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1. Introduction

AMONGST the best-known phenomena of meteorological optics are the
coron® consisting of a central disc and one or more coloured concentric
rings seen surrounding the sun or the moon,-when Viewed through thin
clouds. The observed angular extension of the coronz is variable, being
generally between a degree and ten degrees. Closely related to these are
the iridescent clouds exhibiting vivid colours, which are sometimes observed
at distances of about 5° to 30° from the sun. The correlation between
these two phenomena was recognized by Simpson (1912), who showed that
iridescent clouds are nothing but parts of coronz.

A mathematical theory of the corona was put forward by Airy, who
assumed that the water droplets in the cloud act like opaque disks, and thus
give rise to a diffraction pattern of bright and dark rings. Obviously,
however, one is not justified in considering the water droplets as opaque,
since actually they are transparent. Indeed, many of the experimental facts,
as for example those observed by Barus (1907, 1908), Mecke (1920 a), and
Mitra (1928) are not explained by the “ opaque disk ” theory. It is evident
that the light transmitted through the droplets must be taken into account.

Mecke (1920 b) has tried to give a more complete theory, taking into
account the rays that pass through the drops also. His method consists
in dividing the effect of the droplet into three parts, due to diffraction, trans-
mission and reflection respectively. The first part is taken to be the same as
that due to an opaque disk of the same size. The transmission effect is
calculated by tracing the refracted rays, and finding their divergence and
phase change. A similar calculation is also made for the rays reflected
from the surface of the droplet. All these parts are taken to be coherent,
the amplitudes are added, and the resultant intensity is calculated.

It may be pointed out, however, that Mecke’s application of the ideas
of geometrical optics cannot be justified when the particles under consider-

ation have a radius which is only a moderate multiple of the wave-length.
N
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For, the transmitted rays themselves form a beam whose aperture is of the
order of the diameter of the droplet, and hence comparable with the
wave-length of light. Such a beam would give diffraction effects of its
own, so that at the focal plane, where the geometric rays are supposed
to come to a focus, the diffraction pattern would have a size about the
same as that of the droplet itself. The ray-paths indicated by geometrical
optics cease, therefore, to have any significance when one is dealing with
droplets whose radius is qnly a small multiple of the wave-length. It is
obvious, in these circumstances, that one mwust treat the problem on the
basis of wave-optics alone, and not on the lines suggested by Mecke.

A theory of corone based exclusively on the ideas of the wave optics
has been outlined by Balakrishnan (1941) taking into consideration the
phase changes occurring in the passage of the light through the drops.
The present author has used similar ideas in discussing the transmission of
light through a cloud of transparent droplets, in a paper appearing earlier
in these Proceedings. Both in that paper and in Balakrishnan’s work, the
aspect considered was the evaluation of the intensity in the forward direc-
tion, viz., along the incident rays. The present paper concerns itself with
the evaluation of the intensity in other directions, which is necessary to
find the position and intensity of the rings observed in the corona.

2. Derivation of the Formule

It has been shown by the author (loc. cit.) that the amplitude of the
wave diffracted by a droplet of radius @ in a direction making an angle
¢ with the incident direction is

X = Xl- X2a (1)
/2
' 2ma® . . i . 5
where X == 5 T, (4 sin ) sin (X — £ cos 0) sin 6 cos 6 df, ¥))
0
2na® I, () .
X, = J%q_ : -l-;)@ - sin y, (3
¢ =dn(u—1) a/A, and n=2ma (sin $)/A, 4)

the incident wave being represented by sinX. The whole problem thus
reduces to the evaluation of the integral in the expression for X;. The inte-
gration is not simple for finite values of . The author triec_i various
methods of putting it in a form amenable for numerical computation. The
best method was found to be one of partial integration, by which it could be
put in the form of a series, of which the later terms are smallb compared with
the first. The method consists in partially integrating sin (X — £ cos 9),
A4
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keeping J, (y sin ) as a constant. We may then write the integral as
n[2
- %"f Jo (nsin 0) sin (X — £ cos 6) (£ cos 6) d (¢ cos 0), which is
0

wil
0

= %2 [JO (1 sin §) {sin (X — & cos 8) — & cos 8 cos (X — ¢ cos 8)}]
- finvolv.iung I
[Jo (1) sin X — sin (X — f)-{t £ cos (X — §)] — J‘ involving J;.

| —~
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2
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Normally, the value of ¢ is fairly large, and we can neglect all terms
invloving higher powers of 1/¢ as compared with those involving 1/¢. Then,

the integral appearing in X, is = —é cos (X — £J, so that

X =K [cos X cos (§)/¢+ sin X {sin (§)/€ —T; (n)/n)] (5
where K =2na%A. Hence, the intensity is
I= K2 [{cos (£)/}*+ {sin (§)/§ — T, (n)/n}7]
e l J? (’7) _ 2], () . sin f]
=K [62 * Uh 7 3 ©)
This expression (6) is not very suitable when ¢ is small, and also when
n becomes comparable with £. In such a case, a second approximation can
be worked out by expanding the integral for X, and summing up the most
important terms (vide Appendix I) which gives

e[ LT S Ji() | sin (64 9%28)7.
e[ 1010 st 0

A third approximation can also be obtained, which leads to the expi'ession

for I as
[=K2[§*+{C—J, (n)/n}%,

where S= ~1§~ cos (¢ + n%/2¢)

&

L[ sin (6 7928) = cos (¢ 12)— g sin ¢+ 720
£ U] £ 77 8¢3 1 ]

and C= é sin (€ + 1%/2¢)

g5 oo (64 9426) + T sin (64 n/28)— I cos (-4 7720)|
£ ) £ U] g£s Y] ]

3. Discussion of the Expression for the Intensity

For large values of £, the first approximation (6) is sufficiently accurate
to evaluate the positions of the maxima. In order to determine how far it
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is different from the more accurate expression (7), the author actually
computed the intensity distribution given by both of them for a few cases.
It was found that the higher degres of approximation did not appreciably
alter the positions of the maxima and the minima, but that it gave values
for the actual intensities at these positions different from those given by
(6). Therefore the simpler expression (6) could be used for a discussion of
the positions of the bright and dark rings in the corona, and, in the follow-
ing discussion, this alone has been used.

We shall first derive a few general properties of the function on the right
hand side of (6). For drops of a particular size, £ is a constant, and the
quantity which varies with the angle of diffraction ¢ is 4. Hence, the
varying part of I is given by

U'=K2[1;2 (/2= 23, (/7 - sin (§)/4] ®)
Putting sin (£)/¢ as k, this can be written as
U= K2 [3* (n)/n*— 2kIy (n)}] ©)
Differentiating with respect to »,
dl’ .
= 2K I () — k] + Ty (ndin. (10)
Hence, the maxima and minima of I' occur for the values of # given by
L=k ()
Iy (n)[n=10 )

Call the roots of the former a;, a,,.... and those of the later by, bs,. ...

Differentiating (16) once again, we get
[0 Jdy ey = + 2K ()i (11)
which is always positive. Hence, at g =4, 1 is always a minimum.
Again, [ [dny=y = — KX(1 = 2k) [ddn {To(m) =0
= — K21 —2k)(a +ve quantity) (12)
This is positive or negative according as k is > or < 1 /2. Hence, at n =0,
I is a maximum or minimum according as k 2 1/2.

The other roots of (b), namely by, b, . . .. may correspond to a maximum
or minimum. Tt is also easily seen that they correspond to the value of 7

for which J,(n)/n has a turning value.
4. The Rings of the Corona

We are now in a position to discuss the disposition of the rings in the
corona, which correspond to the maxima and minima of intensity. In this
discussion, we shall limit ourselves to the case when monochromatic light is
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used. The nature of the ring system with white light can be readily
deduced from this.

The diffraction in the forward direction and the colours exhibited by
the central portion of the corona have already been discussed in the previous
paper. It is now only necessary to consider the outer rings of the corona.
First of all, it can be shown that the thickness or density of the fog has no
influsnce on the position of the rings in the corona. The intensity of the
 light diffracted by a single droplet at am angle ¢ is given by (6). But the
light reaching it, and the light diffracted have both to travel through the
thickness of the fog. This total path will not differ appreciably from the
total thickness [ of the fog, if the angle ¢ is not very large. Hence, from
the equation (32) of the paper already cited, the intensity of the light
diffracted per unit volume of the fog in the direction ¢ is

1N [+ 200 -2 4] exp { eI - 224,
(13)

where N is the number of droplets per unit volume. If the size of the droplet
is fixed, £ is a constant, and the position of the ring system is determined
only by the expression within the square brackets. Neither N, nor / enters
this expression, so that the ring system must be uninfluenced by the thickness
of the fog. This has already been verified by Barus (1912) and also by
Mecke (1920 a).

Taking, therefore, the expression within the square brackets, we have
already shown that the position of its maxima and minima are given by the
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roots of the equations (a) and (b). In the following discussion we shall limit
ourselves to the first two or three rings, since, in general, the outer ones
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would be faint.  Also, from Appendix III, it will be seen that the series
for C and S are not convergent if n > ¢, so that this discussion cannot be
extended to values of 7> ¢ This corresponds to sing > 0-667, or
¢ > 41°49". Since the coronz usually observed do not extend beyond
about 20°, this does not present any serious difficulty.

A careful analysis of the case shows that the existence and the number
of the roots of (a) and (b) depend very much on the value of k = sin (¢)/¢,
and that there are four distinct cases. Dehote by By, B,,. ... the maximum
and minimum values of Ji(n)/n which correspond to 7 = by, b, b, ....
The course of the curve Jy(n)/4 is shown in Fig. 1, and the values of the B’s
and the b’s are tabulated in Table I below.

> TABLE I

b= 5-14 b= 8-42 by= 11-62 l by= 1478 l by= 17-96
By=~0-0662 | By=+00322 | By=-— 0-200 lB‘=+0-0140 l B;=— 0-0105

The four cases are as follow:

Case 1: k is +ve, and 1/2 >k > B,.

In this case, equation (a) has only one root, a;, between zero and b,
which corresponds to a minimum value of I. Consequently the distribution
of maxima and minima are as shown in Table II (a).

Case II: kis + ve, and k < B,.

Equation (a) will have 3 roots at 7 = a;, a, and a,;, where
a, < b, and a, and a, are on either side of b, The arrangement of the
maxima and minima is tabulated in Table II ().

Case TN : kis —ve, and | k|< |B,|

In this case, equation () has two roots, a; and a,, on either side of by,
which give rise to the arrangement listed in Table II (¢).

TABLE II
Max. O b, by
(@) Case I Mo, a b, \
Max. O b, ?nb:—i by
(b) Case 1I S . i—a—z—-- -___as_i 5
Mo 0 N b, N
(¢) CaseIll .. Min, {_a_;ml '.---.;;-Ji b
Max. 0 l b, b,
(d) Case IV " Min, 5, by
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Case IV: k is —ve, and |k} > |B,|
Here, (a) has no roots at all, and the maxima and minima occur at
= by, by,.... as shown in [I(d).

The dotted lines are intended to show that the maxima within them
from a sort of gradual transition from the case before to the next case. This
point will become clear if the intersectipn points of the graph y =k and
y = Ji{n)ln are studied. In case I, there is no intersaction point beyond b, ;
but as k decreases, case IT becomes operative. At first, @, and a4 are close
together, so that the maximum at b, will not be prominent. The reverse
happens in case I11, the first maximum bzcoming less and lecs pronounced,
until it becomes a minimum in case LV,

c

It is thus clear that the nature of the ring system depends very much
on the value of k, so that even a small fluctuation in the radius of the droplets
produces a large change in the disposition of the rings. It is therefore
interesting to see how the rings behave as the particle size steadily increases.
Suppose that the wavelength X of the light is a constant. Let us begin with
the value a/A =2-25 for which ¢ =3». This is a case midway between
cases II and III. There will be maxima at n = b,, b,, etc., and the rings
will appear to be close together. As £ increases, k becomes negative, case
III becomss operative, and the first ring becomes fainter and fainter until
it disappears for |k| > |B;|. The whole ring system will now appear to
have expanded. This continues for some time, after which k numerically
decreases, and the changes take place in the reverse direction, the rings
coming close together at & = 4m. Thereafter k is --ve, and the second
ring becomes more and more indistinct until it disappears when k is > B,.
This continues for some timsz, after which the second ring reappears, the initial
stage being reached once more at £ = 5= This finishes one cycle of changes.
Another cycle, exactly similar to the above tzkes place in the range of values
57 to Tm of & except that, in this cycle, case IV cannot be realised at all.
since |sin (€)/€] is never > |B,|. This continues upto & == 9, after which
case I cannot occur. For droplets of larger radius, i.e., a/A > 7, the expand-
ing and contracting of the rings will become less and less noticeable, until,
for very large drops, the ring system will correspond to the case of an opaque
disk. :

In this limiting case of very large drops, 1/6% and sin (£)/¢ become
intrinsically small, so that {10) reduces to

[ =K1 (n)y* (14)
which is the same as the expression for an opaque disk. An interesting
point arises in this connection. As shown by equation (34) of the previous
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paper by the author, the decrease in the forward intensity due to a large
droplet is the same as that for an opaque disk of the same size. Thus, for
large droplets, the total energy in the corona must be equal to 2na? or
double the amount in the corona due to an opaque disk. However, the
expression (14) shows that the corona is identical with that given by an
opaque disk of the same size. The discrepancy can be explained by the
reason that our theory js not vaid for large angles of diffraction. The
theory only predicts that for small angles of diffraction, the corona is identical
with that produced by an opaque disk. There should be an equal amount of
energy diffracted at larger angles, of which no account is taken by the theory.

5. Numerical Computation

In order to bring out the facts discussed above in a clear manner, the
intensity distribution in the corona has been calculated for a few cases, using
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Fig. 2. Intensity Distribution in the Corona

the more accurate expression (7). The wave-length of light was assumed
to be 5000 A.U., and the computation was done for five values of the
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radius of the drop. In Fig. 2, the results have been plotted with the angle
of diffraction as abscisse, and the intensity as ordinate. The curves clearly
show how the nature of the ring system is altered by changes in the size of
drops. They also exhibit the contraction and expansion of the rings as
the size of the droplets is increased.

6. Comparison with Experiment
) "

The theory developed in this paper explains most of the observations
made by previous workers in the field. Even very early measurements, such
as those of Kamtz (Pernter, 1922) showed that the opaque disk theory
is only asymptotic in its application, being more and more correct, the
larger the size of the drop, as is to be expected from the theory. Mecke
(1920 @) and Mitra (1928) have observed that the colour sequence in the
outer rings, with a white source, had no special order, and that it was very
different even with droplets of slight difference in radii. This is easily under-
stood, since our theory shows that, with monochromatic light, the distri-
bution of the rings is highly susceptible to even small changes in a/A. The
case with monochromatic light has also been verified by Mitra, who found
marked changes in the position of the rings as the size of the drop changes.

Mecke has given some values of the relative radii of the rings in
different cases. If ¢;, és, ¢4 are the angular radii of the first, second and
third dark rings in monochromatic light, then sin ¢, : sin ¢,: sin ¢, will \give
the relative values of n for these. They have been tabulated in Table IV
of Mecke’s paper (1920 a). An examination of it will show that the ratio,
sin ¢y/sin ¢,, call it p; varies from 1-8 to nearly 2-4, but that mostly, it is
in the neighbourhood of 2-2. The value of sin ¢4/sin ¢;, call it p,, lies
between 2-9 and 3-4. Mecke has also found that p, varies periodically
with the radius of the droplet, and that it becomes less than 1:83, the
normal value given by the opaque disk theory, only for a small range
in each cycle. All these are easily explained by our theory.

Taking one cycle, we start with £= 3=, for which k== 0, and p, = 183,
and p,=2-8, which are the normal values. As & increases, p, will slightly
diminish and p, will increase, as may be seen from Fig. 1. This will occur
only for a short while, for the maximum at b, will soon be too faint, and the
ratios will become 2-3 and 3-6 respectively. This holds for case 1V also.
If we take case II, the ratios will be in the neighbourhood of 2-2 and 3-0,
and on passing to case I, they become larger than this. This explains the
range of values of p; and p, as given by Mecke’s experiments as also the
fact that p, is seldom less than 1-83, since it occurs only for a short range
after the transition from case II to case III
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It is with great pleasure that I take this opportunity of expressing my
gratitude to Prof. Sir C. V. Raman for suggesting the problem, and for
the keen and continued interest that he took in the investigation.

Summary

The commonly accepted theory of coronz, based on the idea that water
droplets act as opaque disks, is not only theoretically unsound, but is not
also in accord with expgrimental facts. The theory due to Mecke is also not
satisfactory as it based partly on geometrical optics and partly on the theory
of diffraction. In this paper, a new theory of the phenomenon is deve-
loped, using only the principles of wave-optics, and taking into considera-
tion the portions of the wave-front transmitted through the droplets. The
integrals so obtained are Integrated by a suitable method, and expressions
are obtained for the intensity distribution in the corona. A discussion of
these expressions shows that the theory satisfactorily explains most of the
phenomena exhibited by coron®, such as the extreme susceptibility of the
ring system to even small changes in the radius of the drops, and the
oscillation of the ring system as the radius steadily increases.
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APPENDIX I

Evaluation of the Integral in the expression for X,

The integral to be evaluated is .
nf2 . :
A= f T (n sin 6) sin (X-£ cos ) sin 0 cos 6 df
0

The integration is to be done in such a way that the resulting function is
readily adapted for numerical computation when ¢ is ldrge, L.e., when terms
in' 1/€2, 1/€3, etc., can be neglected compared to those in 1 /€.

For the purpose of integration, it is convenient to split the integral
into two, and write
2

A=sinX f J, ( sin 0) cos (¢ cos 8) sin @ cos 6 d6
0

af2
_ cosX f T, (5 sin 6) sin (£ cos ) sin 8 cos 40
0
'=CsinX—ScosX  (say)
Both C and S can be expanded in the form of a series.

Put £ cos 8= x, and 7 sin 0= y.

dy  mcosf  xfm\*
Then, &%=~y = ~5(2)

Also, the limits of integration are given by
0=0, ie, x=¢ y=0
0==[2, ie., x=0, yp=1.
¢

Hence, C= -}2[ Jo( y) cos x x dx
0
Partially integrating with respect to x,

x=4 ;
1 o . ‘
C=:~§—2 [(cos x+ xsin x) J, (y)] + -;—2 f (cos x+ x sin x) J; (y) dy
x=0 0
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Substituting for dy in terms of dx,
g _
[(cos 4+ Esin §)— 1T, (7;)] f (cos x+ xsinx) - x - J; (3)/y.dx

Again, partially integrating with respect to x, the second term becomes

9 »
- — ’;4 [(3 cos x+ 3x stn x— x* cos x) - N (y)/y]g
0

¢
§4f(3cosx+3vsmx x? cosx)-l‘“i—l()-}i}a’y

Since Lt 5 (;V) ;, this 1s
y->0
= — %1[% (B cos £+ 3€sin £— €2 cos €)— 21_(__)’)]
® y
. ¢
-+ g‘? (3cos x+3xsinx—x2cos x)r x-J, (¥)/y? - dx

0
Continuing this process, we can finally put C in the form

C ::2}2 (cos € + £sin §)
_%(3cos§+3§sin§ — £2¢0s €)

+ —jﬁgfﬁg (15 cos £ + 15 £sin & — 6£2 cos £ — &% sin &)

------------------------------

..............................
2p-2

(=1 P T TER (ap, pc0s & + ap, 1 £sin ¢

_a?’p_z 52005,5_ )

2 4
- oA

=, ()R ]

1 ! ) .
where 4y, ; - = 7)1 8’: i_gg, (Vide Appendix 1)
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In an exactly similar manuner, S can also be put in the form of a series
as below:

o (__ 1)25—1 7721’-2 ) 5
S::ﬂfl T (=) TE (ay psin ¢ — Uy, g1 £COS & — 0y 4o E¥sin €

+dp pg E3COSE . L L L)

The above two series give the complefe expansion of the integrals C and S.
Ordinarily, for the range of particle sizes in which we are interested, ¢ is
large, and only terms in 1/¢ need be taken. Then,

A =sinX -sin /¢ + cosX - cos ¢/¢, so that
[ =K1/&+ 3 5(n)/n* — 23,(n)/n - sin ¢/€].

This first approximation is not sufficiently accurate if 7 1s comparable
with ¢. Then, the last terms inside the brackets in the right hand side of C
must be taken into account. C then becomes

_siné 1 nt 1 ®
c =54 st ]

ELU T2 8T aE) ¢
coséfp* 1 4%, . 7_1. . 7%,
+ 2 % W m T =g (¢4 %)
Similarly, to a second approximation, S = lcos (5 + 17-;), so that
3 2¢
Lo 33m) ) Ju(m) | sin (€ 4+ 9%28)
I:: 2 =a L-:-—"‘ 2 1 : .
K [f“ T 7° 7 3 ]

If a further approximation were required, it can be obtained by taking
all the penultimate terms inside the brackets in the right hand side of C and S,
They can also be summed, and lead to the result that, to a third approxi-
mation,

o

C =3 - sin (€ +7%2¢)

.

— o

cos (€ +11/2¢) + . sin (¢ +72/26) — g cos (€ + 7726) and

Uy

S = % cos (€ + 7%/2¢)

+ Eli[sin (€ +9%2¢) — %o cos (¢ + n*/2¢) — -%l; sin (¢ + n2/2§)]-

Any desired degree of approximation can thus be obtained by taking
further terms in the expansion, but one more than the second degree will
not be needed practically.
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APPENDIX II
To prove that ay ,=(p +¢)! /22 () (p — g)!

The quantities a, , depend on the coefficients of the terms in the expan-

¢ § _
sion of the definite integrals, f x? cos x dx, and / ¥’ sin x dx. If we call
0

these respectively C, and S,, then
Cs =po &sin éo4 p, 71 cosf po ¢-2gin é—..
Sp = —po & cos ¢ +p; &Lsin ¢ + py £ cosg -
where two terms are -+ve, the next two are —ve and so on. The series

on the right hand side has (p + 1) terms each, the last coefficient being p,.
The values of the coefficients are easﬂy seen to be

P =) —9!
It is to be noted that p, = p,.y.

From the method of partial integration used in Appendix I to determine
the series for C, it can be verified that the laws of formation of the numbers
a, , are given by the following:

Ap0 =Polpa, 0
aP, 1= (p - 1)0 ap -1 1 +p1 ap__l’
al’ 2 -“(p 2)061?-1 2 + "'].)lap__l 1 +p,,ap1 0

------------------------------------------------

ty, g1 = Lo gy, g1 + 21051, g5+ T Ppa8pa,0
and ay, 5 = dp, p-1-
From these substituting the values of p,, we get,
(1) ay, ¢ = py, o 0 that a =1, since ay o=
(2) @y 1 =gy, 1+ P Apy o = Gpy, 1T - AlSO, @y =1, s0 that

b4
ap.]_:Z'n.
1
B)aps=030+@ = Dapy1 +p(pP —1) s, ¢
p~—1
=gyt (p~1) 2 ntp(p—1)
P
=ap—1,2+(l"‘1) %'”

Hence, a5 5 = ay, 5 +£'(m - 1)£n.
. 3 1
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2 2
But, 02, 9 = ag, 1 :271 == (2 - 1)27?, SO that
1 1

m

a9 =£‘(m -1 Zn.
1 1

. (4) a5 3= gy, 3+ (D=2 g ot (P— D (P—2) gy, 1
+p(—1)(p—2) a4,

- 4 " -
it (0=2) Z =D Entp- (-2 T
1 1

\ +p(p—-D (-2

=y 3+ (p—2) Zp'(m-— 1) 2 n.
1 1

m

Hence, g, 5 = a3, 3-}-f(r— 2) z (m—1) 2 n.
4 1 1

But, a3 3 =4aj 2::2?'(771—- 1) I e (3-2) Z’ (m—1) b i1, s0 that
1 1 1 L8
ay, 3==Zﬂ’(r—2)2§'(m—— l)z'n.
1 1 1

Procecding in this way, it is easily seen that

m

azﬁ,9=‘§:"(t"‘]+1)é(s"q+2)"‘(r—~2)j(nz~ 1) 2 n.
1 1 1 1

The expression on the right hand side can be summed up by using the
well-known summation:

b (a+x) (a+ x4 1) (a+x+r— l):w»-——L) (a-+n) (a+n+1)--

e=1 (I’-{— l
(a+n+r).
We then get, Sn=m (m+ D)2=(m+1)! /2 (m—1)!

“s’(m-— l)ifl?n —-—-)5(m—— Dmm+1D)2=0r+2)!/22 Q! (-2, etc.

Thus, 45.0=1; a:=(p+ D!/Q@) - (p-1D!;

ap,z‘"—(l)“"z) 1222 (p—2)!; ay, s=(p+ 31220 p- N
and so on, so that

a5 =P+ 2! (p—9!
It is to be noted that this relation automatically satisfies the equation
Gp, = Ap, p-1:
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APPENDIX III
A Note on the Convergency of the Series for C and S

It can be shown that both the integrals C and S, expressed in the form
of the series we have chosen, are convergent if y <£. Taking first C, we can
express it as follows:

C=sin £ {a, o/é — (a5, 114245, o 7*22 (2) D)/€°
+ (ag, o 7422 Q! + ag, 1 1%/2° BN + a5, 4 7824 (4) 1 )€

e, e e e e }
+ 08 £ {(ay, 1+ a5, 0 n*/2)/€*— (a5, %2+ ay 1 7427 (2) !
+ay 0% 2 (3)! )L&
+ ........................................ }
4
L fho- az’ggzmu NERACT

= A sin £+ B cos £— J/£2 (say)
The series S can also be expressed similarly as
S=Acos £~ Bsin ¢.

It will now be shown that A, B and J are convergent if y < . Taking
A, if u, be its p™ term, then

:--l [ap-n,p 7)2?/2#(1))!’{"ap+2,p.-1_7)2p+2/2p"'1(p+ ) ESEE ]
& Lay 1 7?20 (p= D) Gpun pa P22 ()1 -+

which can be put in the form

Up 11
Up

b (p+9) . p(p+H) 1 +1)(1J+:) (p=1) . ot .7
wpur|_n'l_p P+ O plpt]) ()p+2) !
uy | € (o= (p~1)(p 2
S ey )
Hence, Lt uz“ .—_—7-1; If <& thisis< 1, and the series is con-
p->o0 | YUp

vergent. A similar test shows that for B also the same cnodition holds
good. ‘ !

Taking J, if v, be its pth term, then

Vp+1
Up

N 9p+1, 841 Jp(”]) )
? ap p Jpq(ﬂ)
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Substituting for the &'s, and-also using the relation that, when p 15 large,
Jii1 (77)/];5 ()=n2(p+1), we gt

tpy| 21 07
y| ¥ &
Hence, Lt 11 mﬁ;, 0 that J Is convergent if 4 < &.
P00 p gu

Thus, the expansion of the integral for X; in the form of the series
C and § is convergent, and hence valid, if 7 < &




