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1 Introduction

Let X be a compact Riemann surface of genus g ≥ 1. Let J denote the component of the

Picard group of X consisting of all line bundles of degree g− 1 on X. Fix a line bundle α

on X of degree g− 1.

Fix an integer m ≥ 1, and consider the following map from the 2m-fold Cartesian

product

φ : X2m −→ J (1.1)

defined by (x1, x2, . . . , x2m) �−→ α ⊗ O(
∑m

i=1 xi − xi+m). (We will use the same notation for

the sheaf given by a divisor and the line bundle corresponding to it; O(D)p will denote

the fiber of the line bundle at p. The dual of a line bundle L will be denoted by L−1.) On J

there is a canonical theta divisor given by {ξ ∈ J | H0(X, ξ) �= 0}. We will use the notation

Θ for the theta divisor as well as for the line bundle on J given by it.

Let pi : X2m −→ X, 1 ≤ i ≤ 2m, be the projection onto the ith factor. For 1 ≤ i <

j ≤ 2m, let Di, j ⊂ X2m be the divisor given by (pi ×pj)∗∆, where ∆ ⊂ X×X is the diagonal.

The canonical bundle of X is denoted by K. Consider the following line bundle on X2m:

Mα(m,m) :=
m⊗
i=1

(
p∗
i (K⊗ α−1) ⊗ p∗

i+m(α)
)⊗

m<j∑

i≤m
Di, j




⊗
 j≤m∑

i< j

−Di, j −Di+m,j+m


 . (1.2)
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In [R1, Theorem 11.1] the following result was proved: The pullback bundle φ∗Θ

on X2m is isomorphic to Mα(m,m). For the case m = 1, this result was proved in [K].

Moreover, if H0(X,α) = 0, then

dimH0(X2m,Mα(m,m)) = 1

[R1, Theorem 11.2]. (More generally, dimH0(X2m,Mα(m,m)) = 1 also for α a smooth point

of the theta divisor [R3].) It was then shown in [R1] (see [R2] or [LB] for an exposition)

how these results lead to a proof of the Fay trisecant identity for theta functions [F].

Our aim here is to generalize the above results on the pair (X,α) to any family of

the form (XT , LT ), where XT −→ T is a family of Riemann surfaces parametrized by T and

LT −→ XT is a line bundle of relative degree g−1. Our approach is not a routine extension

of the earlier one: even in the special case where T is a point, we obtain a completely new

proof of the earlier results in [R1] and [R2], which provides a new mathematical insight

into the earlier results which were motivated by physics. Moreover, it turns out that for

a family, the pullback of the theta divisor is not isomorphic to the obvious generalization

of Mα(m,m): they differ by the pullback of a line bundle on the parameter space. This

line bundle is given by the restriction of the theta bundle to a subvariety of the relative

Jacobian given by LT . Of course, the restriction of this bundle for a pair (X,α) is trivial.

(See Theorem 2.2 and Remark 2.3 for precise statements.)

In Section 3 we first prove that the space of sections of the line bundle which gen-

eralizes Mα(m,m) to a family is canonically identified with the space of regular functions

on the parameter space (Theorem 3.1). Theorem 3.3, which is obtained using this result,

can be interpreted as the relative version of the Fay trisecant identity.

Our proof is based on a general construction of P. Deligne [D], which gives a

bilinear map from pairs of line bundles on a family of curves to line bundles on the

parameter space.

2 Generalization to a family

Let T be a scheme of finite type over C. Let π : X −→ T be a proper smooth family of

geometrically connected curves of genus g ≥ 1. Let F : J −→ T be the relative Jacobian of

line bundles of degree g−1. Assume that there is a relative Poincaré bundle P on the fiber

product X ×T J. The relative theta divisor on J is denoted by Θ̄. Also assume that we are

given a section f̄ : T −→ J of F, i.e., F ◦ f̄ = Id. The map f̄ induces the map f : X −→ X ×T J

over T defined by x �−→ (x, (f̄ ◦ π)(x)).

Example. Given a smooth family of curves, γ : Z −→ U, we can construct a family

of curves π satisfying the above conditions as follows. Let ρ : J′ −→ U be the relative
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Jacobian of line bundles of degree g− 1. Using the map ρ we may pull back the family of

curves onU to J′. It is easy to check that the projection onto the second factor Z×UJ′ −→ J′

gives this pullback family on J′. Take T to be Z×UJ′ and X to be the fiber product Z×UT, and

let π be the projection onto the second factor. It is easy to see that the relative Jacobian

for this family of curves given by π admits a tautological section f̄. (The evaluation of f̄

at z × j ∈ Z ×U J′ = T is j × z × j ∈ J′ ×U T .) We claim that there is a relative Poincaré

bundle on the fiber product of X with the relative Jacobian, i.e., on X×T (J′ ×U T ). To prove

the claim, first note that for any smooth family of curves there is a canonical Poincaré

bundle on the fiber product of the family with the relative Jacobian of degree-(g− 2) line

bundles. Indeed, the pullback of the theta bundle on the relative Jacobian of degree-(g−1)

line bundles using the obvious map from the above fiber product is the Poincaré bundle.

But the family of curves given by π admits a natural section. Using this section, any

two relative Jacobians (corresponding to different degrees) are naturally identified. This

proves the above claim. Thus the family given by π satisfies all the above conditions.

The 2m-fold fiber product of X with itself is denoted by X2m. The projection

X2m −→ X to the ith factor is denoted by p̄i. Let ν1 (resp. ν2) be the projection of

Y := X ×T X2m onto X (resp. X2m). The projection ν2 defines a family of curves on X2m.

In fact, it is the pullback to X2m of the family of curves on T by the obvious projection

q : X2m −→ T.

Let ∆ ⊂ X ×T X be the divisor given by the diagonal. For 1 ≤ i ≤ 2m, define the following

divisor on Y:

Di := (Id× p̄i)
∗∆.

Consider the following line bundle on Y:

L := (
(f ◦ ν1)∗P

)⊗ O

(
m∑

i=1

Di − Di+m

)
. (2.1)

The bundle L gives the (classifying) morphism

Φ : X2m −→ J. (2.2)

We recall the definition of the classifying morphism: For z ∈ X2m over t ∈ T, the image

Φ(z) is the point on the Jacobian of the curve π−1(t) given by restriction of the line bundle

L to π−1(t) × z. This map Φ is the obvious generalization of the map φ in (1.1).
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There is a natural relative version of the divisor Di, j as a divisor Di, j on X2m. Let

K denote the relative canonical bundle on X. Consider the bundle

F :=
m⊗
i=1

(
p̄∗
i (K ⊗ f∗P−1) ⊗ p̄∗

i+m(f∗P)
)

(2.3)

on X2m. Let P′ be another Poincaré bundle on X ×T J, and let F′ be the corresponding

bundle on X2m.

Proposition 2.1. The two line bundles F and F′ on X2m are canonically isomorphic.

Note that by “canonical isomorphism” we shall always mean that there is a given

isomorphism which is compatible with base change.

Proof. There is a line bundle ξ on J such that P′ = P⊗p∗
2ξ, where p2 : X×T J −→ J is the

projection. So on X the bundle

f∗P′ = (f∗P) ⊗ ((p2 ◦ f)∗ξ) = (f∗P) ⊗ π∗(f̄∗ξ),

where q = π ◦ p̄i is the projection of X2m onto T defined earlier. For any 1 ≤ i ≤ 2m, we

have

p̄∗
i (f

∗P′) = (p̄∗
i (f

∗P)) ⊗ q∗(f̄∗ξ).

Now substituting, in the definition (2.3), the above equation between p̄∗
i (f

∗P′) and p̄∗
i (f

∗P′),

and also the relation between the duals given by it,we get that the bundle F′ is canonically

isomorphic to F.

Define the line bundle

M := (f̄ ◦ q)∗Θ̄⊗ F ⊗ O


m<j∑

i≤m
Di, j


⊗ O


 j≤m∑

i< j

−Di, j − Di+m,j+m


 (2.4)

on X2m.

Theorem 2.2. The pullback bundle Φ∗Θ̄ on X2m is canonically isomorphic to M.

Remark. The bundle Φ∗Θ̄ clearly does not depend on the choice of the Poincaré bundle.

The bundle M also does not depend upon the Poincaré bundle, because of Proposition 2.1.

Proof of Theorem 2.2. Let γ : Z −→ U be a smooth family of curves. Given two line

bundles L and L′ on Z, the construction of Deligne [D] gives a line bundle on U; this

bundle on U is denoted by 〈L, L′〉. The line bundle

d(L) :=
⊗
i

(
detRiγ∗(L)

)(−1)i
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on U is called the determinant of L. (The sheaf Riγ∗(L) is an OU coherent sheaf on U, and

detRiγ∗(L) is the determinant of this coherent sheaf. See [Ko, Chapter V, Section 6] for the

definition of the determinant of a coherent sheaf.) We reproduce Lemma 6, Section 2, of

[BM]:

〈L, L′〉 = d(L⊗ L′) ⊗ d(OZ) ⊗ d(L)−1 ⊗ d(L′)−1. (2.6)

The line bundle given by the theta divisor on the Jacobian is the dual of the

determinant of a Poincaré bundle. Since the determinant bundle is compatible with base

change [KM], we have

Φ∗Θ̄ = d(L)−1, (2.7)

where d(L) is the determinant bundle of L for the family given by ν2.

Let ζ (resp. η) denote the bundle (f◦ν1)∗P (resp. O(
∑m

i=1 Di−Di+m)) on Y. From (2.6),

we have

d(L) = d(ζ⊗ η) = 〈ζ, η〉 ⊗ d(OY)−1 ⊗ d(ζ) ⊗ d(η). (2.8)

Using the compatibility of the determinant bundle with base change, we have

d(ζ) = (f̄ ◦ q)∗Θ̄
−1
. (2.9)

From Proposition 5a, 5c, Section 2, of [BM], we have the following: Let L be a line bundle

on a Riemann surface X, and D = ∑
i ai − ∑

j bj a divisor on X. (The points ai, bj ∈ X may

not be all distinct.) Then

〈L,O(D)〉 = (⊗iLai ) ⊗ (⊗jL
−1
bj

), (2.10)

where Lai is the fiber of L over ai.

For each i (1 ≤ i ≤ 2m) there is a natural section si : X2m −→ Y of ν2, and clearly,

ν1 ◦ si = p̄i. Using (2.10), we have

〈ζ, η〉 =
j>m⊗
i≤m

(
(s∗
i ζ) ⊗ s∗

j ζ
−1) =

j>m⊗
i≤m

(
(f ◦ p̄i)∗ζ

)⊗ (
(f ◦ p̄j)∗ζ−1) . (2.11)

Consider the line bundles η1 := O(
∑m

i=1 Di) and η2 := O(
∑2m

i=m −Di) on Y, with

η = η1 ⊗ η2. Applying (2.6) to η, we have

d(η) = 〈η1, η2〉 ⊗ d(η1) ⊗ d(η2) ⊗ d(OY)−1. (2.12)
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430 Biswas and Raina

Let X be a compact Riemann surface X, andD := ∑n

k=1 xk a divisor on X. Repeatedly using

(2.6) and (2.10), we get

d(OX(D)) =
( ⊗

1≤k<l≤n
O(xk)xl

)
n⊗
r=1

(
d(O(xr))

)⊗
d(O)⊗(1−n).

Similarly, we have

d(OX(−D)) =
( ⊗

1≤k<l≤n
O(xk)xl

)
n⊗
r=1

(
d(O(−xr))

)⊗
d(O)⊗(1−n).

For a ∈ X, the two exact sequences on X

0 −→ OX(−a) −→ OX −→ C −→ 0

0 −→ OX −→ OX(a) −→ (K−1)a −→ 0

show that d(O(−a)) = d(O) and d(O(a)) = d(O) ⊗ (K−1)a.

From the above it now follows that

d(η1) = O


i< j≤m∑

i, j

Di, j


 m⊗

i=1

(
p̄∗
iK

−1)⊗d(OY)

d(η2) = O


m<i<j∑

i, j

Di, j


⊗d(OY). (2.13)

From (2.10) and the bilinearity of the pairing (Proposition 5a, Section 2, of [BM]),

we have

〈η1, η2〉 = O


m<j∑

i≤m
−Di, j


 . (2.14)

Substituting in (2.8) the expressions of the different factors obtained in (2.9), (2.11), (2.12),

(2.13), and (2.14) and noting (2.7), we get the identification of the pullback bundle Φ∗Θ̄

with M.

Remark 2.3. The bundle (f̄◦q)∗Θ̄ being the pullback of a line bundle on T, if T is a single

point, then it is trivializable. Hence, Theorem 2.2 implies Theorem 11.1 of [R1] mentioned

in the introduction. In the complement of the theta divisor Θ̄, the line bundle Θ̄ has a

canonical trivialization. Hence, if the image of the map f̄ ◦ q does not intersect Θ̄, then

the line bundle (f̄ ◦q)∗Θ̄ has a canonical trivialization. In that case, Theorem 2.2 and (2.4)

imply that

Φ∗Θ̄ = F ⊗ O


m<j∑

i≤m
Di, j


⊗ O


 j≤m∑

i< j

−Di, j − Di+m,j+m


 .
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3 Sections of Φ∗Θ

Let Z −→ U be a smooth family of curves, and let JZ −→ U be the corresponding family

of Jacobians. Consider the projection

π : X := Z ×U JZ −→ JZ =: T (3.1)

onto the second factor, and assume the family of curves given byπ satisfies the hypotheses

of Section 2. (This is equivalent to assuming that there is a relative Poincaré bundle for

the family of curves given by π.) This assumption is satisfied if the family Z −→ U is a

pointed family of curves. We continue with the notation of Section 2.

Theorem 3.1. The space of sections H0(X2m,Φ∗Θ̄) is canonically isomorphic to H0(U,O),

or equivalently in view of Theorem 2.2, H0(X2m,M) = H0(U,O).

Before proving the theorem,we want to establish a special case of it. Assume that

U is a single point, so that X := Z is a smooth curve. Let J := Picg−1(X) be the Jacobian,

with the theta divisor on it denoted by Θ. In this special case T = J, X2m = X2m × J, and

Theorem 3.1 implies the following proposition.

Proposition 3.2. H0(X2m × J,Φ∗Θ) = C.

Proof of Proposition 3.2. We haveH0(J, Θ) = C, and the space of sections of any translate

of Θ is also C. Now fix any x̂ := (x1, . . . , x2m) ∈ X2m. The restriction of Φ∗Θ to x̂ × J is the

translate of Θ by
∑m

i=1 xi − xi+m. Hence, the space of sections of the restriction of Φ∗Θ to

x̂× J is parametrized by C. Thus H0(X2m × J,Φ∗Θ) = H0(J,O) = C.

Proof of Theorem 3.1. Clearly, H0(X2m,O) is contained in H0(X2m,Φ∗Θ̄), since the divisor

Θ̄, and hence Φ∗Θ̄ is an effective divisor. Since the obvious projection of X2m onto U is a

dominant map, H0(U,O) is contained in H0(X2m,O) by the pullback homomorphism. So we

get that H0(U,O) is naturally contained in H0(X2m,Φ∗Θ̄). In order to complete the proof,

we must show that any section of Φ∗Θ̄ is given by a function on U. Take any section

s ∈ H0(X2m,Φ∗Θ̄). For a point u ∈ U, let Xu denote the curve over u, and let Ju denote

the Jacobian of degree-(g− 1) line bundles on Xu. The fiber of the projection of X2m to U

is X2m
u × Ju. Applying Proposition 3.2 to the restriction of s to X2m

u × Ju, we get that the

restriction is given by a complex number su. This implies that the section s is given by a

regular function which is determined by the condition that its evaluation to u is su.

Let ω denote the natural section given by the constant function 1 of the relative

theta divisor Θ̄ on J. The pullback section f̄∗ω ∈ H0(T, f̄∗Θ̄) is not identically zero. Indeed,
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for any u ∈ U, the restriction of f̄∗Θ̄ to the Jacobian Ju over the curve Xu over u is the

theta line bundle, and the restriction of the section f̄∗ω to Ju is the section given by the

constant function 1. Hence, the section f̄∗ω is not the zero section.

Let (f̄ ◦ q)∗ω denote the pullback section of (f̄ ◦ q)∗Θ̄ on X2m. From the above

observation that f̄∗ω is nonzero, we get that (f̄ ◦ q)∗ω is not the zero section.

The line bundle O(
∑m<j

i≤m Di, j) ⊗ O(
∑ j≤m

i<j −Di, j − Di+m,j+m) (see (2.4)) on X2m has a

meromorphic section given by the constant function 1. We will denote this section by β.

In Theorem 3.1, we saw that H0(X2m,M) = H0(U,O). Let s ∈ H0(X2m,M) denote the

section corresponding to 1 ∈ H0(U,O). Then the quotient

N(m) := s

β⊗ (f̄ ◦ q)∗ω
(3.2)

is a meromorphic section of the bundle F (defined in (2.3)) on X2m. The poles of N(m) are

the divisor
∑m<j

i≤m Di, j (in the notation of Section 2) union with the divisor defined by the

vanishing of (f̄ ◦ q)∗ω.

If m = 1, then, from (2.3) and (3.2), N(1) is the meromorphic section of the line

bundle p̄∗
1(K ⊗ f∗P∗) ⊗ p̄∗

2(f∗P) on X2 obtained above.

Getting back to general m, let

pi, j : X2m −→ X2 (3.3)

denote the projection along the (i, j)th factor for any two indices i, jwith i ≤ m and j > m.

Define

S(i, j) := p∗
i, jN(1) (3.4)

to be the pullback meromorphic section on X2m.

Form the matrix (S(i, j)); its formal determinant

Γ := det(S(i, j)) (3.5)

gives a meromorphic section of the bundle F defined in (2.3). The poles of the section Γ are

the union of the divisor
∑m<j

i≤m Di, j with the divisor defined by the vanishing of (f̄ ◦ q)∗ω.

Thus the poles of the two meromorphic sections Γ and N(m) coincide.

Let Ψ be the meromorphic function on X2m that satisfies the condition

Ψ.Γ = N(m).

We shall investigate the function Ψ.
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For a point u ∈ U, let Xu denote the curve over u, and let Ju denote the Jacobian of

degree-(g − 1) line bundles on Xu. Take α ∈ Ju such that H0(Xu, α) = 0, i.e., α lies outside

the theta divisor in Ju. From this condition and the Künneth formula, it follows that

the restriction of the line bundle F to the subvariety X2m
u ×α (of X2m) does not admit any

nonzero section. Since the section (f̄◦q)∗ω is nowhere zero onX2m
u ×α, the observation that

the poles of the two meromorphic sections Γ and N(m) coincide implies that the function

Ψ must be constant on X2m
u × α. Since all pairs u and α satisfying the above condition

form a Zariski open dense set in T, we get that Ψ must be a pullback of a meromorphic

function on T . In other words,

Ψ = ψ ◦ q

where ψ is a meromorphic function on T .

For u and α as above, choose a point x ∈ Xu. Consider the element

x̂ := {x, x, . . . , x;α} ∈ X2m.

We want to prove that Γ (x̂) = N(m)(x̂). To prove this, first note that it is enough to show

the following: The two meromorphic sections of the line bundle

F ⊗ O


m<j∑

i≤m
Di, j


⊗ O


 j≤m∑

i< j

−Di, j − Di+m,j+m


 = M ⊗ (f̄ ◦ q)∗Θ̄

−1

(the equality follows from the Theorem 2.2), namely,

Γ ⊗ β and N(m) ⊗ β (3.6)

(recall that β is the canonical meromorphic section of O(
∑m<j

i≤m Di, j) ⊗ O(
∑ j≤m

i<j −Di, j −
Di+m,j+m)) are holomorphic in a neighborhood of x̂, and the two holomorphic sections

(around x̂) actually coincide at x̂.

We claim that the fiber of the line bundle M ⊗ (f̄ ◦ q)∗Θ̄
−1

at x̂ is canonically

isomorphic to C. To prove this claim, we first observe that for any pair of indices (i, j)

with i �= j, the fiber O(Di, j)x̂ (resp. O(−Di, j)x̂) (see Section 2 for the definition of Di, j)

is canonically identified with the fiber (K−1
Xu

)x (resp. (KXu )x), where KXu is the canonical

bundle of the curve Xu. Indeed, the Poincaré adjunction formula [GH, page 146] identifies

the fiber O(−Di, j)x̂ with the fiber of the conormal bundle of the diagonal in Xu×Xu at (x, x).

It is easy to see that the conormal bundle of the diagonal is canonically identified with

the canonical bundle K−1
Xu

. Recall the definition of F in (2.3). For any (i, j), we have

(p̄∗
i (f

∗P))x̂ = (p̄∗
j (f

∗P))x̂. (3.7)
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The above observation, the equality (3.7), and the isomorphism given by Theorem 2.2

combine together to imply the above claim.

Next we want show that both the sections Γ ⊗β and N(m) ⊗β in (3.6) are actually

1 (in the above identification of the fiber (M ⊗ (f̄ ◦ q)∗Θ̄
−1

)x̂ with C). The restriction of the

line bundle L (defined in (2.1)) to the subvariety Xu × x̂ ∈ X × X2m is the restriction of f∗P

to Xu. This implies that

Φ(x̂) = (f̄ ◦ q)(x̂).

So the two fibers

((f̄ ◦ q)∗Θ̄)x̂ and (Φ∗Θ̄)x̂

are naturally identified, and moreover in this identification the evaluations of the sections

s(x̂) and ((f̄ ◦ q)∗ω)(x̂) coincide. (Recall that (f̄ ◦ q)∗ω is a meromorphic section of (f̄ ◦ q)∗Θ̄.)

This implies that evaluation of the two sections Γ ⊗ β and N(m) ⊗ β at x̂ are 1, i.e., that

ψ(x̂) = 1. Thus we have proved the following theorem.

Theorem 3.3. The two meromorphic sections Γ and N(m) of the line bundle F on X2m

coincide.
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