
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 113, No. 4, November 2003, pp. 365–377.
© Printed in India

Pfister involutions

E BAYER-FLUCKIGER∗, R PARIMALA† and
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Abstract. The question of the existence of an analogue, in the framework of central
simple algebras with involution, of the notion of Pfister form is raised. In particular, alge-
bras with orthogonal involution which split as a tensor product of quaternion algebras
with involution are studied. It is proven that, up to degree 16, over any extension over
which the algebra splits, the involution is adjoint to a Pfister form. Moreover, cohomo-
logical invariants of those algebras with involution are discussed.
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0. Introduction

An involution on a central simple algebra is nothing but a twisted form of a symmetric
or alternating bilinear form up to a scalar factor ([KMRT98], ch. 1). Hence the theory of
central simple algebras with involution naturally appears as an extension of the theory of
quadratic forms, which is an important source of inspiration for this subject.

We do not have, for algebras with involution, such a nice algebraic theory as for
quadratic forms, since orthogonal sums are not always defined, and are not unique when
defined [Dej95]. Nevertheless, in view of the fundamental role played by Pfister forms in
the theory of quadratic forms, and also of the nice properties they share, it seems natu-
ral to try and find out whether an analogous notion exists in the setting of algebras with
involution.

The main purpose of this paper is to raise this question, which was originally posed
by David Tao [Tao]; this is done in §2. In particular, this leads to the consideration of
algebras with orthogonal involution which split as a tensor product ofr quaternion algebras
with involution. One central question is then the following: consider such a product of
quaternions with involution, and assume the algebra is split. Is the corresponding involution
adjoint to a Pfister form? The answer is positive up tor = 5. A survey of this question is
given in §2.4. In §4, we give a direct proof of this fact forr = 4. Before that, we study
in §3, the existence of cohomological invariants for some of the algebras with involution
which can naturally be considered as generalisations of Pfister quadratic forms.
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1. Notations

Throughout this paper, the base fieldF is supposed to be of characteristic different from
2, andK denotes a field extension ofF . We refer the reader to [Sch85], [Lam73] and
[KMRT98] for more details on what follows in this section.

1.1 Cohomology

Let K
s

be a separable closure of the fieldK, and let us denote by0
K

the absolute Galois
group0

K

= Gal(K
s

/K). The Galois cohomology groups of0

K

with coefficients inZ/2
will be denoted byHi

(K) = H

i

(0

K

, Z/2). For anya ∈ K

?, we denote by(a) the image in
H

1
(K) of the class ofa in K

?

/K

?2 under the canonical isomorphismK?

/K

?2
' H

1
(K),

and by(a1, . . . , ai

) ∈ H

i

(K) the cup-product(a1) ∪ (a2) ∪ · · · ∪ (a

i

). In particular,
the element(a1, a2) ∈ H

2
(K) corresponds, under the canonical isomorphismH

2
(K) '

Br2(K), where Br2(K) denotes the 2-torsion part of the Brauer group ofK, to the Brauer
class of the quaternion algebra(a1, a2)K .

Consider now a smooth integral varietyX overF , and denote byF(X) its function field.
An elementα ∈ H

i

(F (X)) is said to beunramifiedif for each codimension one point
x in X, with local ringO

x

and residue fieldκ
x

, the elementα belongs to the image of
the natural mapHi

et

(O

x

, Z/2) → H

i

(F (X)), or equivalently its image under the residue
map∂

x

: H

i

(F (X)) → H

i−1
(κ

x

) is zero (see [CT95], Theorem 4.1.1). We denote by
H

i

nr

(F (X)/F ) the subgroup ofHi

(F (X)) of unramified elements.

1.2 Quadratic forms

The quadratic forms considered in this paper are non-degenerate. Ifq is a quadratic form
over K, we letK(q) be the function field of the corresponding projective quadric. The
field K(q) is the generic field over which an anisotropic formq acquires a non-trivial
zero.

Consider a diagonalisation〈a1, . . . , an

〉 of a quadratic formq. We denote byd(q)

the signed discriminant ofq, that is d(q) = (−1)

n(n−1)

2
a1 . . . a

n

∈ K

?

/K

?2, and by
C(q) its Clifford algebra (see [Sch85] or [Lam73] for a definition and structure theo-
rems). We recall thatC(q) is a Z/2-graded algebra, and we denote byC0(q) its even
part.

For any a1, . . . , ar

∈ K

? we denote by〈〈a1, . . . , ar

〉〉 the r-fold Pfister form
⊗

r

i=1〈1, −a

i

〉. We letP
r

(K) be the set ofr-fold Pfister forms overK, andGP

r

(K) be the
set of quadratic forms overK which are similar to anr-fold Pfister form. Pfister forms
are also characterized, up to similarities, by the following property:

Theorem 1.1(([Kne76], Theorem 5.8) and [Wad72]). Let q be aquadratic form over F .
The following assertions are equivalent:

(i) The dimension ofq is a power of2, andq

F(q)

is hyperbolic;
(ii) The quadratic formq is similar to a Pfister form.
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From the above theorem, one easily deduces:

COROLLARY 1.2

Letq be a quadratic form overF . The following assertions are equivalent:

(i) The dimension ofq is a power of2 and for any field extensionK/F , if q

K

is isotropic,
then it is hyperbolic;

(ii) q is similar to a Pfister form.

We denote bye
r

the mapP
r

(K) → H

r

(K) defined by Arason [Ara75] ase
r

(〈〈a1, . . . ,

a

r

〉〉) = (a1, . . . , ar

).
Let W(K) be the Witt ring of the fieldK, and denote byI (K) the fundamental ideal of

W(K), which consists of classes of even-dimensional quadratic forms. Itsrth powerI r

(K)

is additively generated byr-fold Pfister forms. Forr = 1, 2 and 3, the invariante
r

extends
to a surjective homomorphismI r

(K) → H

r

(K) with kernelI r+1
(K) (see [Mer81] for

r = 2 and [MS90] forr = 3). It follows from this that the class of an even-dimensional
quadratic formq belongs toI2

(K) (resp.I3
(K)) if and only ife1(q) = 0 (resp.e1(q) = 0,

e2(q) = 0). If we assume moreover thatq is of dimension 4 (resp. 8), this is equivalent to
saying thatq is similar to a Pfister form.

Moreover, the mapse1 ande2 are actually defined (as maps) over the whole Witt ring
W(K), and can be explicitly described in terms of classical invariants of quadratic forms.
Indeed,e1 associates to the class of a quadratic formq its signed discriminantd(q) ∈

K

?

/K

?2. Moreover, the image undere2 of the class of the same formq is the Brauer class
of its Clifford algebraC(q) if the dimension ofq is even, and the Brauer class ofC0(q) if
the dimension ofq is odd.

1.3 Algebras with involution

An involution τ on a central simple algebraB overK is an anti-automorphism of order 2
of the ringB. We only consider here involutions of the first kind, that isK-linear ones. For
any field extensionL/K, we denote byB

L

theL-algebraB ⊗

K

L, by τ

L

the involution
τ ⊗ Id of B

L

and by(B, τ)

L

the pair(B
L

, τ

L

).
Consider now a splitting fieldL of B, that is an extensionL/K such thatB

L

is the endo-
morphism algebra of someL-vector spaceV . The involutionτ

L

is the adjoint involution
ad

b

with respect to some bilinear formb : V × V → L, which is either symmetric or
skew-symmetric. The type of the formb does not depend on the choice of the splitting field
L; the involutionτ is said to be of orthogonal type ifb is symmetric, and of symplectic
type if it is skew-symmetric.

Let Q be a quaternion algebra overK. It admits a unique involution of symplectic type,
which we call the canonical involution ofQ, and which is defined byγ

Q

(x) = Trd
Q

(x)−x,
where Trd

Q

is the reduced trace onQ. We denote byQ0 the subspace of pure quaternions,
that is thoseq ∈ Q satisfying Trd

Q

(q) = 0, or equivalently,γ
Q

(q) = −q. For any pure
quaternionq ∈ Q

0, we haveq2
∈ F . For any orthogonal involutionσ onQ, there exists a

pure quaternionq ∈ Q such thatσ = Int(q)◦γ

Q

, where Int(q) is the inner automorphism
associated toq, defined by Int(q)(x) = qxq

−1.
If the degree ofB is even, and ifτ is of orthogonal type, we denote byd(τ) ∈ K

?

/K

?2

the discriminant ofτ , and byC(B, τ) its Clifford algebra ([KMRT98], §7, 8). In the
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split orthogonal case(B, τ) = (End
F

(V ), ad
q

), they correspond respectively to the dis-
criminant of q and its even Clifford algebraC0(q). Note that by the structure theo-
rem ([KMRT98], (8.10)), if the discriminant ofτ is trivial, then the Clifford algebraC(B, τ)

is a direct product of twoK-central simple algebras,C(B, τ) = C

+

× C

−

.
A right idealI of a central simple algebra with involution(B, τ) is called isotropic if

σ(I)I = {0}. The algebra with involution(B, τ) is called isotropic if it contains a non
trivial isotropic right ideal, and hyperbolic if it contains a non trivial isotropic right ideal
of maximal dimension (that is of reduced dimension1

2 deg(B)) ([KMRT98], § 6).
In [Tao94], David Tao associates to an algebra with orthogonal involution(B, τ) a

variety which, in the split orthogonal case(B, τ) = (End
K

(V ), ad
q

), is the projective
quadric associated toq. This variety is called the involution variety of(B, τ); its function
field is the generic field over whichB splits andτ becomes isotropic.

2. Three classes of algebras with involution

From now on, we consider a central simple algebraA overF , endowed with an involution
σ of orthogonal type. We denote byF

A

the function field of the Severi–Brauer variety of
A, which is known to be a generic splitting field forA. After scalar extension toF

A

, the
involutionσ becomes the adjoint involution with respect to some quadratic form overF

A

,
which we denote byq

σ

. Note that this form is uniquely defined up to a scalar factor inF

?

A

.
In view of the definition and properties of Pfister forms, it seems natural, for our purpose,

to consider the three classes of algebras with involution introduced in this section.

2.1 Pfister involutions

DEFINITION 2.1

The algebra with orthogonal involution(A, σ ) is called a Pfister algebra with involution
if σ

F

A

is adjoint to a Pfister form.

Remark2.2.

(i) If (A, σ ) is a Pfister algebra with involution, the degree ofA is a power of 2.
(ii) Since the formq

σ

is uniquely defined up to a scalar factor,(A, σ ) is a Pfister algebra
with involution if and only if q

σ

∈ GP(F

A

). Moreover, two similar Pfister forms
are actually isometric (as follows from ([Sch85], ch. 4, 1.5). Hence, in this particular
case, there is a canonical choice for the quadratic formq

σ

; we may assume it is a
Pfister form, in which case it is uniquely defined up to isomorphism.

(iii) Since any 2-dimensional quadratic form is similar to a Pfister form, any degree 2
algebra with orthogonal involution is a Pfister algebra with involution.

The fieldF

A

is a generic splitting field forA. Hence, we may deduce from the definition
and from Corollary 1.2 the following proposition:

PROPOSITION 2.3

The following assertions are equivalent:

(i) (A, σ ) is a Pfister algebra with involution;
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(ii) For any field extensionK/F which splitsA, the involutionσ
K

is adjoint to a Pfister
form;

(iii) The degree ofA is a power of2 and for any field extensionK/F which splitsA, if
σ

K

is isotropic, then it is hyperbolic;
(iv) The degree ofA is a power of2 and after extending scalars to the function field of

its involution variety, (A, σ ) becomes hyperbolic.

2.2 Involutions of typeI ⇒ H

As recalled in §1, ‘isotropy implies hyperbolicity’ is a characterization of Pfister forms.
Hence, we may also consider algebras with involution satisfying the same property:

DEFINITION 2.4

The algebra with orthogonal involution(A, σ ) is said to be of typeI ⇒ H if the degree
of A is a power of 2 and for any field extensionK/F , if (A, σ )

K

is isotropic, then it is
hyperbolic.

Remark2.5.

(i) Again the condition is empty in degree 2. Any degree 2 algebra with orthogonal
involution is of typeI ⇒ H .

(ii) From the previous proposition, one deduces that any involution of typeI ⇒ H is a
Pfister involution. Moreover, ifA is split, then the two definitions are equivalent.

2.3 Product of quaternions with involution

Up to similarities, Pfister forms are those quadratic forms which diagonalise as a tensor
product of two dimensional forms. Hence, we now consider algebras with involution which
split as a tensor product of degree 2 algebras with involution.

DEFINITION 2.6

The algebra with orthogonal involution(A, σ ) is called a product of quaternions with
involution if there exists an integerr and quaternion algebras with involution(Q

i

, σ

i

) for
i = 1, . . . , r such that(A, σ ) ' ⊗

r

i=1(Qi

, σ

i

).

Remark2.7.

(i) If (A, σ ) is a product of quaternions with involution, then the degree ofA is a power
of 2.

(ii) Sinceσ is of orthogonal type, the number of indicesi for whichσ

i

is of symplectic
type is necessarily even.

(iii) In [KPS91], it is proven that a tensor product of two quaternion algebras with orthog-
onal involutions admits a decomposition as a tensor product of quaternion algebras
with symplectic (hence canonical) involutions. Hence, any product of quaternions
with involution admits a decomposition as above in which all theσ

i

if r is even, and
all but one ifr is odd, are the canonical involutions ofQ

i

.
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As above, the condition is empty in degree 2, any degree 2 algebra with orthogonal
involution is a product of quaternions with involution. In degrees 4 and 8, we have the
following characterizations:

Theorem 2.8[KPS91]. Let (A, σ ) be adegree4 algebra with orthogonal involution. It is
a product of quaternions with involution if and only if the discriminant ofσ is 1.

Theorem 2.9([KM RT98], (42.11)). Let (A, σ ) be a degree 8 algebra with orthogonal
involution. It is a product of quaternions with involution if and only if the discriminant of
σ is trivial and one component of the Clifford algebra of(A, σ ) splits.

2.4 Shapiro’s conjecture

It seems a natural question to try and find out whether the three classes of algebras with
involution introduced above are equivalent. This is obviously the case in degree 2. The
following proposition will be proven in §3.3:

PROPOSITION 2.10

Let (A, σ ) be an algebra of degree at most8 with orthogonal involution. The following
are equivalent:

(i) (A, σ ) is a Pfister algebra with involution;
(ii) (A, σ ) is a product of quaternions with involution;

(iii) (A, σ ) is of typeI ⇒ H .

Nevertheless, the general question of the equivalence of these three classes of algebras
with involution is largely open in higher degree. The most significant result is due to
Shapiro. In his book ‘Composition of quadratic forms’ he makes the following conjecture:

Conjecture2.11 ([Sha00], (9.17)). Let (A, σ ) be aproduct of r quaternions with involu-
tion. If A is split, then(A, σ ) admits a decomposition as a tensor product ofr quaternion
algebras with involution in which each quaternion algebra is split.

Moreover, he proves the following theorem:

Theorem 2.12 ([Sha00], Claim in p. 166 and Ch. 9). Conjecture2.11 is true if r ≤ 5.

It is easy to see that Shapiro’s conjecture is true for somer if and only if any product
of r quaternions with involution is a Pfister algebra with involution. Hence the previous
theorem implies.

COROLLARY 2.13

Any product ofr ≤ 5 quaternions with involution is a Pfister algebra with involution.

Shapiro does not give a direct proof of this conjecture. He is actually interested in another
conjecture, which he calls the Pfister factor conjecture, and which gives a characterization
of r-fold Pfister forms in terms of the existence of vector-spaces of maximal dimension
in the group of similarities of these forms (see [Sha00], (2.17)) for a precise statement).
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He proves the Pfister factor conjecture forr ≤ 5, using tools from the algebraic theory of
quadratic forms, and also proves it is equivalent to Conjecture 2.11.

In fact, for r ≤ 3, we have a little bit more: as already mentioned in Proposition 2.10,
(A, σ ) is a product of quaternions with involution if and only if it is a Pfister algebra with
involution. A proof of this fact, using cohomological invariants, which was already noticed
by David Tao, will be given in §3, where we study the general question of cohomological
invariants of Pfister involutions.

In §4, we give a direct proof of 2.11 in ther = 4 case, based on the study of some
trace forms of product of quaternions with involution. Since this paper was submitted,
Serhir and Tignol [ST] found another direct proof of this conjecture forr ≤ 5, using the
discriminant of symplectic involutions defined by Berhuy, Monsurro and Tignol [BMT].

3. Cohomological invariants

From the point of view of quadratic form theory, cohomological invariants seem a natural
tool for studying these questions. In § 3.1, we define an invariant of a Pfister involution, with
values in the unramified cohomology group of the function field of the generic splitting
field of the underlying algebra. We then study the question of the existence of an analogous
invariant with values in the cohomology group of the base field.

3.1 Invariant e
i

for Pfister algebras with involution

Throughout this section,(A, σ ) is a Pfister algebra with involution overF . The degree
of A is 2i , and we assumeq

σ

is ani-fold Pfister form overF
A

(see Remark 2.2). Let us
consider the Arason invariante

i

(q

σ

) ∈ H

i

(F

A

). We have the following:

Theorem 3.1. The invariant e

i

(q

σ

) belongs to the unramified cohomology group
H

i

nr

(F

A

/F).

Proof. Given a codimension one pointx of the Severi–Brauer varietyX
A

of A, its residue
field κ

x

splits A. Hence, the involutionσ
κ

x

is the adjoint involution with respect to a
quadratic formq

x

which is a Pfister form uniquely determined byσ

κ

x

(see Remark 2.2 (ii)).

Let us now consider the completionŝO
x

and ̂

F(X

A

) of O

x

andF(X

A

) at the discrete

valuation associated tox. Sincê

O

x

is complete, the field̂

F(X

A

) is isomorphic toκ
x

((t)),
and for the same reason as above, the involutionσ

̂

F(X

A

)

is adjoint to a unique Pfister form
q

̂

F(X

A

)

, which is the formq

x

extended toκ
x

((t)).

From this, we get thate
i

(q

̂

F(X

A

)

) is the image ofe
i

(q

x

) under the natural mapHi

(κ

x

) →

H

i

(κ

x

((t))). By ([CT95], §3.3), since the corresponding ring is complete, this implies that

the image ofe
i

(q

̂

F(X

A

)

) under the residue map∂
x

: H

i

(

̂

F(X

A

)) → H

i−1
(κ

x

) is trivial.
Finally, again by ([CT95], §3.3),∂

x

(e

i

(q

σ

)) = ∂

x

(e

i

(q

̂

F(X

A

)

)), and this proves the theorem.

�

Of course, it would be nicer to have an invariant with values in the cohomology group
of the base field. To be more precise, let us denote byE

i

(A) the kernel of the restriction
mapH

i

(F ) → H

i

(F

A

) and by8 the injection:

8 : H

i

(F )/E

i

(A) → H

i

nr

(F

A

).
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We may ask the following question: Doese
i

(q

σ

) belong to the image of8? In §3.2,
we prove that this is the case fori = 0, 1 and 2, and we give an interpretation of the
corresponding invariant inHi

(F )/E

i

(A) in terms of classical invariants of orthogonal
involutions. In §3.4, we prove this is not the case anymore fori = 3.

3.2 Invariantse0, e1 ande2

Let us consider now any algebra with orthogonal involution(A, σ ). As recalled in §1,
the first three Arason invariantse0, e1 ande2 for quadratic forms play a particular role.
Indeed, they are actually defined as maps over the whole Witt ringW(F), and they can be
described in terms of classical invariants of quadratic forms. In view of this, we may give
the following definition:

DEFINITION 3.2

Let (A, σ ) be an algebra with orthogonal involution overF . We let

e0(A, σ ) = deg(A) ∈ Z/2Z ' H

0
(F ).

If the degree ofA is even (that ise0(A, σ ) = 0), we let

e1(A, σ ) = d(σ ) ∈ F

?

/F

?2
= H

1
(F ),

whered(σ ) denotes the discriminant ofσ .

Remark3.3. Note that, as opposed to what happens for quadratic forms, the invariante1 is
only defined whene0 is trivial. This is a consequence of the fact that the discriminant of a
quadratic form is an invariant up to similarity, and hence an invariant of the corresponding
adjoint involution, only if the form has even dimension.

Assume now thate0(A, σ ) = e1(A, σ ) = 0, which means(A, σ ) has even degree
and trivial discriminant. From the structure theorem recalled in §1, the Clifford algebra
C(A, σ) is isomorphic to a direct product of two central simple algebras overF ,C(A, σ) =

C

+

× C

−

, which give rise to two Brauer classes [C

+

] and [C
−

] in Br2(F ). The definition
of e2 then relies on the following proposition:

PROPOSITION 3.4  ([KM RT98], (9.12))

In Br2(F ), we have[C
+

] + [C
−

] ∈ {0, [A]}.

Indeed this implies that the two classes actually coincide in the quotient of Br2(F ) by
the subgroup{0, [A]}, which is exactlyE2(A). Hence, we give the following definition:

DEFINITION 3.5

Let (A, σ ) be an algebra with orthogonal involution overF of even degree and trivial
discriminant. We let

e2(A, σ ) = [C
+

] = [C
−

] ∈ Br2(F )/E2(A).

Next, we prove the following:
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PROPOSITION 3.6

Let(A, σ ) be a split algebra with orthogonal involution, (A, σ ) = (End
F

(V ), ad
q

). When
they are defined, the invariantse0(A, σ ), e1(A, σ ) ande2(A, σ ) coincide respectively with
e0(q), e1(q) ande2(q).

Proof. This is clear fore0 ande1. Fore2, first note that ifA is split, thene2(A, σ ) actually
belongs to Br2(F ). Moreover,e2(A, σ ) is only defined whene0 ande1 are trivial, in which
case the formq is of even dimension and trivial discriminant. From the structure theorem
for Clifford algebra (see for instance ([Lam73], 5, §2) or ([Sch85], 9(2.10)) we get that in
this situation, we may representC(q) asM2(B), for some central simple algebraB over
F , and the even partC0(q) corresponds to diagonal matrices,C0(q) ' B × B, so that
e2(q) = [C(q)] = [B] = e2(A, σ ). �

From this proposition, we easily deduce:

COROLLARY 3.7

Let(A, σ ) be an algebra with orthogonal involution such thate

i

(A, σ ) is defined for some
i ≤ 2. The invariante

i

(A, σ ) maps toe
i

(q

σ

) under the morphism8 : H

i

(F )/E

i

(A) →

H

i

(F

A

).

Hence, those invariantse
i

may be used to characterize degree 4 and 8 Pfister involutions.
Indeed, consider an algebra with orthogonal involution(A, σ ), of degree 2i for some
i ∈ {2, 3}. By definition, it is a Pfister algebra with involution if and only if the formq

σ

belongs toGP

i

(F

A

). As recalled in §1, this is also equivalent to saying thate1(qσ

) = 0 if
i = 2, ande1(qσ

) = e2(qσ

) = 0 if i = 3. From this we get the following:

PROPOSITION 3.8

The degree4algebra with orthogonal involution(A, σ ) is a Pfister algebra with involution
if and only ife1(A, σ ) = 0. The degree8 algebra with orthogonal involution(A, σ ) is a
Pfister algebra with involution if and only ife1(A, σ ) = e2(A, σ ) = 0.

Using this, we are now able to prove Proposition 2.10.

3.3 Proof of Proposition 2.10

Comparing Proposition 3.8 with Theorems 2.8 and 2.9 we get the equivalence between (i)
and (ii), using ([KMRT98], (9.14)) in the degree 8 case. Moreover, as already noticed in
Remark 2.5, any involution of typeI ⇒ H is a Pfister involution. Hence, it only remains
to prove that a product ofr quaternions with involution withr ≤ 3 is of typeI ⇒ H . Let
us consider such a product of quaternions with involution(A, σ ) and assume it is isotropic.
Then,A cannot be a division algebra and has index at most 2r−1.

If A is split,σ is the adjoint involution with respect to an isotropic Pfister form. Hence
it is hyperbolic, and this concludes the proof in that case.

Assume now that the index ofA is 2r−1, and letD be a division algebra Brauer-equivalent
to A. We may represent(A, σ ) as(End

D

(M), ad
h

), where(M, h) is a rank 2 hermitian
module overD. Again, sinceσ is isotropic,h is isotropic, hence hyperbolic because of its
rank, and this concludes the proof in that case. Ifr = 2, we are done, and it only remains
to consider the case whenr = 3 andA has index 2. LetQ be a quaternion division algebra
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Brauer-equivalent toA, denote byγ its canonical involution, and let(M, h) be a skew-
hermitian module over(Q, γ ) such that(A, σ ) = (End

Q

(M), ad
h

). Denote byC the conic
associated toQ, and byL its function field, which is known to be a generic splitting field
for Q, and hence forA. SinceA

L

is split,σ
L

, and henceh
L

are hyperbolic. By ([PSS01],
Proposition 3.3) (see also [Dej01]), this implies thath itself, and henceσ is hyperbolic,
and the proof is complete.

3.4 About thee3 invariant

As opposed to what happens fore0, e1 and e2, there does not exist any invariant in
H

3
(F )/E3(A) which is a descent ofe3(qσ

) for degree 8 Pfister algebras with involution,
as the following theorem shows:

Theorem 3.9. There exists a degree8 Pfister algebra with involution for which the
invariant e3(qσ

) does not belong to the image of the morphism8 : H

3
(F )/E3(A) →

H

3
nr

(F (X

A

)).

Proof. In his paper ‘Simple algebras and quadratic forms’, Merkurjev ([Mer92], proof
of Theorem 4) constructs a division algebraA, which is a product of three quaternion
algebras,A = Q1 ⊗ Q2 ⊗ Q3, and with centre a fieldF of cohomological dimension
at most 2. In particular, we haveH 3

(F ) = 0. Consider any orthogonal decomposable
involution σ = σ1 ⊗ σ2 ⊗ σ3 on A. By Proposition 2.10,(A, σ ) is a degree 8 Pfister
algebra with involution. Moreover, by a result of Karpenko ([Kar00], Theorem 5.3), since
A is a division algebra, the involutionσ remains anisotropic overF(X

A

). Hence,q
σ

is an
anisotropic 3-fold Pfister form, ande3(qσ

) is non-trivial. SinceH 3
(F ) = 0, this is enough

to prove thate3(qσ

) does not belong to the image of8. �

Remark3.10. Using Merkurjev’s construction of division product of quaternions with
involution mentioned in the proof of Theorem 3.9, one may construct explicit elements in
the unramified cohomologyHi

nr

(F

A

/F) for any i ≥ 3 for which Shapiro’s conjecture is
known, which do not come fromHi

(F ).

4. Product of four quaternions with involution

In this section, we give a direct proof of Shapiro’s conjecture forr = 4, i.e. we prove that
any product of four quaternions with involution is a Pfister algebra with involution.

By Proposition 2.3 and Corollary 1.2, it suffices to prove the following proposition:

PROPOSITION 4.1

Let(A, σ ) be a product of four quaternions with involution. IfA is split andσ is isotropic,
then it is adjoint to a hyperbolic quadratic form.

Let (A, σ ) = ⊗

4
i=1(Qi

, γ

i

), and assumeA is split andσ is isotropic. By Remark 2.7
(ii), we may assume that eachγ

i

is the canonical involution onQ
i

. Let us denote by
(D, γ ) = (Q1, γ1)⊗(Q2, γ2). We start with a lemma which gives a description of(A, σ ):

Lemma4.2. There exists an invertible elementu ∈ D

? satisfyingγ (u) = u, Trd
D

(u) = 0
andNrd

D

(u) ∈ F

?2 such that

(Q3, γ3) ⊗ (Q4, γ4) ' (D, Int(u−1
) ◦ γ )
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and

(A, σ ) ' (End
F

(D), ad
q

u

),

whereq

u

is the quadratic form defined onD byq

u

(x) = Trd
D

(xuγ (x)).

Proof. SinceA is split,Q3 ⊗ Q4 is isomorphic toD, andγ3 ⊗ γ4 corresponds under this
isomorphism to an orthogonal involutionγ ′ onD. There exists an invertibleγ -symmetric
elementu ∈ D such thatγ ′

= Int(u−1
) ◦ γ . Moreover, sinceγ3 ⊗ γ4 is decompos-

able, by Theorem 2.8, its discriminant is trivial. Hence, so is the discriminant ofγ

′, and
by ([KMRT98], (7.3)(1)), we get that Nrd

D

(u) ∈ F

?2.
Using this, we now get that(A, σ ) is isomorphic to

(D ⊗ D, γ ⊗ Int(u−1
) ◦ γ ).

By ([KMRT98], (11.1)), under the canonical isomorphismD ⊗ D ' End
F

(D), the
involution γ ⊗ Int(u−1

) ◦ γ is adjoint to the quadratic formq
u

: D → F defined by
q

u

(x) = Trd
D

(xuγ (x)), and it only remains to prove that we may assume Trd
D

(u) = 0.
Since the isotropic involutionσ is adjoint toq

u

, the quadratic form also is isotropic.
Moreover, by a general position argument, there exists an invertible elementy ∈ D such
that q

u

(y) = Trd
D

(yuγ (y)) = 0. Then, the mapD → D, x 7→ xy

−1 is an isometry
betweenq

u

and the quadratic formq
yuγ (y)

: x 7→ Trd
D

(xyuγ (y)γ (x)). One may eas-
ily check that this new elementyuγ (y) satisfies all properties of the lemma, including
Trd

D

(yuγ (y)) = 0, and this ends the proof. �

To get Proposition 4.1, we now have to prove that the quadratic formq

u

is hyperbolic.
This follows easily from the following lemma:

Lemma4.3. The quadratic space(D, q

u

) contains a totally isotropic subspace of dimen-
sion5.

Indeed, by the computations of classical invariants for tensor product of algebras with
involution given in ([KMRT98], (7.3)(4) and p. 150), we havee0(A, σ ) = e1(A, σ ) =

e2(A, σ ) = 0. Hence, by Proposition 3.6, the quadratic formq

u

has triviale0, e1 ande2
invariants, and as recalled in §1, this implies that it lies inI

3
(K).

Sinceq

u

is 16 dimensional, the previous lemma implies its anisotropic dimension is at
most 6. By Arason–Pfister’s theorem, this implies thatq

u

is hyperbolic, and thus concludes
the proof of Proposition 4.1.

Proof of Lemma4.3. For anyz ∈ D

?, we denote byq
z

the quadratic formD = Q1 ⊗

Q2 → F , x 7→ Trd
D

(xzγ (x)). We first prove the following fact:

Claim 4.4. Letz ∈ D

? satisfy Trd
D

(z) = 0. We then have

(i) Q1 is totally isotropic forq
z

;
(ii) for all x ∈ Q1, Trd

D

(xz) = 0.

Indeed, for anyx ∈ Q1, we havexγ (x) = xγ1(x) = Nrd
D

(x). Hence,q
z

(x) =

Trd
D

(xzx

−1Nrd
D

(x)) = Nrd
D

(x)Trd
D

(z) = 0. Moreover, considering the correspond-
ing bilinear form, we also get that for anyx, y ∈ Q1, Trd

D

(xzγ (y)) = 0, and this gives
the second part of the claim by takingy = 1.
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Let us now denote byφ the isomorphism(Q3, γ3) ⊗ (Q4, γ4) ' (D, Int(u−1
) ◦ γ )

of Lemma 4.2. For any pure quaternionq ∈ Q

0
4, we letW

q

be the image underφ of the
3-dimensional subspace{x ⊗ q, x ∈ Q

0
3} of Q3 ⊗ Q4. We then have

Claim 4.5. The subspaceγ (W

q

) of D is totally isotropic forq
u

.

Indeed, from the corresponding properties for{x ⊗ q, x ∈ Q

0
3}, any elementy ∈ W

q

satisfiesy2
∈ F and Int(u−1

) ◦ γ (y) = y. Hence, we haveγ (y)u = uy andq

u

(γ (y)) =

Trd
D

(γ (y)uy) = Trd
D

(uy

2
) = y

2Trd
D

(u) = 0.
Let us now denote byT the kernel of the linear form onD defined byz 7→ Trd

D

(uγ (z)).
Clearly,T ∩γ (W

q

)has dimension at least 2. Fix a 2 dimensional subspaceV

q

⊂ T ∩γ (W

q

).
We then have

Claim 4.6. The subspaceQ1 + V

q

of D is totally isotropic forq
u

.

Indeed,Q1 is totally isotropic by Claim 4.4, and sinceV
q

⊂ γ (W

q

), it also is by
Claim 4.5. Moreover, for anyz ∈ V

q

⊂ T , we have Trd
D

(uγ (z)) = 0. Hence by
Claim 4.4(ii), Trd

D

(xuγ (z)) = 0 for anyx ∈ Q1. HenceQ1 andV

q

are orthogonal, and
we get the claim.

To finish with, it only remains to prove that there exists someq ∈ Q

0
4 such thatQ1 +V

q

has dimension greater than 5, i.e.V

q

is not contained inQ1. But if V

q

is contained in
Q1, then it is contained inQ0

1 which has dimension 3. One may then choose another
pure quaternionq ′

∈ Q

0
4 which is linearly independent fromq. This way, we get another

2 dimensional subspaceV
q

′ which is in direct sum withV
q

, and which cannot also be
contained inQ0

1. �
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