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1. Introduction

It is well known that if a number of opaque spherical particles are inter-
posed in the path of a beam of light, they will give a corona consisting
of bright and dark rings. To illustrate the formation of such coronz, it is
usual to employ lycopodium powder dusted on a glass plate which produces
two or three bright rings. If, however, the lycopodium spores are observed
under a microscope, it is found that their shape is not at all spherical. The
shape can best be described as a tetrahedron with a spherical cap. In spite
of this deviation from sphericity, it is remarkable that the lycopodium
particles can give clear rings, the sizes of which can be verified to obey the
circular disk formule fairly well.

It is commonly supposed that the formation of the rings is a sort of
average effect and that different portions of the particles give rise to different
sizes for the rings. Thus, if the shape of the particles does not differ from
a sphere by a large amount, then these rings will be of nearly the same size,
so that they can be observed. That this explanation is not correct will be
seen from the following experiment.

Spores of “ pinus longifolia™ give a corona consisting of at least two
bright rings. A photograph of the corona, together with a microphoto-
graph of the spores, magnified about a hundred times, are reproduced in
Fig. 4, Plate I. Tt will be seen from the photomicrograph that the shape
of these spores does not at all approach that of a sphere. In fact, their
maximum dimension is about double the minimum. Hence, if the forma-
tion of the corona is just an average effect, then no ring system must be
visible. Actually, rings are visible, although they are not very clear on
account of a large background intensity. It is therefore of interest to examine
under what conditions a non-spherical particle can give rise to a visible ring
system. |
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2. Diffraction Pattern of a Non-spherical Particle

In order to discuss the above problem, one has to consider somewhat
in detail, the formation of a Fraunhofer diffraction pattern. Considering
an aperture of arbitrary shape, and neglecting, as is generally done for small
angle diffraction, the obliquity factor, it can be shown that the effect of the
entire aperture at any point, other than the exact focus, reduces to that of
a line distribution of light sources along its edge. This has been discussed
by Rubinowicz (1917, 1924) and Laue (1936). But the result can be derived

In a simple manner, and the simple derivation is given here for the sake of
completeness.

D
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Suppose that F is the focus of the lens (Fig. 1) and that it is required
to find the intensity at a point P in the focal plane, at which the waves
diffracted in a direction making an angle @ with that of the incident wave
are brought to a focus. Take a set of rectangular axes Ox and Oy in the
aperture, so that the x-axis is parallel to FP. If the incident wave is repre-
sented by sin Z (amplitude unity), then the amplitude at the point P is

%F f / sin (Z — 2 xsin 6/X) dx dy,

where the integration is performed over the whole aperture. Now, divide
the aperture into a number of strips by means of lines parallel to the x-axis,
the width of each strip being equal to dy. Integrating the above expression

between the limits x;, and x, which correspond to the extremities of one of
these strips, the integral becomes '

1 -
2nfsin 0 f [cos (Z — 2ax sin 6/X)]2 dy.

Now, calling the portion of the boundary intercepted by this strip as
ds, dy = ds sin $, where ¢ is the angle made by ds with the plane of diffraction,
ie., with the x-axis. Since the integral of dy vanishes when one makes a
complete circuit round the edge, ie., § dy = @ ds sin ¢ =0, sin ¢ must
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be considered positive at one end of the strip, and negative at the other end.
Hence, the effect of the entire aperture in the direction 6 may be written as

2};7‘:3?1”9 55 cos (Z — 2mwx sin 6/A) sin & ds.

This line integral is taken round the boundary of the aperture, and in it x
and sin ¢ are to be regarded as functions of s. Hence, the resultant
intensity 1is

I = (P2 4 Q%) /422 sin? 6, where

P = ( cos (2mx sin 8/}) sin ¢ ds and

Q = ¢ sin (2=x sin 6/3) sin ¢ ds.

Now, it is seen from the above formulae that the parts of the edge for
which ¢ is zero, that is those which run parallel to the x-axis do not contri-
bute anything to the intensity at the chosen point o observation, P. Indeed,
we may go further, and state that the only sensible contributions are those
made by parts of the edge running approximately parallel to the y-axis, for
which ¢ is nearly a right angle. For, the co-ordinate x, and therefore also
the phase of the radiations, are stationary for these points, which may be
designated as the ‘ poles’ of the point of observation. Thus, in any case
in which the aperture has a curved boundary without singularities, the line
integral may be replaced by point sources placed at such poles, of which
naturally there must be at least two. The diffraction pattern would then be
regarded as the interferences of the radiation from these point sources.
Geometrically, the positions of these sources are such that the tangents to
the boundary at them are parallel, and are all perpendicular to the plane of
diffraction. Such points may be said to be “ opposed ”, and they are
responsible for the diffracted intensity in the direction considered. The
existence of these poles has been observed experimentally by Banerjee (1919)
and by Mitra (1919, 1920).

The problem thus reduces to finding such opposed points for a non-
spherical particle. Then, the diffraction pattern will approximate to that
given by a circular aperture, whose diameter is equal to the distance between
these opposed points. It must be noted that when the diffraction corona
is given by a large number of particles, the particles themselves are oriented
in all directions, so that the pattern will always be circular. Hence, if the
distance between the opposed points is a constant over a small region of the
boundary, then the rings corresponding to this distance will stand out from
the background intensity, the clarity of the rings being greater, the larger
the region over which this distance is a constant. If, however, the shape of
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the particle is completely arbitrary, and the distance is not a constant even
for a small region, then no rings will be visible. Thus, the condition for
the formation of a ring system is that the distance between the opposed points
is a constant over an appreciable region of the boundary.

2

3. The Case of Pinus longifolia

The above criterion for the formation of a ring system by non-spherical
particles directly explains why spores of Pinus longifolia must give rise to
visible rings. The shape of this particle, as already mentioned, deviates
very much from a sphere, the maximum and minimum dimensions being
about 55 p and 30 g, so that if the corona is a sort of average effect, then one
should expect no rings at all. However, on the idea of opposed point
sources, the formation of the rings is easily understood.

8

Fi6. 2. Shape of Pinus longifolia

If one examines the shape of the particle as presented to the beam of
light, it is found that it is mostly as shown in Fig. 2. In this cross-section,
there is an appreciable portion of the boundary (AB and CD) over which the
distance between the two opposed points is very nearly a constant. This,
together with the fact that the particles are all orientated at random, is the
reason why a visible system of rings is produced. Since the effective width

varies rapidly in the other portions of the particle, the background intensity
is quite large.

That this explanation of the formation of the rings is correct was
verified by measurement. The diameters of the various rings were measured,
and knowing the focal length, their angular radii were calculated. The
distance AD or BC was determined from the microphotograph, as an average
of a large number of measurements. This was found to be 55 . Taking
this value to be the diameter of a circular aperture, the angular radii of the
rings in its diffraction pattern were calculated. These are tabulated in
Table I below, and it will be seen from it that the agreement between the
value calculated from the diameter, and the one measured is quite close,
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showing that the rings correspond to the distance AD (or BC), as is to be

expected from the theory.

TABLE |
Angular radius 6
Ring
Calculated Measured
1st Min. .. .. .. 0-0121 0-0124
1st Max. .. .. .. 0:0163 0-0169
2nd Min. .. .. .. 0-0223 0-0221
2nd Max. .. .. .. 0- 0266 0-0274

4. Corone Produced by Lycopodium

As already stated, another typical example of a non-spherical particle
is Lycopodium. The shape of a Lycopodium spore can best be described as
a tetrahedron with a spherical cap. It is bounded by four sides, three of
which are triangular planes while the fourth is spherical and convex. Hence,
the cross-section presented by the Lycopodium spore to the incident beam
of light may be approximately a circle, when the convex face is towards it,
or a sector of circle, when one of the plane sides faces the beam. The latter
(Fig. 3) is of more frequent occurrence, since the spore can rest on one of
its plane sides. In fact, if the microphotograph is examined, it will be found
that the circulal shape is only of rare occurrence, while the commonest shape
for the cross-section is that shown in Fig. 3. Intermediate shapes may also
occur, but they resemble Fig. 3 in having a segment of a circle AB, and two
lines OA and OB, which may be unequal.

Fi. 3 Cross-Section of Lycopodium Spore

Let us therefore consider what the positions of the opposed points are
for the shape shown in Fig. 3. The angle AOB is invariably greater than a
right angle, so that there are points P and Q in the segment AB at which the
tangents are parallel to OA and OB respectively. Hence, the opposed




128 . G. N. Ramachandran

sources are P and the whole line OA, and Q and the line OB. The distance
between these are PP’ and QQ’, which are generally very nearly equal to
each other. Hence the distance between the opposed sources is PP’ or QQ'.
Obviously, these opposed sources cover a very large portion of the boundary,
so that the general background intensity -given by the rest of the boundary
is quite small. This is why thc patterns with Lycopodium are much clearer
than with Pinus longifolia.

There are, of course, variations in the size of the spores. These will
give rise to a background intensity, which is discussed in the next section.

Thus, the ring system will correspond to the distance PP’, (or QQ") i.e.,
the average value of PP’ for all the particles. That this explanation of the
formation of the rings is correct was verified as follows. The distances PP/
and QQ’ were actually measured from the microphotograph my means of
a travelling microscope. The negative was rotated so as to bring QA (or OB)
parallel to the vertical cross-wire, and the microscope was adjusted so that
the cross-wire coincided with it. The microscope was then moved until
the cross-wire was tangential to the curved boundary AB. The distance
moved by the microscope gave a measure of PP, and since the magnification
was known, the actual distance could be calculated. Both PP’ and QQ’
were measured for a large number of spores.(both when they were nearly
equal, and otherwise), and the average was determined.

This procedure was employed for two types of Lycopodium, Lyco-
podium clavatum and Lycopodium bisdepuratum, supplied by Merck, which
were available in the laboratory. The values obtained were, for the bisde-
puratum 33-1 p and for the clavatum 34-4 p. Taking this to be the diameter
of the equivalent circular disk, the theoretical angular radii of the rings in

TABLE 11
Bisdepuratum Clavatum
Ring Angular radius Ring Angular radius
Theoretical | Experimental : Theoretical | Experimental

1st Min. .. 0-0206- 0:0202 Ist Min, .. 0-0194 0-0202
1st Max. . 0-0277 0-0280 1st Max. .. 0-0260 0-0275
2nd Min., .. 0-0378 0-0361 2nd Min. .. 0-0355 0-0355
2nd Max. .. 0-0454 0-0451 2nd Max. .. 0:0426 0-0436
3rd Min. .. 0-0548 0-0533

3rd Max. . 0-0626 0-0615
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the corona were computed. The actual corone were also photographed,
and the experimental values of these were calculated knowing the focal
length of the lens. Enlarged pictures of the coronz and also the micro-
photographs (magnification 94) are reproduced in Fig. 5, Plate I.. The
theosetical and experimental values of the angular radii are tabulated in
Table II below. The agreement between the two is satisfactory, showing
that the idea of the opposed points is true for Lycopodium also.

5. Corone due to Particles of Variable Size

It was mentioned in the previous section that variations in the size of
the particles will affect the background intensity. The explanation of this
is as follows. If there are a large number of spherical particles, whose
size is not a constant, but varies slightly, then, the rings given by the different
particles will not all be of the same size, but will be different. Consequently,
the rings will not be perfectly bright and dark, but there will be some
intensity in the dark portions also. This lack of darkness of the dark rings
will be greater, the larger the variation in the size of the particles. If the
variation is very large, the rings will be blotted out, and there will only be
a continuous decrease of the intensity from the centre outwards.

It is also obvious that if the variation in the size of the particles is small
then the position of the rings will very nearly correspond to those in the
corona due to a sphere of the average size, but their intensities will differ
from those in it.

The above results find a confirmation if one studies the coronz given
by the two types of Lycopodium. The most striking thing that is observed
on looking at the photographs in Fig. 5 is the greater clarity and contrast
of the ringy given by the bisdepuratum. In fact, under identical conditions,
three brightrings were visible in the negative of the corona of the bisdepuratum,
while only two were seen in that of the clavatum. Also, the dark rings are
darker, and the ring system clearer with the bisdepuratum as can be seen
from Fig. 5.

The cause for this was investigated. A study of the microphotographs
and a large number of observations under the microscope showed that the
difference cannot be attributed to any difference in the shape of the particles,
for they were both very nearly of the same shape. It was finally found that
it must be ascribed to the difference in the range of particle-sizes in the two
types. A large number of measurements of the size of the spores showed
that the variation in the size was comparatively smaller for the bisdepuratum
than for the other type. For the former, the size varied mostly between
30 p and 35 p, with only very few outside these limits. On the other band,
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for the latter, the variation was from 30 x to 40 u. This will be clear from the
study of the following typical set of readings for the distance between the
opposed points.

Clavatum.—Size in p 32, 34, 31, 37, 37, 32, 33, 33, 30, 34,
37, 33, 34, 34, 35, 36, 37, 39, 36, 37.

Bisdepuratum.—Size in u 33, 34, 32, 31, 35, 34, 32, 34, 35, 34,
31, 34, 33, 33, 30, 33, 33,32, 33,34.

The greater range of variation in the size of the clavatum spores clearly
explains why the corona is less distinct with it than with the bisdepuratum.

The second result, namely that the radii of the rings correspond to a size
which is the average has already been verified in the last section.

My best thanks are due to Prof. Sir C. V. Raman for the suggestion of
the problem and for the kind guidance he gave me during the investigation.

Summary

It is pointed out that the Fraunhofer diffraction due to an obstacle of
arbitrary shape can be replaced by that given by a linear distribution of
sources along its boundary. Most of the intensity at any point in the pattern
can again be supposed to originate from a finite number (usually two) of
point sources, called ““opposed points” or “ poles”, situated on the
boundary. In this way, if there are a large number of non-spherical pariicles
distributed at random, then a ring system will be formed whose size will
correspond to the distance between the opposed points. If this distance is
a constant over an appreciable region of the boundary, then the rings will
stand out from the background intensity. This explanation of the forma-
tion of the rings, has been verified using spores of Pinus longifolia and of
Lycopodium. 1t is also shown that variations in the size of the particles
affect the clarity of the rings detrimentally, the rings becoming less and less
clear as the range of particle sizes increases. Thisis also verified by using
two types of Lycopodium.
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