ideal of Ox
generated by x1/xg, ..., x,/xo and

Ox.x/m3 =k +k(xi/x0) + -+ + k(xa/x0)
where the bar denotes the class modulo m% We thus have
H° (OX(I) R0y Ox,x/mi) =kxo+ -+ kXp

which proves the assertion. O
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Let X be an irreducible quasiprojective smooth surface over k and A an Azumaya
algebra of degree n over X. We assume here that, by the lemma we just proved, we
have chosen the line bundle £ such that the global sections s1, ..., sy generate

H (X, A®0, £®0, O, /m?)

as a vector space over k for every closed point x € X (k).

We still assume that sy = o g with g # 0 a section of £ and o as in Lemma3.1.
Let p : Y > XandY — A,[CV be as above. We study under which conditions the
fibre of Y3 — X at x € X (k) is singular. We fix an x in X (k) and set R = Oy,
m = m, and R = R/m?. Reduction modulo m? will systematically be denoted by
a bar. Let &, n) be generators of m. Then, R = k[&, n] with &2 = £ = n*> = 0. We
choose an isomorphism A(Spec(R)) Qg R ~ M,(R), and a local section f#0
of L defining an isomorphism L(Spec(R)) — R. Consider the composition of
k-linear maps

¢ : kN — H° (X, A®o, L) — A(Spec(R)) ®r L(Spec(R)) — A(Spec(R))
— M,(R)

mapping A to the image of s, /f.
We write every elementa of M,,(R) asa = a«+ B&+ynwitha, Band y € M, (k).
Suppose now that s, /f = a € A(R) is the local section corresponding to A € A,ICV

and a its image in M, (R). The reduction modulo m? of the local affine algebra of
Y at (x, 1) is

RIT1/P,.(T)
where
PO =T"+aT" '+ - +a,1T +ay,

is the characteristic polynomial of a. We denote its reduction modulo m by P (T).
We introduce the set of matrices

S(x) ={a e My(R) | 32 € k" s.t. (1) = @ and Y; is singular}

and set §(x) = (p‘l (S(x)). Observe that §(x) does not depend on the c_hoice of the
local section f because if @ € S(x) then au € S(x) for any unit u of R.

Proposition 5.2. The codimension of S(x) in M), (R) is as least 3.

Proof. We consider more cases than what is really necessary because we want to
prepare the way for the Galois splitting in the next section. . O
Fix apointy = (x, ) € Y} in the fibre of x, where p is a root of P(T') € k[T]. The
fibre of p : ¥, — X at x is singular at y if and only if the derivatives %, %, %
vanish at y = (x, w). To see what this means we write a = « +§8 + ny witha, B
and y in M,, (k). If  is a simple root, then g—}T) # 0 at (x, n) and (x, @) is a smooth
point of Y. Assume therefore that « has at least two identical eigenvalues. The set
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of all matrices @ € M,, (k) with at most n — 3 different eigenvalue has codimension
3, so we only have to deal with the cases in which o has n — 1 or n — 2 distinct
eigenvalues. This is the same as saying that « is conjugated to a matrix

¢ 5

where D is a diagonal matrix with distinct eigenvalues, different from p for 1 <
i < 5 and distinct from p and v for 6 < i < 8 and u # v and J; is one of the

following matrices
(im0 1

w 0 0 nw 1 0 nw 10
J3=10 w O}, Js=10 n 0}, Js=10 n 1],
0 0 nun 0 0 u 0 0 u
nw 0 0 0 nw 1 0 0 nw 1 0 0
10 w 0 O 10 n 0 O 10 n 0 O
o=1o o v o' 7= lo 0o v ol B0 0 v 1
0 0 0 v 0 0 0 v 0 0 0 v

For1l <i < 8let M,il be the set of all matrices a € Mn(ﬁ) for which « is of
the form diag(J;, D) and B and y are arbitrary matrices in M,, (k). These sets are
open subsets of affine spaces, in particular they are irreducible. We denote by M M
the G, (k)- 0rb1t of M}, I and by G; the stabilizer of M;, i in Gl,(k). Since G, (k) is
irreducible, all M I°s are irreducible. From the formula

dim(M!) < dim(M!) + dim(G1,(K)) — dim(G;)

we first compute an upper bound for the dimension of each M i

Using that if M € M,, (k) is either a Jordan block or a diagonal matrix with distinct
eigenvalues, then its stabilizer in G1,, (k) has dimension m, together with a direct
computation for G4 we find dim(G) > n + 2, dim(G»>) > n, dim(G3) > n + 6,
dim(G4) > n+2,dim(Gs) > n,dim(Gg) > n+4,dim(G7) > n+2,dim(Gg) >
n+2.

On the other hand, dlm(M’) = 2n? +n— 1fori = 1,2 and 2n? + n — 2 for
3 <i < 8. Thus the codimension of M2 is 1, that of M3, M3 is 2 and the remain-
ing ones have codimension > 3. hence we only have to con31der the singularities
arising from A//i,% A?,f, and AZ?.

We shall show thatifa = a + &8 + ny isin S(x) N M,f, then 8 and y must both
belong to certain proper closed subsets of M, (k).

The point (x, p) is singular if and only if both < 8P and £ aP vanish at T = pu. To

compute P(T) we can use the following lemma. O
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Lemma 5.3. Let A be a commutative ring, I C A an ideal such that 1 2 = (0), and
M € M, (A) a matrix of the form

a b

c d

with a, d square blocks and b, ¢ having entries in 1. The characteristic polynomial
of M is Py (T) = P,(T)Py(T) where P, and P, are the characteristic polynomials
of a and d respectively.

Proof. Since P,(T) is not a zero divisor, we can embed A into A[T, 1/P,(T)]
and compute in this overring, using the fact that M, (A[T, 1/P,(T)]) contains
(T —a)~'. We have

T—a —b 1 0 T—a —b
det(—c T—d):det(c(T—a)l 1)det(—c T—d)

T—a —-b
= det (—O —e(T—a)y"b+T— d) = det(T,)det(Tq)

because c(T —a)~'b = 0. O

We now complete the proof of 5.2. Using 5.3 we see that, if @ is in M7, B = (i)
and y = (y;,;), then

dP P s s
9 o1 ’ T=p 2.1, —v2.1) Pp (1

(&,m=(0,0)
where Pp (T )—the characteristic polynomial of D—does not vanish at . Hence,

the point (x, w) is singular if and only if
f2,1 =0 and y; =0.

This shows that S(x) N M? is of codimension 2 in M2, hence of codimension at
least 3 in M,,(R). Since G also stabilizes S(x) N M,%, the codimension of its orbit
S(x) N M2 is at least 3.

In the remaining two cases the codimension of M,’l is 2 and, as we have seen, the set
M ,’1 is irreducible. Since the set of matrices@ € M,,(R) for which (x, 1) is a smooth
point is an open set, to show that S(x) N Il//f,’l is of codimension > 3 it suffices to
show that 1\//7,’! contains a matrix for which the fibre of x consists of smooth points.

A direct computation shows that if

0 1o 0 100
A=1& 0 1) and B= ,
0 o 00 1 1
n 0 0 n 1

5 S =00

then for a diagonal with distinct eigenvalues different fro
M>\S(x) and diag(B, D) € MS\S(x).
This finishes the proof of 5.2. O

0 and 1, diag(A, D) €
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We now show the existence of smooth splittings.

Theorem 5.4. Let X be an irreducible quasiprojective smooth surface over k and
A an Azumaya algebra of degree n over X. Assume (5.1) that we have chosen the
line bundle L such that the global sections s1, ..., sy generate

HO (X, A®o, £ 80y O, /m3)

for every closed point x € X (k). Assume also that sy = o g with g # 0 a section
of L and o are as in Lemma 3.1. Then there exists an open dense set U C kN such
that, for any A € U the surface Y, is a smooth irreducible finite cover of X and
splits A.

Proof. Tt only remains to prove smoothness for A varying in a suitable open set U.
Since, by the choice of sy, ..., sy, the linear map ¢ is surjective, S(x) is a closed
set of codimension > 3 in k. Let S be the union of all §(x) for x running over
X (k).

Letnow X C )7(k) be the closed set of points of Y (k) at whichthe map g : Y > A,jcv
is not smooth. Since ¢ is flat, being smooth is the same as having smooth fibres
and therefore its image ¢(X) in k¥ is S, which is closed because g is a projective
map. We want to show that Sisa proper closed subset of k¥ . For any x € X (k)
the closed set T(x) := 7 1(x x kN) N T is mapped by g onto §(x), which has
codimension > 3 in k. Since q is a flat surjective map, ¥ (x) has codimension
>3ing ! (x x kN ), hence dimension at most N — 3. Since X ig two-dimensional
the dimension of ¥ is at most N — 1. This shows that its image S in k% is a proper
closed subset of k. From this we conclude that for a general A € k the surface
Y; is smooth. m]

6. Smooth finite Galois splitting of Azumaya algebras

We now construct, for any A € kV, a Galois covering Z; of X with group G = S,,,
such that X = Z, /G. Notice that, in general, even if Y is smooth its Galois closure
may be singular. Therefore, in order to have ¥ and Z smooth we must construct both
at the same time. We achieve this by globalizing the construction of the universal
splitting algebra of a monic polynomial, which we now recall.

Let R be acommutative ring and P(T) = T" +b; "~ +. . .4 b, amonic polyno-
mial with coefficients in R. For 1 <i < n let o; be the i-th elementary symmetric
function in the n variables 77, ..., T,,. The universal splitting algebra of P(T) is
the quotient S of the polynomial algebra R[T7, ..., T,] by the ideal / generated by
the elements

oi(Ti,....T,) — (=D)'b;, 1<i=<n.
We denote by 71, .. ., 7, the classes modulo 7 of 71, ..., T,,. We clearly have
P(T)=({T —11)---(T — ).

The symmetric group S, operates on S by permuting 71, ..., Ty.
We will use the following properties of S. (For more details and proofs see [1]
or [3]).
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P1. The construction of § commutes with scalar extensions ([3], 1.9).

P2. As an R-module S is free of rank n! ([3], 1.10).

P3. For any commutative R-algebra A and any n-tuple (ay, ..., a,) of elements
of A such that p(T) = (T — ay)--- (T — ap) in A[T] there is a unique
R-homomorphism ¢ : § — A such that ¢(7;) = a; ([3], 1.3).

P4. Thesubalgebra R[1,]of Sisisomorphicto R[T] / (P(T)) and S is the universal
splitting algebra of P(T)/(T — 1) over R[z,] ([3], 1.8).

P5. If the discriminant of P(T) is a regular element of R, then §Sn = R ([3],2.2).

P6. If Ris a field and P(T) is separable with Galois group S, then S is a Galois
extension of R with Galois group S,,.

We now construct Z;. Let £ be a very ample line bundle such that A ®p, L is
generated by global sections sy, ..., sy and assume that sy = og with g # 0 a
global section of £ and ¢ as in Lemma 3.1. Let U C X be an affine open set for
which L|y is isomorphic to Oy f for some section f on U. We set, as in Sect. 3,
s =Aisi+---Ansy.Let Pry(T) =T" + by 7"~ 4 ...+ b, be the characteristic
polynomial of s/f € A(U). We choose n isomorphic copies Ly, ..., L, of £ and
for each i, f; = f the generator of L;|y. Consider

T=sym(Li'o- L)

Writing fl.’1 fj’1 instead of fl.’1 ®oy f/fl we shall write the restriction of 7 to U
simply as '

@OUfl_il "'fn_in‘

Note that Oy [Ty, ..., T,] is isomorphic to 7 |y under T; — fi_l.
We define Jyy C 7|y as the ideal generated by

Oi (flily...,fn_l)—(—l)ibi, 1<i<n.
It corresponds in the polynomial algebra to the ideal generated by
Fizo'i(le--yTn)_(—l)ib[, 1<i<n

which defines the universal splitting algebra of P,y (7). As in the preceding sec-
tion, it is easy to check that these ideals do not depend on the choice of f and can
therefore be patched over the various U’s to obtain a global ideal 7, C 7.

Let Z, be the closed subscheme of Spec(7) defined by 7.

Proposition 6.1. Assume that % € k™ has been chosen such that P ru(T) = P(T)
is separable and irreducible over K. The symmetric group S, acts on Z, via its
obvious action on T. The quotient Z, /S, coincides with X and Y)_ coincides with
the quotient Z) /S, —1, where S,_1 is the isotropy group of 1.

Proof. It suffices to deal with the affine case, when S is the universal splitting alge-
bra of P(T) over R = k[U] and show that S5 = R and §5-1 = R[T1/(P(T)).
Since P(T) is separable over K the first assertion follows from property P6 and
the second from properties P3 and P6. O
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Theorem 6.2. There exists a nonempty open set U C k™ such that, for any 1 € U,
Z, is an irreducible quasi-projective surface. The natural map ) : Z, — X isa
ramified Galois cover with group S, and splits A.

Proof. The splitting property follows from Proposition 6.1 because Z; /S,,—1 = Y5,
which splits A. It remains to prove that for a general A the fibre Z, _is irreducible.
We extend the base to X = X x A}{V where A{{V = Spec (k[t1, ..., ty]) and define
./Zlv, £ and Z,- for 1 < i < n as the inverse images of 4, £ and the £;’s under the
projection 1 : X - X. Repeating the construction of 7, we obtain an ideal J;,
where ¢ = (t1,...,IN), which specializes to J, when we specialize ¢ to A. The
scheme Z is the closed subscheme of

Spec (T) = Spec (Sym (Zvl_l ©--® Z;_l))

defined by ;.
Look at the diagram

R

X5 X xAl AV

The map 7 is clearly finite and flat and the two projections from X x AN are flat,
hence p and q are flat. As in the prev10us section we set Z K = =7 x x Spec(K)
and gk : 1 Zx — AN the restrlctlon of g to Z k. We first note that, by the choice of
sy made above, the fibre g (O, ..., 0, 1) is integral. In fact, by construction, its
coordinate algebra is the universal splitting algebra of the characteristic polynomial
Psy /7 (T) of sy /f. Since the Galois group of Py, /¢ (T) is S, its universal splitting
algebra, by property P6, is a field. We can now complete the proof exactly as we
did in the proof of Theorem 3.4. By Theorem 9.7.7 of [5], it suffices to show that
the geometric generic fibre of g is integral. Let €2, S, A and XA be as in Sect. 3
and define Zg, Z, mq and 7w as we did there for YQ and so on. The proof glven
in Sect. 3 goes through once we remark that the universal splitting algebra Z, is
reduced. This is a special case of the following lemma. O

Lemma 6.3. Let R be a domain, K its field of fractions and P(T) € R[T] a monic
polynomial. Assume that P(T) is separable over K. Then the universal splitting
algebra of P(T) over R is reduced.

Proof. Let S be the universal splitting algebra of P(T') over R. It is a free R-alge-
bra of degree n!. The construction of the universal splitting algebra commutes with
scalar extensions (property P1), hence S ®g K is the splitting algebra of P(T)
over K. Since P(T) is separable over K, it follows immediately from property P4
that S ®g K 1is étale over K, in particular reduced. By Lemma 3.5 § is reduced
too. O
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7. Smooth Galois splitting in characteristic zero

Theorem 7.1. Assume that k is of characteristic zero. There exists a nonempty open
set U C kN such that, for any » € U, Z,_is a quasi-projective irreducible smooth
Galois covering of X with Galois group S,, which splits A.

Proof. If n =2then U = kN and for any A € kN, Z;, = Y,. We therefore assume
thatn > 3. In this case the proof is on similar lines as the proof of Theorem 3.11. By
2.12 the singularities of Z are contained in the union of the singularities of the fibers
of p. Since, by Theorem 4.1, the singularities of the closed fibres of p are at worst in
codimension 3, we can argue exactly as in the proof of Theorem 3.12 and conclude
that ¢ is generically smooth. The other assertion are given by Theorem 6.2. O

8. Smooth Galois splitting in arbitrary characteristic

Theorem 8.1. Let X be an irreducible quasiprojective smooth surface over k and
A an Azumaya algebra of degree n over X. Assume (5.1) that we have chosen the
line bundle L such that the global sections s1, ..., sy generate

H (X, A®o, L 80y, Ox,c/m3)

for every closed point x € X (k). Assume also that sy = o g with f # 0 a section
of L and o are as in Lemma 3.1. Then there exists an open dense set U C kN such
that, for any A € U the surface Z)_is a smooth irreducible finite Galois cover of X
with Galois group Sy, and splits A.

Only the smoothness of a general fibre needs to be proved.
Let x be closed point of X, A € kN, and

P =T"+aT" '+ +a,

the characteristic polynomial of ¢ (1) € M, (R). We defined F; = o;(T1, ..., T),)—
(—1)'a; where o; is the i-th elementary symmetric function. We define o jas the

i-th elementary symmetric function in T1,...,7T;-1,Tj41,..., T and set
0y, ; = 1. Note that 3F; [0T; = o]_, j- Let (w1, ..., iy) be the roots of P(T)
in some chosen order. Then z = (x, uy, ..., iy) is a point of Z,. It is smooth if

and only if the jacobian matrix

1 1 _day _ day
385 831]
a a
PR N TR PR S
Z) = —
8(T1,...,Tn,§’n) :
O—r/zf],] Ur/zfl,n (_l)naaig (_1),,38%

evaluated at z (we denote it by J(z)) has rank n. In this section S(x) will denote
the set of @ = o + &B + ny € M, (R) for which the fibre of x contains a singular
point of Z;, which is the same as saying that the corresponding Jacobian matrix
has rank less than n.
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Proposition 8.2. The codimension of S(x) in M, (R) is at least 3.

Proof. 1f uy, ..., u, are all distinct, then the Jacobian (80,- / d Tj) evaluated at the
point (i1, ..., uy) is invertible and hence J(z) has rank n. Suppose now that o
has a multiple eigenvalue. As in Sect. 3 we only have to consider matrices in 1\71,%,
1\//},51 and ]\//73
Suppose first thata is in M,%. In this case o has two equal eigenvalues 1 = ur = u.
Consider the (n — 1) x (n — 1) submatrix 7 = (Ui/—l,j) of J(z),withl <i <n-—1
and 2 < j < n, evaluated at 7

By multiplying the first row of J(z) by u and substracting it from the sec-
ond, then multiplying the second by w and substracting it from the third, and so
on, we transform T into 7/ = (3s; /0Tj), 1 <i <n—1,2 < j < n, evalu-
ated at (u, 43, ..., Up) Where s; is the i-th elementary symmetric function in the
n — 1 variables T», ..., T,. Since u, us, ..., i, are all distinct T’, is invertible.
This proves that the columns of J(z) from the second to the n-th are independent.
By these row operations the last row of J(z) becomes

_ nfli _ nfli
(0,0,-~~,0,( 1)) 8$(M)’( 1) 377(M))

and therefore the rank of J(z) will be n if and only if

P P 0.0

We already computed P (T') in 3 and found that its derivatives with respect to £ and
n both vanish for € = n = 0and T = p if and only if

B21=0 and yp; =0.

These two conditions show that the codimension of 1\//?3 N S(x)is > 3.
The case n = 4 will illustrate what we said. The matrix J(z) is

day day
1 1 1 1 e o
danp day
W+ 13+ 1g Wt 13+ pg [ e L e K] —3E T
daz daz
K3+ g+ p3pa PR3+ g 3 Re R g g R 3 RS o
day day
T3 L4 A3 L4 T4 JAp3 —9E "

and the row operations transform it into

day

1 1 1 1 i

M3+ 4 U3+ s w4 4 us
H3p4 3[4 o M3

0 0 0 0

=8
l

BN L
* ot

D

n

For the remaining two cases, the same examples as in 3 and essentially the same
computations as for M,% show that the codimension of M> N S(z) and M® N S(2)
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is > 3 as well. Let us consider for example the case of A//iﬁf. We choose a =
o+ EB + ny € M8 with a = diag(B, D) with

01 0 O
0 0 0 O
B=1o0 0 » 1|
0 0 0 u
B, y arbitrary matrices in M,,(k) and D = diag(us, ..., u,) where all the entries
are distinct and different from O and . We want to find the conditions for z =
(x,0,0, w, i, us, ..., uy) to be smooth. The first n entries of the last row of J(z)

vanish and in the last but one row the entries from the 3d to the n-th also vanish.
Consider the (n — 2) x (n — 2) submatrix T of J(z) formed by the first n — 2
rows and the 2, 4, 5, ..., nth column. By multiplying the first row of J(z) by u and
substractig it from the second, then multiplying the second by © and substracting
it from the third, and so on, we transform 7 into 7’ = (as,»/a T)),1<i<n-2,
j=2,4,5,...,n,evaluated at (0, u, us, ..., ;) where s; is the i-th elementary
symmetric function in the n—2 variables T, T4, Ts, . .., T,,. Since O, u, us, ..., iy
are all distinct, 7' is invertible. This proves that the 2, 4, ..., nth columns of J(z)
are independent. In the process, the first n entries of the last two rows have become
zero. To show that the last two rows are independent from the other ones it suffices
now to show that the 2 x 2 determinant in the right bottom square does not vanish.

Let us compute the four entries of this determinant. We already saw, in the case

of 1\7,% that the last two entries of the last row are (—1)" ! % (w)and (—1)"~! % ().
The last two entries of the last but one row are, up to sign,

0d,_1 day_» da dd,—_1 da,_» da

w4+ —p"' and pA - —p !
0§ 0& 0 an an an
which can be computed as
P da, 8P, | 0a,
3_(H) - dE and n (n) o
w 0
Hence, up to a nonzero factor, the determinant we want is
L -5 Euw -5 da,  day
1 0§ an
det " " = ——det| _ _ ()
9P 9P 12 3P( ) BP( )
il - — W T
oE () an () A& an

We can now compute P. Using Lemma 5.3 and writing @ € M,,(R) as
diag(Jg, us, ..., un) + (@i ;)
we find that P(7T) is
(T2 — (@1 +ax )T — 52,1) (Tz —Qu+as+a T +
(@33 + asa) —as3) Po(T)
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where Pp is the characteristic polynomial of diag(us, . .., ). Denoting by c¢ the
constant term of Pp(7T), we can compute the entries of the determinant above.
Since

Gy = (—a2, 1) (W + 1(@3 + @a4) — as3)c = —an 1 1’c

and
P(p) = (,U«Z — @11 + a2 — 52,1) (—as3) P(u) = —p*as 3P (1)

the determinant in () is, up to a constant nonzero factor,

B21 v2i1
Ba3z a3
and in the example given this determinant is # 0. O

The rest of the proof of Theorem 8.1 is exactly the same as in Sect. 3.

Acknowledgments. The authors acknowledge support from NSF DMS-0653382 and from
Max-Planck Institut fiir Mathematik, Bonn. We thank Jean-Louis Colliot-Thélene, Aise
Johan de Jong, and David Saltman for several discussions.

Open Access This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.

References

[1] Bourbaki, N.: Algebre, Chapitre IV, Polyndmes et fractions rationnelles. Masson, Paris
(1981)

[2] Colliot-Thélene, J.-L.: Algebres simples centrales sur les corps de fonctions de deux
variables (d’apres A. J. de Jong), Séminaire Bourbaki, juin 2005, Exp. No. 949. Astéris-
que 307, 379-413 (2006)

[3] Ekedahl, T., Laksov, D.: Splitting algebras, symmetric functions and Galois theory.
J. Algebra Appl. 4, 59-75 (2004)

[4] Fried, M.D., Jarden, M.: Field Arithmetic, Ergebnisse der Mathematik und ihrer
Grenzgebiete. Springer, New York (2005)

[5] Grothendieck, A.: Eléments de géométrie algébrique (rédigés avec la collaboration de
Jean Dieudonné) : IV. Etude locale des schémas et des morphismes de schémas, Trois-
ieme partie. Publications Mathématiques de I'THES 28, 5-255 (1966)

[6] Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer-
Verlag, New York (1977)

[7] Jantzen, J.C.: Nilpotent orbits in representation theory. In: @rsted, B., Anker, J.-Ph.
(eds.) Lie Theory: Lie Algebras and Representations, pp. 1-211. Birkhduser, Boston
(2004)

[8] Van den Bergh, M.: Notes on de Jong’s period=index theorem for central simple alge-
bras over fields of transcendence degree two. Preprint (2007). http://archiv.org/abs/0807.
1403


http://archiv.org/abs/0807.1403
http://archiv.org/abs/0807.1403

	The characteristic polynomial of the generic matrix
	The generic Galois closure
	Finite splitting of Azumaya algebras
	Smooth splitting in characteristic zero
	Smooth splitting in arbitrary characteristic
	Smooth finite Galois splitting of Azumaya algebras
	Smooth Galois splitting in characteristic zero
	Smooth Galois splitting in arbitrary characteristic


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


