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Abstract. The question of the existence of an analogue, in the framework of central
simple algebras with involution, of the notion of Pfister form is raised. In particular, alge-

bras with orthogonal involution which split as a tensor product of quaternion algebras
with involution are studied. It is proven that, up to degree 16, over any extension over
which the algebra splits, the involution is adjoint to a Pfister form. Moreover, cohomo-

logical invariants of those algebras with involution are discussed.
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0. Introduction

An involution on a central simple algebra is nothing but a twisted form of a symmetric
or alternating bilinear form up to a scalar factor ([KMRT98], ch. 1). Hence the theory of
central simple algebras with involution naturally appears as an extension of the theory of
quadratic forms, which is an important source of inspiration for this subject.

We do not have, for algebras with involution, such a nice algebraic theory as for
guadratic forms, since orthogonal sums are not always defined, and are not unique when
defined [Dej95]. Nevertheless, in view of the fundamental role played by Pfister forms in
the theory of quadratic forms, and also of the nice properties they share, it seems natu-
ral to try and find out whether an analogous notion exists in the setting of algebras with
involution.

The main purpose of this paper is to raise this question, which was originally posed
by David Tao [Tao]; this is done in §2. In particular, this leads to the consideration of
algebras with orthogonal involution which split as a tensor productiabternion algebras
with involution. One central question is then the following: consider such a product of
quaternions with involution, and assume the algebra is split. Is the corresponding involution
adjoint to a Pfister form? The answer is positive up te 5. A survey of this question is
given in 82.4. In 84, we give a direct proof of this fact foe= 4. Before that, we study
in 83, the existence of cohomological invariants for some of the algebras with involution
which can naturally be considered as generalisations of Pfister quadratic forms.
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1. Notations

Throughout this paper, the base figlds supposed to be of characteristic different from
2, andK denotes a field extension @&f. We refer the reader to [Sch85], [Lam73] and
[KMRT98] for more details on what follows in this section.

1.1 Cohomology

Let K be a separable closure of the fidld and let us denote byx the absolute Galois
groupl'x = Gal(K;/K). The Galois cohomology groups bk with coefficients inZ/2
will be denoted by’ (K) = H! (I'x, Z/2). Foranya € K*, we denote bya) the image in
HY(K) of the class of: in K*/K*2 under the canonical isomorphiskit /K*2 ~ H1(K),
and by(as, ...,a;) € H'(K) the cup-produciay) U (a2) U --- U (g;). In particular,
the elementay, ax) € H?(K) corresponds, under the canonical isomorphi$fiK) ~
Bra(K), where Bp(K) denotes the 2-torsion part of the Brauer grougoto the Brauer
class of the quaternion algebi@ , a2)x .

Consider now a smooth integral varigfyover F', and denote by (X) its function field.
An elemente € H!(F(X)) is said to beunramifiedif for each codimension one point
x in X, with local ring O, and residue field,, the elementr belongs to the image of
the natural maﬁ{j,(ox, 7.)2) — H'(F (X)), or equivalently its image under the residue
mapd, : H (F(X)) — H (k) is zero (see [CT95], Theorem 4.1.1). We denote by
H! (F(X)/F) the subgroup off’(F (X)) of unramified elements.

1.2 Quadratic forms

The quadratic forms considered in this paper are non-degeneratis. & quadratic form
over K, we let K (¢) be the function field of the corresponding projective quadric. The
field K (q) is the generic field over which an anisotropic fogracquires a non-trivial
zero.

Consider a diagonalisatiofay, ..., a,) of a quadratic formg. We denote by (g)
the signed discriminant of;, that is d(¢) = (—1)@@...51,, € K*/K*?, and by

C(q) its Clifford algebra (see [Sch85] or [Lam73] for a definition and structure theo-
rems). We recall tha€C(q) is a’Z/2-graded algebra, and we denote Gy(g) its even
part.
For any ai,...,a, € K* we denote by({ai,...,a,)) the r-fold Pfister form
"_1(1, —a;). We let P, (K) be the set of-fold Pfister forms ovek', andG P, (K) be the
set of quadratic forms ovek which are similar to am-fold Pfister form. Pfister forms
are also characterized, up to similarities, by the following property:

Theorem 1.1(([Kne76], Theoren 5.8) ard [Wad72). Let ¢ be aquadatic form over F.
The following assertions are equivalent

(i) The dimension of is a power o2, andqr () is hyperboli¢
(i) The quadratic forny is similar to a Pfister form.
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From the above theorem, one easily deduces:

COROLLARY 1.2

Letg be a quadratic form oveF'. The following assertions are equivalent

(i) The dimension qf is a power of2 and for any field extensioki / F, if gk is isotropic
then it is hyperbolic
(ii) ¢ is similar to a Pfister form.

We denote by, the mapP, (K) — H"(K) defined by Arason [Ara75] as ({{a1, ...,
ar))) =(ay,...,ar).

Let W(K) be the Witt ring of the field&', and denote by (K) the fundamental ideal of
W (K), which consists of classes of even-dimensional quadratic formshipowerl” (K)
is additively generated byfold Pfister forms. For = 1, 2 and 3, the invariart. extends
to a surjective homomorphistti (K) — H’(K) with kernelI"+1(K) (see [Mer81] for
r = 2 and [MS90] forr = 3). It follows from this that the class of an even-dimensional
quadratic formy belongs ta?(K) (resp./3(K)) ifand only ife1(q) = 0 (respei(g) = 0,
e2(g) = 0). If we assume moreover thais of dimension 4 (resp. 8), this is equivalent to
saying thay is similar to a Pfister form.

Moreover, the mapse; ande; are actually defined (as maps) over the whole Witt ring
W(K), and can be explicitly described in terms of classical invariants of quadratic forms.
Indeed,e1 associates to the class of a quadratic fernits signed discriminant(g) €
K*/K*2. Moreover, the image undes of the class of the same forgnis the Brauer class
of its Clifford algebraC (¢) if the dimension of; is even, and the Brauer class@j(q) if
the dimension of is odd.

1.3 Algebras with involution

An involution t on a central simple algeb#over K is an anti-automorphism of order 2
of the ring B. We only consider here involutions of the first kind, thakidinear ones. For
any field extensiorl. /K, we denote byB; the L-algebraB ®x L, by t;, the involution

7 ® Id of By and by(B, 1), the pair(B., t1).

Consider now a splitting field of B, that is an extensioh/K such thatB; is the endo-
morphism algebra of some-vector spacé/. The involutionz; is the adjoint involution
ad, with respect to some bilinear form: V x V — L, which is either symmetric or
skew-symmetric. The type of the forbrdoes not depend on the choice of the splitting field
L; the involutiont is said to be of orthogonal type éfis symmetric, and of symplectic
type if it is skew-symmetric.

Let O be a quaternion algebra ovEr. It admits a unique involution of symplectic type,
which we call the canonical involution @f, and which is defined by (x) = Trdp (x)—x,
where Trg is the reduced trace ap. We denote by0? the subspace of pure quaternions,
that is those; € Q satisfying Trdh (¢) = O, or equivalentlyyo(q) = —g. For any pure
quaterniory € Q°, we have;? € F. For any orthogonal involutios on Q, there exists a
pure quaterniog € Q suchthat = Int(g) o yp, where Intg) is the inner automorphism
associated tq, defined by Intg)(x) = gxg 1.

If the degree o is even, and it is of orthogonal type, we denote byr) € K*/K*?
the discriminant ofr, and byC(B, t) its Clifford algebra ([KMRT98], 87, 8). In the
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split orthogonal caséB, t) = (Endr(V), ad,), they correspond respectively to the dis-
criminant of ¢ and its even Clifford algebr&o(q). Note that by the structure theo-
rem ([KMRT98], (8.10)), ifthe discriminant afis trivial, then the Clifford algebr& (B, )

is a direct product of tw& -central simple algebrasg;(B, t) = C+ x C_.

A right ideal I of a central simple algebra with involutidiB, ) is called isotropic if
o(I)I = {0}. The algebra with involutioriB, t) is called isotropic if it contains a non
trivial isotropic right ideal, and hyperbolic if it contains a non trivial isotropic right ideal
of maximal dimension (that is of reduced dimens%)deg(B)) ([KMRT98], § 6).

In [Ta094], David Tao associates to an algebra with orthogonal involythrr) a
variety which, in the split orthogonal cas8, ) = (Endx (V), ad,), is the projective
quadric associated tp This variety is called the involution variety 6B, 7); its function
field is the generic field over which splits andr becomes isotropic.

2. Three classes of algebras with involution

From now on, we consider a central simple algeb@ver F, endowed with an involution
o of orthogonal type. We denote lfy; the function field of the Severi—Brauer variety of
A, which is known to be a generic splitting field far. After scalar extension té4, the
involutiono becomes the adjoint involution with respect to some quadratic formyer
which we denote by, . Note that this form is uniquely defined up to a scalar factarjn

In view of the definition and properties of Pfister forms, it seems natural, for our purpose,
to consider the three classes of algebras with involution introduced in this section.

2.1 Pfister involutions

DEFINITION 2.1

The algebra with orthogonal involutia, o) is called a Pfister algebra with involution
if oF, is adjoint to a Pfister form.

Remark2.2.

(i) If (A, o) is a Pfister algebra with involution, the degreedois a power of 2.

(i) Since the formy, is uniquely defined up to a scalar facto4,, o) is a Pfister algebra
with involution if and only ifg, € GP(F4). Moreover, two similar Pfister forms
are actually isometric (as follows from ([Sch85], ch. 4, 1.5). Hence, in this particular
case, there is a canonical choice for the quadratic fgymve may assume it is a
Pfister form, in which case it is uniquely defined up to isomorphism.

(iii) Since any 2-dimensional quadratic form is similar to a Pfister form, any degree 2
algebra with orthogonal involution is a Pfister algebra with involution.

The fieldF4 is a generic splitting field foA. Hence, we may deduce from the definition
and from Corollary 1.2 the following proposition:

PROPOSITION 2.3

The following assertions are equivalent

(i) (A, o) is a Pfister algebra with involutign
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(i) For any field extensiok / F which splitsA, the involutiono is adjoint to a Pfister
form;

(iii) The degree ofA is a power of2 and for any field extensioR / F which splitsA, if
ok is isotropig then it is hyperboli¢

(iv) The degree oA is a power of2 and after extending scalars to the function field of
its involution variety (A, o) becomes hyperbolic.

2.2 Involutions of typd = H

As recalled in 81, ‘isotropy implies hyperbolicity’ is a characterization of Pfister forms.
Hence, we may also consider algebras with involution satisfying the same property:

DEFINITION 2.4

The algebra with orthogonal involutiqi, o) is said to be of typd = H if the degree
of A is a power of 2 and for any field extensi@fy F, if (A, o)k is isotropic, then it is
hyperbolic.

Remark?.5.

(i) Again the condition is empty in degree 2. Any degree 2 algebra with orthogonal
involution is of typel = H.

(ii) From the previous proposition, one deduces that any involution of fype H is a
Pfister involution. Moreover, ifA is split, then the two definitions are equivalent.

2.3 Product of quaternions with involution

Up to similarities, Pfister forms are those quadratic forms which diagonalise as a tensor
product of two dimensional forms. Hence, we now consider algebras with involution which
split as a tensor product of degree 2 algebras with involution.

DEFINITION 2.6

The algebra with orthogonal involutiofd, o) is called a product of quaternions with
involution if there exists an integerand quaternion algebras with involutio@;, ;) for
i=1,...,rsuchthaiA, o) ~ ®_,(Q;,0:).

Remark2.7.

(i) If (A, o) is a product of quaternions with involution, then the degreé of a power
of 2.

(i) Sinceo is of orthogonal type, the number of indicefr which o; is of symplectic
type is necessarily even.

(i) In[KPS91], itis proven that a tensor product of two quaternion algebras with orthog-
onal involutions admits a decomposition as a tensor product of quaternion algebras
with symplectic (hence canonical) involutions. Hence, any product of quaternions
with involution admits a decomposition as above in which all¢hi r is even, and
all but one ifr is odd, are the canonical involutions ©f .



370 E Bayer-Fluckiger, R Parimala and A Quéguiner-Mathieu

As above, the condition is empty in degree 2, any degree 2 algebra with orthogonal
involution is a product of quaternions with involution. In degrees 4 and 8, we have the
following characterizations:

Theorem 2.8[KPS91] Let (A, o) be adegree 4 algelra with orthogond involution It is
a product of quaternions with involution if and only if the discriminanta$ 1.

Theorem 2.9([KM RT98], (42.11)) Let (A, o) be adegree 8 algelra with orthogonal
involution. It is a product of quaternions with involution if and only if the discriminant of
o is trivial and one component of the Clifford algebra(df, o) splits.

2.4 Shapiro’s conjecture

It seems a natural question to try and find out whether the three classes of algebras with
involution introduced above are equivalent. This is obviously the case in degree 2. The
following proposition will be proven in §3.3:

PROPOSITION 2.10

Let (A, o) be an algebra of degree at mdtwith orthogonal involution. The following
are equivalent

() (A, o) is a Pfister algebra with involutign
(i) (A, o) is a product of quaternions with involutipn
(i) (A,o0)isoftypel = H.

Nevertheless, the general question of the equivalence of these three classes of algebras
with involution is largely open in higher degree. The most significant result is due to
Shapiro. In his book ‘Composition of quadratic forms’ he makes the following conjecture:

Conjectue 2.11([Sha00] (9.17)) Let (A, o) be aprodud of r quaternios with involu-
tion. If A is split, then(A, o) admits a decomposition as a tensor produet gfiaternion
algebras with involution in which each quaternion algebra is split.

Moreover, he proves the following theorem:
Theorem 2.12 ([Sha00] Claimin p. 166 ard Ch. 9). Conjectwe2.11 istrueifr < 5.

It is easy to see that Shapiro’s conjecture is true for seinfi@nd only if any product
of r quaternions with involution is a Pfister algebra with involution. Hence the previous
theorem implies.

COROLLARY 2.13

Any product of < 5 quaternions with involution is a Pfister algebra with involution.

Shapiro does not give a direct proof of this conjecture. He is actually interested in another
conjecture, which he calls the Pfister factor conjecture, and which gives a characterization
of r-fold Pfister forms in terms of the existence of vector-spaces of maximal dimension
in the group of similarities of these forms (see [Sha00], (2.17)) for a precise statement).
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He proves the Pfister factor conjecture fox 5, using tools from the algebraic theory of
quadratic forms, and also proves it is equivalent to Conjecture 2.11.

In fact, forr < 3, we have a little bit more: as already mentioned in Proposition 2.10,
(A, o) is a product of quaternions with involution if and only if it is a Pfister algebra with
involution. A proof of this fact, using cohomological invariants, which was already noticed
by David Tao, will be given in 83, where we study the general question of cohomological
invariants of Pfister involutions.

In 84, we give a direct proof of 2.11 in the= 4 case, based on the study of some
trace forms of product of quaternions with involution. Since this paper was submitted,
Serhir and Tignol [ST] found another direct proof of this conjecture-fer 5, using the
discriminant of symplectic involutions defined by Berhuy, Monsurro and Tignol [BMT].

3. Cohomological invariants

From the point of view of quadratic form theory, cohomological invariants seem a natural
tool for studying these questions. In 8 3.1, we define an invariant of a Pfister involution, with
values in the unramified cohomology group of the function field of the generic splitting
field of the underlying algebra. We then study the question of the existence of an analogous
invariant with values in the cohomology group of the base field.

3.1 Invariante; for Pfister algebras with involution

Throughout this section(A, o) is a Pfister algebra with involution ovét. The degree
of Ais 2, and we assumg, is ani-fold Pfister form overF4 (see Remark 2.2). Let us
consider the Arason invariaei(q,) € H'(F4). We have the following:

Theorem 3.1. The invariant e; (¢,) belongs to the unramified cohomology group

Proof. Given a codimension one pointof the Severi—Brauer variety 4 of A, its residue

field «, splits A. Hence, the involutiorw,, is the adjoint involution with respect to a

guadratic forny, which is a Pfister form uniquely determineddw (see Remark 2.2 (ii)).
Let us now consider the complenoﬁ?; andF(XA) of O andF (X 4) at the discrete

valuation associated ta SlnceO is complete, the f|eI(F(XA) is isomorphic toc, ((2)),
and for the same reason as above, the |nvolm%) is adjoint to a unique Pfister form
95y which is the formy, extended tac, ((¢)).

From this, we get that; “%a)) is the image o#; (¢, ) under the natural mafi‘ (k) —
H' (k. ((1))). By ([CT95], §3.3), since the corresponding ring is complete, this implies that
the image of; @) under the residue may : H (F(X4)) — H' (k) is trivial.
Finally, again by ([CT95], 83.3p (¢; (g5)) = 0x(e; )), and this proves the theorem.

O

)

Of course, it would be nicer to have an invariant with values in the cohomology group
of the base field. To be more precise, let us denot&fiyt) the kernel of the restriction
mapH'(F) — H'(F4) and by® the injection:

®: H' (F)/E;(A) — H! (Fs).
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We may ask the following question: Doegg,) belong to the image of? In 8§3.2,
we prove that this is the case for= 0,1 and 2, and we give an interpretation of the
corresponding invariant i/’ (F)/E;(A) in terms of classical invariants of orthogonal
involutions. In §3.4, we prove this is not the case anymoré fer3.

3.2 Invariantseg, e1 andes

Let us consider now any algebra with orthogonal involutian o). As recalled in 81,

the first three Arason invariang, e1 ande, for quadratic forms play a particular role.
Indeed, they are actually defined as maps over the whole Witt¥i&), and they can be
described in terms of classical invariants of quadratic forms. In view of this, we may give
the following definition:

DEFINITION 3.2
Let (A, o) be an algebra with orthogonal involution ovér We let
eo(A, o) = deqA) € Z/2Z ~ HO(F).
If the degree ofA is even (that izo(A, o) = 0), we let
e1(A,0) =d(o) € F*/F** = HY\(F),
whered (o) denotes the discriminant ef.

Remark3.3. Note that, as opposed to what happens for quadratic forms, the invarignt
only defined whery is trivial. This is a consequence of the fact that the discriminant of a
quadratic form is an invariant up to similarity, and hence an invariant of the corresponding
adjoint involution, only if the form has even dimension.

Assume now thatg(A, o) = e1(A, o) = 0, which meangA, o) has even degree
and trivial discriminant. From the structure theorem recalled in 81, the Clifford algebra
C(A, o) isisomorphic to adirect product of two central simple algebras Byér(A, o) =
C.+ x C_, which give rise to two Brauer classas[] and [C_] in Br(F). The definition
of ep then relies on the following proposition:

PROPOSITION 3.4 ([KM RT98], (9.12))
In Bra(F), we havgC4] + [C-] € {0, [A]}.

Indeed this implies that the two classes actually coincide in the quotientbofFBby
the subgrougO, [A]}, which is exactlyE2(A). Hence, we give the following definition:

DEFINITION 3.5

Let (A, o) be an algebra with orthogonal involution ovErof even degree and trivial
discriminant. We let

e2(A,0) =[C4] =[C_] € Bra(F)/E2(A).

Next, we prove the following:



Pfister involutions 373

PROPOSITICN 3.6

Let(A, o) be a split algebra with orthogonal involutiotA, ) = (Endr(V), ad,). When
they are definedhe invariantsg(A, o), e1(A, o) andez(A, o) coincide respectively with

eo(q), e1(q) andez(q).

Proof. This is clear foreg ande;. Fore, first note that ifA is split, therea(A, o) actually
belongs to Bs(F). Moreovergz(A, o) is only defined whelg ande; are trivial, in which
case the forng is of even dimension and trivial discriminant. From the structure theorem
for Clifford algebra (see for instance ([Lam73], 5, §2) or ([Sch85], 9(2.10)) we get that in
this situation, we may represeitg) asM2(B), for some central simple algebBover

F, and the even paKfy(g) corresponds to diagonal matric€%(q) >~ B x B, so that
e2(q) = [C(q)] = [B] = e2(A, 0). O

From this proposition, we easily deduce:

COROLLARY 3.7

Let(A, o) be an algebra with orthogonal involution such thatA, o) is defined for some
i < 2. The invariante; (A, o) maps toe; (¢, ) under the morphisnd : H (F)/E;(A) —
H'(Fy).

Hence, those invarianégs may be used to characterize degree 4 and 8 Pfister involutions.
Indeed, consider an algebra with orthogonal involutign o), of degree 2 for some
i € {2, 3}. By definition, it is a Pfister algebra with involution if and only if the fogm
belongs toG P;(F4). As recalled in §1, this is also equivalent to saying #&,) = O if
i = 2,ande1(g,) = e2(qy) = 0if i = 3. From this we get the following:

PROPOSITICN 3.8

The degred algebra with orthogonal involutiotA, o) is a Pfister algebra with involution
if and only ife1(A, o) = 0. The degred algebra with orthogonal involutioni4, o) is a
Pfister algebra with involution if and only #i (A, ) = e2(A, o) = 0.

Using this, we are now able to prove Proposition 2.10.
3.3 Proof of Proposition 2.10

Comparing Proposition 3.8 with Theorems 2.8 and 2.9 we get the equivalence between (i)
and (ii), using ([KMRT98], (9.14)) in the degree 8 case. Moreover, as already noticed in
Remark 2.5, any involution of type = H is a Pfister involution. Hence, it only remains
to prove that a product af quaternions with involution with < 3 is of typel = H. Let
us consider such a product of quaternions with involu€ibno ) and assume it is isotropic.
Then,A cannot be a division algebra and has index at most.2

If Ais split,o is the adjoint involution with respect to an isotropic Pfister form. Hence
it is hyperbolic, and this concludes the proof in that case.

Assume now that the index dfis 2" 1, and letD be a division algebra Brauer-equivalent
to A. We may representa, o) as(Endp (M), ad,), where(M, h) is a rank 2 hermitian
module overD. Again, sincer is isotropic,k is isotropic, hence hyperbolic because of its
rank, and this concludes the proof in that case.# 2, we are done, and it only remains
to consider the case when= 3 andA has index 2. LeQ be a quaternion division algebra
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Brauer-equivalent tai, denote byy its canonical involution, and lgtM, k) be a skew-
hermitian module ovefQ, y) suchthatA, o) = (Endp (M), ad,). Denote byC the conic
associated t@, and byL its function field, which is known to be a generic splitting field
for 0, and hence fod. SinceA is split,or, and hencé are hyperbolic. By ([PSS01],
Proposition 3.3) (see also [Dej01]), this implies thatself, and hence is hyperbolic,
and the proof is complete.

3.4 About thees invariant

As opposed to what happens feg, e1 and ez, there does not exist any invariant in
H3(F)/E3(A) which is a descent afs(¢, ) for degree 8 Pfister algebras with involution,
as the following theorem shows:

Theorem 3.9. There exists a degre8 Pfister algebra with involution for which the
invariant e3(¢,) does not belong to the image of the morphidm HZ3(F)/E3(A) —
H3 (F(X4)).

Proof. In his paper ‘Simple algebras and quadratic forms’, Merkurjev ([Mer92], proof
of Theorem 4) constructs a division algebtawhich is a product of three quaternion
algebrasA = 01 ® Q2 ® Q3, and with centre a field” of cohomological dimension

at most 2. In particular, we havi®(F) = 0. Consider any orthogonal decomposable
involution o = o1 ® o2 ® o3 on A. By Proposition 2.10(A, o) is a degree 8 Pfister
algebra with involution. Moreover, by a result of Karpenko ([Kar00], Theorem 5.3), since
A is a division algebra, the involutian remains anisotropic ovef (X 4). Henceg, is an
anisotropic 3-fold Pfister form, and(q. ) is non-trivial. Since3(F) = 0, this is enough

to prove thaks(g,) does not belong to the image &f O

Remark3.10. Using Merkurjev’s construction of division product of quaternions with
involution mentioned in the proof of Theorem 3.9, one may construct explicit elements in
the unramified cohomologyl,ir(FA/F) for anyi > 3 for which Shapiro’s conjecture is
known, which do not come frorl’ (F).

4. Product of four quaternions with involution

In this section, we give a direct proof of Shapiro’s conjecture-fer 4, i.e. we prove that
any product of four quaternions with involution is a Pfister algebra with involution.
By Proposition 2.3 and Corollary 1.2, it suffices to prove the following proposition:

PROPOSITION 4.1

Let(A, o) be a product of four quaternions with involution Afis split ando is isotropig
then it is adjoint to a hyperbolic quadratic form.

Let(A,0) = ®f=1(Qi, ¥;), and assumd is split ando is isotropic. By Remark 2.7
(i), we may assume that eagh is the canonical involution oiQ;. Let us denote by
(D, y) = (01, Y1) ®(Q2, y2). We start with a lemma which gives a descriptiori4f o):

Lemmad.2. There exists an invertible element D* satisfyingy (u) = u, Trdp(u) =0
andNrdp () € F*2 such that

(Q3,¥3) ® (Q4, ya) = (D, Int L) o y)
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and
(Av U) = (EndF(D)’ ad‘[u)a
whereg, is the quadratic form defined ab by g, (x) = Trdp (xuy (x)).

Proof. SinceA is split, 03 ® Q4 is isomorphic taD, andys ® y4 corresponds under this
isomorphism to an orthogonal involutigri on D. There exists an invertiblg-symmetric
elementu € D such thaty’ = Int(u~1) o y. Moreover, sinceyz ® ys is decompos-
able, by Theorem 2.8, its discriminant is trivial. Hence, so is the discriminapt, @ind
by ([KMRT98], (7.3)(1)), we get that Nrgl(x) € F*2.

Using this, we now get thatd, o) is isomorphic to

(D® D,y @Intw™ ) oy).

By ([KMRT98], (11.1)), under the canonical isomorphish® D =~ Endr(D), the
involution y ® Int(u~1) o y is adjoint to the quadratic form, : D — F defined by
qu(x) = Trdp(xuy(x)), and it only remains to prove that we may assumeplrd = O.
Since the isotropic involution is adjoint tog,, the quadratic form also is isotropic.
Moreover, by a general position argument, there exists an invertible elgmem such
thatg,(y) = Trdp(yuy(y)) = 0. Then, the magd — D, x — xy 1 is an isometry
betweery, and the quadratic form,,, ;) : x — Trdp(xyuy (y)y(x)). One may eas-
ily check that this new elementuy (y) satisfies all properties of the lemma, including
Trdp (yuy (y)) = 0, and this ends the proof. ]

To get Proposition 4.1, we now have to prove that the quadratic §Qrim hyperbolic.
This follows easily from the following lemma:

Lemmad.3. The quadratic spacéD, g,) contains a totally isotropic subspace of dimen-
sion5.

Indeed, by the computations of classical invariants for tensor product of algebras with
involution given in ([KMRT98], (7.3)(4) and p. 150), we havg(A, o) = e1(A,0) =
e2(A, o) = 0. Hence, by Proposition 3.6, the quadratic fafgrhas trivialeg, e1 andes
invariants, and as recalled in §1, this implies that it lieg3nk).

Sinceg, is 16 dimensional, the previous lemma implies its anisotropic dimension is at
most 6. By Arason—Pfister’s theorem, this implies thas hyperbolic, and thus concludes
the proof of Proposition 4.1.

Proof of Lemmat.3. For any; € D*, we denote by, the quadratic formD = Q1 ®
Q2 — F,x +— Trdp(xzy (x)). We first prove the following fact:

Claim4.4. Letz € D* satisfy Trdp(z) = 0. We then have

(i) Q1 is totally isotropic forg;
(ii) forall x € Q1, Trdp(xz) = 0.

Indeed, for anyx € Q1, we havexy(x) = xy1(x) = Nrdp(x). Hence,g,(x) =
Trdp (xzx ~INrdp (x)) = Nrdp (x)Trdp(z) = 0. Moreover, considering the correspond-
ing bilinear form, we also get that for any y € Q1, Trdp(xzy(y)) = 0, and this gives
the second part of the claim by takipg= 1.
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Let us now denote by the isomorphism(Q3, ¥3) ® (Qa, ya) =~ (D, Int(u™1) o y)
of Lemma 4.2. For any pure quaternigne QE{, we letW, be the image undep of the

3-dimensional subspade ® ¢, x € Qg} of 03 ® Q4. We then have
Claim4.5. The subspace(W,) of D is totally isotropic forg, .

Indeed, from the corresponding properties for® ¢, x € Qg}, any elemeny € W,
satisfiesy? € F and In{u—1) o y(y) = y. Hence, we have (y)u = uy andg, (y (y)) =
Trdp (y (y)uy) = Trdp(uy?) = y?Trdp(u) = 0.

Let us now denote by the kernel of the linear form ob defined by — Trdp (uy (z)).
Clearly,T Ny (W,) has dimension at least 2. Fix a 2 dimensional subspaee 7Ny (W,).
We then have

Claim4.6. The subspac@i + V, of D is totally isotropic forg,,.

Indeed, Q1 is totally isotropic by Claim 4.4, and sincg, C y(W,), it also is by
Claim 4.5. Moreover, for any € V, C T, we have Trgh(uy(z)) = 0. Hence by
Claim 4.4(ii), Trdp (xuy (z)) = 0 for anyx € Q1. HenceQ1 andV, are orthogonal, and
we get the claim.

To finish with, it only remains to prove that there exists sgme Qg suchtha1+V,
has dimension greater than 5, i), is not contained inQ1. But if V, is contained in
01, then it is contained irQ? which has dimension 3. One may then choose another
pure quaterniog’ Qg which is linearly independent frog. This way, we get another
2 dimensional subspadé, which is in direct sum withV,, and which cannot also be
contained inQY. O
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