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Projective Structures on a Riemann Surface, II
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1 Introduction

This is a continuation of an earlier work [BR] (referred to as Part I),where we studied some

algebraic-geometric aspects of projective structures on a compact Riemann surface.

For a compact Riemann surface X, let ∆ be the diagonal divisor in X× X, and let

pi, i = 1,2, be the projection of X×X onto the i-th factor. We denote by ∆n the n-th order

infinitesimal neighborhood of ∆ in X×X, defined by the nonreduced divisor (n+1)∆, and

denote by L a square root of the holomorphic tangent bundle TX of X.

We recall that a projective structure on X is an equivalence class of coverings by

holomorphic coordinate charts such that all the transition functions are Möbius trans-

formations. The line bundle M := p∗1L
⊗
p∗2L

⊗
OX×X(−∆) admits a natural trivialization

over ∆1. In Part I, it was shown that a projective structure on X can be viewed as a choice

of an extension of the trivialization of the line bundle M on ∆1 to a trivialization on ∆2.

The question that we address here is the interpretation of the trivializations of

M on higher order infinitesimal neighborhoods of ∆. As in Part I, the motivation for this

comes from mathematical physics. As in the earlier case, the results are of independent

geometric interest.

In Theorem 3.6 (cf. Remark 3.1), we prove that for n ≥ 3, the space of all trivial-

izations of M on ∆n, which restrict to the canonical trivialization over ∆1, is canonically

identified with the space of all projective structures on X together with a differential of

order i for each i ∈ [3, n].

In Theorem 3.11, we establish that for n ≥ 2, the above space of trivializations

can be identified with a certain natural class of differential operators on X of order n.
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686 Biswas and Raina

The differential operators in question map sections of L⊗(n−1) to sections of L⊗(−n−1) and

have the following form in local coordinates:

dn

dxn
+

n∑
i=2

fi
dn−i

dxn−i
,

where fi are local holomorphic functions.

P. Deligne has shown in [D] that a projective structure can also be defined as the

extension of a natural embedding of∆2 in a certain projective bundle Ptg to an embedding

of ∆3. The projective bundle Ptg over X coincides with the projectivized jet bundle P(J1(L)).

In Theorem 4.9, we show that the above space of trivializations of M over ∆n is

canonically identified with the space of all embeddings of ∆n+1 into P(J1(L)),which extend

the above mentioned canonical embedding of ∆2.

In Sections 5 and 6,we consider vector bundles over X. In Section 5,we recall the

construction of a natural flat connection on the endomorphism bundle of a semistable

vector bundle E of rank r and degree r(g− 1), where g = genus(X), and with H0(X, E) = 0.

The main step in the construction of the flat connection on End(E), for such a vector

bundle E, is the existence of a natural section of p∗1E
⊗
p∗2(E∗

⊗
KX)

⊗
OX×X(∆). Here we

give an interpretation of this section as the kernel of the inverse of the Dolbeault operator

on E.

A vector bundle E of the above type is known to give a projective structure on X. In

Section 6, we make some observations on the spaces of differential operators associated

to E, by making use of the flat connection on E and the projective structure on X.

The results of Appendices A and B are used in Sections 2 and 3.

We now describe briefly the relationship of this work with some questions con-

cerning conformal quantum field theory (CQFT) and vertex algebras (see [K]). Those with

no interest in such questions may proceed immediately to Section 2.

The present work is part of a continuing study of a certain model quantum field

theory on a curve, known as the b−c system,which appears in CQFT and string theory (see

[R2] for a review of earlier work). This study is based on the development of a geometric

understanding of its operator product expansion (OPE) on a compact Riemann surface

of arbitrary genus. The concept of an OPE has been made precise in the theory of Vertex

Algebras, a mathematically precise formulation of CQFT on the complex plane (see [K]).

The OPE of the b− c system on the complex plane is a Laurent expansion of the

product of the two quantum fields b(z) and c(w) in powers of z−w. The singular part is a

first order pole,while the holomorphic part has as coefficients normal ordered products

:∂n−1bc : (w), which are generators of certain algebras. For n = 1 and 2, the algebras in

question are infinite oscillator and Virasoro algebras, respectively (see [KR]); for n ≥ 2, it

is an infinite W-algebra (see [FKRW]).
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Projective Structures on a Riemann Surface, II 687

The OPE is usually defined only on the complex plane, though recent work of

Beilinson and Drinfeld (see [G]) gives it a meaning in the higher genus case as well. Our

viewpoint is different: as shown in earlier work (see [R2] and references therein), the

singular part of the OPE leads to the consideration of the line bundle M on X× X. In the

present paper, we make the geometric ansatz that the sum of the one point function of

the first n (n ≥ 2) terms of the holomorphic part of this OPE can be identified with trivi-

alisations of the line bundle M on ∆n which restrict to a canonical trivialisation on ∆2. In

[R1] and Part I, the cases n = 1 and n = 2 were studied, respectively. Theorems 3.6, 3.11,

and 4.9, stated above, now give three different global geometric interpretations to this

sum of terms coming from the OPE of the b− c system. Mathematical physicists can im-

mediately recognise them as describing aspects of so-called “W-geometry.” Remarkably,

our geometric ansatz correctly captures the geometry of the very complicated algebraic

expansion into normal-ordered operators, which is the OPE. Those familiar with the

Grassmannian formulation of soliton equations (see [SW]) may note some fascinating

parallels between our results and some formulas to be found there (see also [M]).

2 Projective structures on a Riemann surface

A projective atlas on a Riemann surface X is a covering {Uα,φα}α∈I of X by holomorphic

coordinate charts, where φα is a biholomorphism from Uα to an open set in C, such that

any composition of maps φβ ◦φ−1
α , α, β ∈ I, is the restriction of a Möbius transformation

to φα
(
Uα ∩Uβ

)
. Such an atlas on X gives a one cocycle on X with values in PSL(2,C), the

Möbius group of automorphisms of CP1. Another projective atlas {Uα,φα}α∈I′ is called

equivalent to {Uα,φα}α∈I if {Uα,φα}α∈I∪I′ is also a projective structure. A projective struc-

ture on X is an equivalence class of compatible projective atlases, and it determines an

element in H1(X, PSL(2,C)) (see [Gu]).

Let X be a compact Riemann surface equipped with a projective structure P.

Choosing a line bundle L, with L⊗2 = TX, is equivalent to choosing a lift of the element

corresponding to P, in H1(X, PSL(2,C)), to an element in H1(X, SL(2,C)) (see [T]). The map

from H1(X, SL(2,C)) to H1(X, PSL(2,C)) in question is the one induced by the natural pro-

jection of SL(2,C) onto PSL(2,C).

2(a) A line bundle on the self-product

We first recall an alternative description of a projective structure from Part I.
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688 Biswas and Raina

Let X be a compact connected Riemann surface. Fix a line bundle L on X, which

is a square-root of TX, along with an isomorphism

Ψ : L⊗2 −→ TX. (2.1)

Let pi, i = 1,2, denote the natural projection of X× X onto the i-th factor.

It was shown in Part I that the space of all projective structures on X has the

following description in terms of the line bundle M := p∗1L
⊗
p∗2L

⊗
OX×X(−∆) on X× X.

Theorem 2.2. Take any nonzero integer n. The restriction of the line bundle M⊗n on

X× X to the (nonreduced) divisor 2∆ has a canonical trivialization. This trivialization is

invariant under the involution of X×X, defined by switching coordinates if n is even; and

it is anti-invariant if n is odd. To each projective structure on X, there is a naturally as-

sociated trivialization of the formal completion of M⊗n along ∆, invariant (respectively,

anti-invariant) under the involution of X×X if n is even (respectively, odd),with the prop-

erty that the trivialization restricts to the natural trivialization of M⊗n over 2∆. Moreover,

this association gives a bijective map between the space of all projective structures on X

and the space of all trivializations of M⊗n over 3∆ that restrict to the natural trivialization

over 2∆.

Remark 2.3. (1) A trivialization of the formal completion of M⊗n along ∆ means com-

patible trivializations of the line bundle M⊗n over infinitesimal neighborhoods of ∆ in

X×X of every order [Ha, p. 194]. This is equivalent to trivializing M⊗n over some analytic

neighborhood of ∆.

(2) The restriction of the line bundle OX×X(−n∆) to ∆ is K⊗n∆ , the n-th tensor power

of the cotangent bundle; and hence the restriction of M⊗n to∆ is the trivial line bundle. Ifn

is even, then the trivialization is canonical; ifn is odd, then there is a natural trivialization

up to sign. This indeterminacy of sign can be removed by using the ordering of factors in

the Cartesian product X×X. There is a natural trivialization of M⊗n over 2∆,which is an

extension of the trivialization over∆. A description of this trivialization using coordinate

charts is given in (2.4). This trivialization over 2∆ is determined by the condition that

when n is even (respectively, odd), then it is invariant (respectively, anti-invariant) under

the involution of X× X defined by switching coordinates. Thus, if the involution and the

trivialization are denoted by τ and s, respectively, then s coincides with τ∗s (respectively,

−τ∗s) if n is even (respectively, odd).

Denoting by qi, i = 1,2, the projection of CP1 × CP1 onto the i-th factor, the line

bundle q∗1O(n)
⊗
q∗2O(n)

⊗
OCP1×CP1 (−n∆0), where ∆0 ⊂ CP1×CP1 is the diagonal divisor,
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Projective Structures on a Riemann Surface, II 689

has a canonical trivialization given by the section

s(n) := (z1 − z2
)n ( ∂

∂z1

)n/2⊗(
∂

∂z2

)n/2
, (2.4)

where
(
z1, z2

)
is the coordinate function on CP1 ×CP1 obtained from the obvious coordi-

nate function z onCP1 = C∪{∞}, and
(
∂
∂z

)1/2
denotes a section of O(1) such that

((
∂
∂z

)1/2)⊗2

coincides with the section ∂
∂z

by the natural isomorphism between OCP1 (2) and TCP1 . Note

that though there are two choices for the section
(
∂
∂z

)1/2
, the section in (2.4) does not

depend upon the choice.

For any biholomorphism φ: U −→ U′, between open sets of CP1, the two sections,

s(n) and (φ,φ)∗s(n), respectively, defined over U × U, actually coincide when they are

restricted to 2∆0∩(U×U). Thus, s(n) gives a trivialization of M⊗n over 2∆ for any Riemann

surface X. Indeed, the above property of s(n) ensures that for any two coordinate charts

on X, the two pullbacks of s(n) using the two coordinate functions actually coincide on

the first order infinitesimal neighborhood of the diagonal.

We noted earlier that for a projective structure P on X, the element

ρ ∈ H1(X, PSL(2,C)),

corresponding to P, lifts to a cohomology class

ρ ∈ H1(X, SL(2,C))

using L. The line bundle on X associated to ρ, for the natural action of SL(2,C) on OCP1 (1),

is canonically identified with L.

The diagonal action of SL(2,C) on CP1 × CP1 naturally lifts to the line bundle

q∗1O(n)
⊗
q∗2O(n)

⊗
O(−n∆0), preserving its trivialization.

For a covering of X by coordinate charts compatible with a given projective

structure, the pullbacks of OCP1 (1) by coordinate maps patch together to produce the

line bundle L on X. The trivialization of q∗1O(n)
⊗
q∗2O(n)

⊗
O(−n∆0) gives a trivialization

of M⊗n over an analytic neighborhood of∆. The association between projective structures

and trivializations, which is mentioned in Theorem 2.2, is obtained by restricting this

trivialization to the completion of X× X along ∆.

Theorem 2.2 has been proved in Part I with n = 2. The proof is identical to it in

any other case.

Restricting M⊗n to 2∆ and 3∆, respectively, and using the trivialization of M⊗n

over ∆, we have the exact sequence

0 −→ K⊗2
∆ −→

(
M⊗n

)∣∣
3∆ −→

(
M⊗n

)∣∣
2∆ −→ 0.
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690 Biswas and Raina

Hence, if P and P′ denote the trivializations of (M⊗n)|3∆ corresponding to any two pro-

jective structures P and P′ on X, then

P′ −P ∈ H0 (X,K⊗2
X

)
,

since P and P′ agree over 2∆.

On the other hand, the space of all projective structures on X is an affine space

for H0
(
X,K⊗2

X

)
(see [Gu]). Thus

P′ −P ∈ H0 (X,K⊗2
X

)
.

The relationship between these two observations is provided by the following

identity (see Lemma 3.6 of Part I):

P′ −P = n

12

(
P′ −P

)
. (2.5)

2(b) Decomposition of a differential operator

For a holomorphic vector bundle E on X and a positive integer n, the n-th order jet bundle

of E, denoted by Jn(E), is defined to be the following direct image on X:

Jn(E) := p1∗

(
p∗2E

p∗2E⊗ OX×X(−(n+ 1)∆)

)
,

where, as before, pi is the projection of X× X onto the i-th factor. Since ∆ is an effective

divisor, p∗2E
⊗

OX×X(−(n + 1)∆) is a subsheaf of p∗2E
⊗

OX×X(−n∆). So, there is a natural

exact sequence

0 −→ K⊗(n+1)
X ⊗ E −→ Jn+1(E) −→ Jn(E) −→ 0.

The inclusion K⊗(n+1)
X

⊗
E −→ Jn+1(E) is constructed by using the inclusion

K⊗(n+1)
X −→ Jn+1 (OX) ,

which is defined at x ∈ X by (df)⊗(n+1) 7−→ fn+1/(n + 1)!, where f is any function with

f(x) = 0.

The sheaf of differential operators DiffnX(E, F) coincides with Hom(Jn(E), F). The

homomorphism

σ : DiffnX(E, F) −→ Hom
(
K⊗nX ⊗ E, F

)
,

which is obtained by restricting a homomorphism from Jn(E) to F to the subsheafK⊗nX
⊗
E,

is known as the symbol map.

Furthermore, for any two integers r, s ∈ N, the natural projection

Jr+s(E) −→ Js(E)
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Projective Structures on a Riemann Surface, II 691

admits a canonical lift

µ : Jr+s(E) −→ Jr
(
Js(E)

)
,

which is an injective homomorphism of vector bundles.

Now consider the following commutative diagram:

0 −−−−→ L−n−1 = K⊗nX ⊗ L⊗(n−1) −−−−→ Jn
(
L⊗(n−1)

) −−−−→ Jn−1
(
L⊗(n−1)

) −−−−→ 0yµ ∥∥∥
0 −−−−→ KX ⊗ Jn−1

(
L⊗(n−1)

) −−−−→ J1
(
Jn−1

(
L⊗(n−1)

)) −−−−→ Jn−1
(
L⊗(n−1)

) −−−−→ 0.

(2.6)

The differential operator DP(n) constructed in (B.4) of Appendix B gives a homomorphism

Dn : Jn−1 (L⊗(n−1)) −→ Jn
(
L⊗(n−1)) , (2.7)

which is a splitting of the top exact sequence in (2.6). The composition µ◦Dn is a splitting

of the bottom exact sequence in (2.6). In other words, µ ◦Dn is a holomorphic connection

on Jn−1
(
L⊗(n−1)

)
. Thus we have the following lemma (see [B1, Theorem 4.1]).

Lemma 2.8. For a Riemann surface X with a projective structure, for any n ∈ N, the jet

bundle Jn
(
L⊗n

)
is equipped with a natural flat connection.

Using the splitting Dn in (2.7) as the base point, the space of all splittings of the

top exact sequence in (2.6) is identified with

H0 (X,Diffn−1
X

(
L⊗(n−1),L⊗(−n−1))) .

Similarly, the space of all splittings of the bottom exact sequence in (2.6) is identified

with

H0 (X,End
(
Jn−1 (L⊗(n−1)))⊗ KX) .

The composition of a splitting of the top exact sequence in (2.6) with the inclusion

µ (in (2.6)) is a splitting of the bottom exact sequence in (2.6). Thus we have a natural

homomorphism

Φ : H0 (X,Diffn−1
X

(
L⊗(n−1),L⊗(−n−1))) −→ H0 (X,End

(
Jn−1 (L⊗(n−1)))⊗ KX) .

Using the GL(n,C) invariant polynomials A 7−→ trace
(
Ai
)
, 1 ≤ i ≤ n, on M(n,C)

we have a map

H : H0 (X,End
(
Jn−1 (L⊗(n−1)))⊗ KX) −→ n⊕

i=1

H0 (X,K⊗iX ) , (2.9)

which is known as the Hitchin map (see [Hi]).
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692 Biswas and Raina

The following decomposition of differential operators, which was constructed

in Corollary C of [B3], is very useful for our purpose. However, we wish to give here an

alternative construction of the decomposition.

Theorem 2.10. Let X be a compact Riemann surface equipped with a projective struc-

ture. The map

H ◦Φ : H0 (X,Diffn−1
X

(
L⊗(n−1),L⊗(−n−1))) −→ n⊕

i=1

H0 (X,K⊗iX )
is bijective.

Proof. We first consider the case where the genus of X is at least 2. The remaining cases

are treated separately.

Our first step is to establish the injectivity of the map H ◦Φ.

For D ∈ H0(X,Diffn−1
X (L⊗(n−1),L⊗(−n−1))), let σ ∈ H0(X,K⊗iX ) be the component of

H ◦ Φ(D) of lowest degree. In other words, σ 6= 0, and furthermore, if j < i, then the

component of H ◦ Φ(D) in H0(X,K⊗ jX ) vanishes identically. It is a simple computation to

check that the symbol of the differential operator D coincides with σ. (This implies that

D is actually of order n− i.) Thus H ◦Φ must be injective.

We complete the proof by showing that the dimensions of the domain and the

target of H ◦Φ coincide.

Using the long exact sequence of cohomologies for the exact sequence of vector

bundles on X,

0 −→ Diff iX
(
L⊗(n−1),L⊗(−n−1)) −→ Diff i+1

X

(
L⊗(n−1),L⊗(−n−1)) −→ K⊗(n−i−1)

X −→ 0,

it can be deduced that

H1
(
X,Diff jX

(
L⊗(n−1),L⊗(−n−1))) = 0 (2.11)

for all j ≤ n− 2. Indeed, if n ≥ 2, then

H1 (X,Diff0
X

(
L⊗(n−1),L⊗(−n−1))) = H1 (X,K⊗nX ) = 0,

since the genus of X is at least two. Now (2.11) follows from the exact sequence

H1
(
X,Diff jX

(
L⊗(n−1),L⊗(−n−1))) −→ H1

(
X,Diff j+1

X

(
L⊗(n−1),L⊗(−n−1)))

−→ H1
(
X,K

⊗(n− j−1)
X

)
−→ 0

by using induction on j.
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Projective Structures on a Riemann Surface, II 693

Finally, (2.11) implies that

dimH0
(
X,Diff jX

(
L⊗(n−1),L⊗(−n−1))) = n∑

i=n− j
dimH0 (X,K⊗iX )

for all j ≤ n− 1. This can be seen by considering the long exact sequence

0 −→ H0
(
X,Diff jX

(
L⊗(n−1),L⊗(−n−1))) −→ H0

(
X,Diff j+1

X

(
L⊗(n−1),L⊗(−n−1)))

−→ H0
(
X,K

⊗(n− j−1)
X

)
−→ H1

(
X,Diff jX

(
L⊗(n−1),L⊗(−n−1)))

and using induction on j. Since the map H ◦ Φ descends to a map between weighted

projective spaces, it must be bijective. This completes the proof of the theorem in the

case where the genus of X is at least 2.

If X = CP1, then the dimension of both the domain and the target is 0. To see that

the domain has dimension 0, observe that Jn−1(L⊗(n−1)) is a trivial bundle, as it admits a

flat connection ensured by Lemma 2.8.

If X is an elliptic curve, then Diffn−1
X (L⊗(n−1),L⊗(−n−1)) is actually isomorphic to⊕n

i=1H
0(X,K⊗iX ). This follows from the observation that Jn−1(L⊗(n−1)) is isomorphic to the

symmetric power Sn−1(J1(L)) (see [B1]). This completes the proof of the theorem.

The isomorphism H ◦Φ depends upon the projective structure that was used in

its construction. The homomorphismsΦ orH are not individually isomorphisms. In fact,

if g > 1, then

dimH0 (X,End
(
Jn−1 (L⊗(n−1)))⊗ KX) > n∑

i=1

dimH0 (X,K⊗iX ) .
Now, any element D ∈ H0(X,DiffnX(L⊗(n−1),L⊗(−n−1))) decomposes uniquely as

D = cDP(n)+D0,

where c ∈ C andD0 ∈ H0(X,Diffn−1
X (L⊗(n−1),L⊗(−n−1))). Hence Theorem 2.10 has the follow-

ing corollary.

Corollary 2.12. For a Riemann surface Xwith a projective structure, the decomposition

H0 (X,DiffnX
(
L⊗(n−1),L⊗(−n−1))) = n⊕

i=0

H0 (X,K⊗iX )
is valid.

The differentials appearing on the right-hand side may be viewed as the Laguerre-

Forsyth invariants of the differential operator (see [W]).

In the next section, we establish an identification between a certain subspace of

the space of differential operators H0(X,DiffnX(L⊗(n−1),L⊗(−n−1))) and the space of trivial-

izations of M over an infinitesimal neighborhood of the diagonal.
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694 Biswas and Raina

3 Differential operators on a Riemann surface

We continue with the notation of the previous section, but in the present section, we do

not assume that the Riemann surface X is equipped with a projective structure.

For a nonnegative integer n and an integer d ≥ 3, let

S(n, d) ∈ H0

(
X× X, M⊗n

M⊗n ⊗ OX×X(−d∆)

)
(3.1)

be a trivialization of M⊗n over d∆, such that its restriction to ∆ is the constant function

1. Furthermore, denoting the involution of X × X by τ, the section S(n, d) is required to

coincide with τ∗S(n, d) (respectively, −τ∗S(n, d)) if n is even (respectively, odd). Hence the

restriction of S(n, d) to 2∆ is the canonical trivialization referred to in Theorem 2.2.

Consider the restriction of the section S(n, d) to 3∆. We denote by PS(n,d) the natural

projective structure on X associated to it by Theorem 2.2. Let

S′(n, d) ∈ H0

(
X× X, M⊗n

M⊗n ⊗ OX×X(−d∆)

)
(3.2)

be the trivialization associated to the projective structure PS(n,d) using Theorem 2.2.

Let ξ denote the direct image

ξ := p1∗

(
S(n, d)

S′(n, d)

)
∈ H0 (X, Jd−1 (OX))

onX of the function over d∆ given by the quotient of the two trivializations defined in (3.1)

and (3.2), respectively. The image of ξ in J2(OX) coincides with the image of the constant

function 1.

Setting d = n+ 2, let

Mξ : Jn+1(L⊗n) −→ Jn+1(L⊗n)

be the homomorphism defined by multiplication with ξ. The multiplication in question

is the natural surjective homomorphism

Jn(L)
⊗

Jn(L′) −→ Jn(L
⊗

L′),

where L and L′ are any two line bundles on X, which sends any two local sections s and

s′ of L and L′, respectively, to s⊗ s′.

Notation 3.3. For any integern ≥ 1, let T(n) denote the space of all trivializations S(n,n+
2) of M⊗n over (n+ 2)∆ that restrict to the canonical trivialization over 2∆.

Note that there is a one-to-one correspondence between T(n) and the space of all

trivializations of M over (n+2)∆ that restrict to the canonical trivialization over 2∆. The

map is defined by simply taking the n-th tensor power of a section of M over (n+ 2)∆.
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For any S(n,n + 2) ∈ T(n), let D = DPS(n,n+2) (n + 1) be the differential operator

defined in (B.4) for the projective structure PS(n,n+2) constructed earlier. Since D is a

homomorphism from Jn+1(L⊗n) to L⊗(−n−2), the composition

DS := D ◦Mξ (3.4)

is an element of H0(X,Diffn+1
X (L⊗n,L⊗(−n−2))). The earlier observation that the image of ξ

in J2(OX) coincides with the image of the constant function 1, implies that the difference

DS −D ∈ H0 (X,Diffn−2
X

(
L⊗n,L⊗(−n−2))) .

Let P(X) denote the space of all projective structures on the Riemann surface X.

The following theorem identifies H0(X,Diffn−2
X (L⊗n,L⊗(−n−2))) with the space of trivializa-

tions.

Theorem 3.5. For a compact Riemann surface X, the map

W : T(n) −→ P(X)×H0 (X,Diffn−2
X

(
L⊗n,L⊗(−n−2))) ,

defined by S(n,n + 2) 7−→ (PS(n,n+2),DS −D), where PS(n,n+2) was constructed earlier and

DS was defined in (3.4), is bijective.

Proof. To construct the inverse of W, for any

(P, D) ∈ P(X)×H0 (X,Diffn−2
X

(
L⊗n,L⊗(−n−2))) ,

consider the differential operator D′ := DP(n + 1) + D, where DP(n + 1) is the operator

constructed in (B.4). Let

M : Jn+1(L⊗n) −→ Jn+1(L⊗n)

be the homomorphism defined by the identity D′ = DP(n+ 1) ◦M.

Let S ∈ T(n) be the trivialization associated to the projective structure P by The-

orem 2.2. Since M ∈ H0((n+ 2)∆,O), the product M.S ∈ T(n).

Associating M.S to (P, D), the inverse of the map W is obtained. It is rather

straightforward to check that this map is indeed the inverse of W.

From Theorem 2.10, together with the fact used in the proof of Theorem 2.10 that

for any

D′ ∈ H0 (X,Diffn−1
X

(
L⊗(n−1),L⊗(−n−1))) ,

the lowest order term of H ◦Φ(D′) is the symbol of D′, it immediately follows that if X is

equipped with a projective structure, then

H0 (X,Diffn−2
X

(
L⊗n,L⊗(−n−2))) = n+1⊕

i=3

H0 (X,K⊗iX ) .
Now the following theorem is a consequence of Theorems 2.10 and 3.5.
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Theorem 3.6. For a compact Riemann surface X, the space of trivializations T(n) is

identified, in a canonical fashion, with the Cartesian product

P(X)×
(
n+1⊕
i=3

H0 (X,K⊗iX )
)
.

Let

Σ(n+ 1) ⊂ H0 (X,Diffn+1
X

(
L⊗n,L⊗(−n−2))) (3.7)

be the subset consisting of all differential operators with symbol 1. The vector space

V := H0 (X,Diffn−1
X

(
L⊗n,L⊗(−n−2)))

acts on Σ(n+ 1) simply by addition.

It is somewhat surprising (at least to the authors) that the action of V on Σ(n+ 1)

has a distinguished orbit. This is the orbit containing the differential operator DP(n+1),

defined in (B.4), where P is a projective structure on X. The observation noted down in

(B.6) that the difference of two such operators differ by an operator of degreen−1, implies

that the orbit defined above does not depend upon the choice of the projective structure.

Let

Σ0(n+ 1) ⊂ Σ(n+ 1) (3.8)

denote the distinguished orbit for the action of V.

Remark 3.9. Using the exact sequence of coherent sheaves,

0 −→ K⊗(i+1)
X ⊗ L⊗(n−1) −→ Ji+1(L⊗(n−1)) −→ Ji(L⊗(n−1)) −→ 0,

and the isomorphism between L⊗2 and TX, it readily follows that

∧n
Jn−1(L⊗(n−1)) = OX. (3.10)

Hence, the top exterior product
∧n
Jn−1(L⊗(n−1)) has a canonical trivialization.

We describe a property of the class of differential operators Σ0(n) defined in (3.8),

in terms of the trivializations above. For aD ∈ Σ0(n), let ∇ be the holomorphic connection

on Jn−1(L⊗(n−1)) constructed using the map µ in (2.6) and the splitting given by D. It is

straightforward to check that the connection on
∧n
Jn−1(L⊗(n−1)) induced by ∇ coincides

with the natural connection on OX using the isomorphism (3.10).
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Consider the map

P(X)×H0 (X,Diffn−2
X

(
L⊗n,L⊗(−n−2))) −→ Σ0(n+ 1),

defined by (P, D) 7−→ DP(n+1)+D. Lemma B.9 implies that this map is an isomorphism.

Now the following theorem is easily derived from Theorem 3.5.

Theorem 3.11. For any compact Riemann surface X, the space of trivializations T(n) is

canonically identified with the space of differential operators Σ0(n+ 1).

For any trivialization t ∈ T(n), its restriction to 3∆ gives a projective structure P

on X. If D is the differential operator that corresponds to t by Theorem 3.11, then P is

the unique projective structure such that

D−DP(n+ 1) ∈ H0 (X,Diffn−2
X

(
L⊗n,L⊗(−n−2))) .

Remark 3.12. Following Notation 3.3, we noted that the space T(n) is identified in a

canonical fashion with the space of all trivializations of M over (n+2)∆,which restrict to

the canonical trivialization of M over 2∆. Thus, denoting the space of such trivializations

of M by Tn, Theorems 3.6 and 3.11 remain valid if T(n) is replaced with Tn in their

statements.

Let

PX(n) := P (Jn+1 (L⊗n)) −→ X

denote the projective bundle over X of dimension n+1 consisting of all lines in the vector

bundle Jn+1(L⊗n). Let

PX := P (Jn (L⊗n)) ⊂ PX(n)

denote the projective bundle over X for the natural surjection of Jn+1(L⊗n) onto Jn(L⊗n).

A differential operator D ∈ H0(X,Diffn+1
X (L⊗n,L⊗(−n−2))), with the constant func-

tion 1 as the symbol, naturally gives a section of the fiber bundle

AX(n) := PX(n)− PX

by simply considering D as a homomorphism of Jn+1(L⊗n) onto L⊗(−n−2).

Conversely, for any section of AX(n), there is a differential operator such that

the section arises from it in the above fashion. Indeed, any section s of PX(n) is given

by a surjective homomorphism, say, H, of Jn+1(L⊗n) onto a line bundle ζ over X. If s is a

section of AX(n), then the restriction of H to L⊗(−n−2) is nowhere zero. In other words, ζ

is isomorphic to L⊗(−n−2) by H.
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Thus we have a one-to-one bijective correspondence between the space of sections

of AX(n) and a subspace of the space of differential operators

H0 (X,Diffn+1
X

(
L⊗n,L⊗(−n−2))) .

The subspace in question consists of all operators with symbol 1.

Using the above one-to-one correspondence, the class of operators Σ0(n + 1) de-

fined in (3.8) gives a class of sections of AX(n). Let S denote this class of sections. It is

interesting to be able to characterize geometrically the class of sections S. Also, it is

interesting to be able to directly find the element in T(n), given by Theorem 3.11, which

corresponds to any given element of S.

4 Embeddings of the higher order infinitesimal

neighborhoods of the diagonal in a projective bundle

The structure sheaf of the subscheme n∆ ⊂ X× X is isomorphic to the ringed space

(X, p1∗On∆),

where p1 is the projection of X × X onto the first factor. The OX-algebra p1∗On∆ on X

coincides with the jet bundle Jn−1(OX) with its natural algebra structure.

Another natural embedding of X in a fiber bundle over X is obtained from the

following exact sequence of coherent sheaves:

0 −→ KX ⊗ L −→ J1(L) −→ L −→ 0.

In this case, X is embedded in the projective bundle P(X) := P(J1(L)). Denoting the image

of X in P(X) by X, the structure sheaf of nX is the ringed space

(X, q∗OnX), (4.1)

where q is the projection of P(X) onto X.

Lemma 4.2. For any n ≥ 0, the vector bundle q∗O(n+1)X on X, defined in (4.1), is canoni-

cally isomorphic to

OX ⊕ Jn−1(L⊗(n−1))⊗ L⊗(−n−1).
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Proof. For x ∈ X, let Px := q−1(x) be the projective line. The (n− 1)-th order infinitesimal

neighborhood of the point

x := Px ∩ X
in Px coincides with the fiber (q∗OnX)x.

In order to determine the infinitesimal neighborhood of x, consider the following

exact sequence of coherent sheaves on Px:

0 −→ OPx (−(n+ 1)x) −→ OPx −→ Jn(OPx )x −→ 0.

Since H1(Px,OPx ) = 0, the n-th order infinitesimal neighborhood of x, namely, Jn(OPx )x,

coincides with

C⊕H1 (Px,OPx (−(n+ 1)x
))
. (4.3)

Using Serre duality, and the canonical isomorphisms OPx (−x)x = (KX)x and L⊗2 =
TX, and the natural self-duality of H0(Px,OPx (n− 1)) induced by the natural trivialization

of the line
∧2
J1(L)x, the vector space in (4.3) is identified with the fiber at x of the vector

bundle

OX
⊕(

Jn−1(L⊗(n−1))⊗ L⊗(−n−1)) .
The details of the last part of the argument can be found in Section 3 of [B1]. This com-

pletes the proof of the lemma.

Given a projective structure on X, for any n ∈ N, there is a natural compatible

embedding of the n-th order infinitesimal neighborhood of ∆ into the projective bundle

P(X) (see [D]). The compatibility of embeddings means that the embedding of the (n−1)-th

order infinitesimal neighborhood is obtained by restricting the embedding of the n-th

order infinitesimal neighborhood. To obtain these embeddings, first observe that if X is

CP1, then P(X) is X × X, and so the embedding is the (tautological) diagonal embedding.

Then observe that this tautological embedding commutes with the diagonal action of

Aut(CP1) on CP1 × CP1. This immediately implies the earlier statement on the existence

of canonical compatible embeddings for any Riemann surface with a projective structure.

The embedding of the second order infinitesimal neighborhood 3∆ of ∆ into P(X)

actually does not depend upon the choice of the projective structure. A direct construction

of this embedding of the second order infinitesimal neighborhood of ∆ into P(X) is given

below.

In view of Lemma 4.2, giving an identification of the second order infinitesimal

neighborhoods of the above type is equivalent to giving an isomorphism

J20(OX) −→ J1(L)⊗ L⊗−3, (4.4)
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where the fiber J20(OX)x ⊂ J2(OX)x at any x ∈ X is given by the jets of functions vanishing

at x. Since the map defined by f 7−→ df identifies J20(OX) with J1(KX), we have a natural

isomorphism of the type (4.4) as soon as we have established the following statement.

For any nonzero integer i, there is a nondegenerate bilinear pairing

J1(Tx)⊗ J1(L⊗i) −→ J1(L⊗i)

between J1(TX) and J1(L⊗i) with values in L⊗i.

Now, the operation of taking the Lie derivative with respect to a vector field is

exactly such a pairing. Indeed, the Lie derivative

(V, s) 7−→ LVs,

where s (respectively, V) is a local section of L⊗i (respectively, TX), defines an isomorphism

of J1(TX) with J1(L⊗i)∗
⊗

L⊗i. The Lie derivative of sections of any tensor power of L is

defined using the isomorphism Ψ in (2.1), together with the Leibniz identity

LV (s⊗ t) = (LVs)⊗ t+ s⊗ LVt.

The canonical isomorphism of the type (4.4) that we are seeking is obtained by setting

i = 1 and −2.

To equip X with a projective structure is equivalent to extending the above

identification, of the second order infinitesimal neighborhoods of ∆ and X, to an iden-

tification of their third order infinitesimal neighborhoods (see [D, Definition 5.6 bis]).

The following lemma is needed in our study of embeddings of the higher order

infinitesimal neighborhoods of ∆.

Lemma 4.5. For a Riemann surface with a projective structure, the space of all differ-

ential operators of order n− 1 from L⊗(n−1) to L⊗(1−n) admits a natural decomposition of

the following form:

H0 (X,Hom
(
Jn−1(L⊗(n−1)),L⊗(−n+1))) = n−1⊕

i=0

H0 (X,K⊗iX ) .
Proof. Let V/C be a vector space of dimension 2 equipped with a symplectic form ω.

Denoting by L the line bundle OP(1) on the projective line P = P(V ), the vector bundle

Jn(L⊗k) on P is shown to be canonically isomorphic to Jn(L⊗n)
⊗
L⊗(k−n) in the following

two cases: (1) when k < 0; (2) when k ≥ n.

The first step in constructing the isomorphism is to consider the long exact se-

quence of cohomologies for the exact sequence

0 −→ L⊗k ⊗ OP(−(n+ 1)x) −→ L⊗k −→ Jn(L⊗k)x −→ 0,
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where x ∈ P. Note that in the first case, H0(P, L⊗k) = 0; and in the second case,

H1
(
P, L⊗k ⊗ OP(−(n+ 1)x)

) = 0. A choice of 0 6= w ∈ V representing x provides an iso-

morphism between OP(x) and L. Now after noting that H0(P, L⊗i) = Si(V∗) = Si(V ) (using

ω), and also using Serre duality when k < 0, the key point in the construction is that

for any 0 6= v ∈ V, the following two vector spaces are both canonically isomorphic to

Sn(V ). The first vector space is the kernel of the homomorphism Sn−1−k(V ) −→ S−k−2(V )

defined using the contraction with (v∗)⊗(n+1),where k < 0 and v∗ ∈ V∗, is the dual of vwith

respect to ω. The second vector space in question is the cokernel of the homomorphism

Sk−n−1(V ) −→ Sk(V ) defined using the multiplication with v⊗(n+1), where k ≥ n. Indeed, in

the first case, the isomorphism is defined using the multiplication with v⊗(−k−1) on Sn(V );

and in the second case, it is defined using the contraction with (v∗)⊗(k−n).

Since the isomorphism between Jn(L⊗k) and Jn(L⊗n)⊗L⊗(k−n) is equivariant for the

actions of SL(V ) on P and L, it induces an isomorphism

ψ(n, k) : Jn(L⊗k) −→ Jn(L⊗n)⊗ L⊗(k−n)

over X. Here, X is a Riemann surface equipped with a projective structure together with

a choice of a square root of the canonical bundle, whenever n and k satisfy either of the

above two conditions. (The choice of a theta characteristic provides a lift of the transition

functions of a projective atlas to SL(V ).)

Now consider

ψ(i, n− 1)⊗ψ(i,−2(n− 1− i)): Ji (L⊗(n−1))⊗ Ji (K⊗(n−1−i)
X

)
−→ Ji(L⊗i)⊗ Ji(L⊗i)⊗ L⊗(−n+1), (4.6)

where i ≤ n− 1. The symplectic form ω on V induces a nondegenerate form on any Si(V )

(which is symmetric if i is even and skew-symmetric if i is odd), and hence on Ji(L⊗i) over

P. This is because any fiber of Ji(L⊗i) is canonically isomorphic to Si(V) (see [B1]). Since

this form on Ji(L⊗i) is equivariant under the action of SL(V ), we have a nondegenerate

form on Ji(L⊗i) using the coordinate charts on X compatible with the projective structure.

Thus (4.6) gives the pairing

ψ(i, n− 1) : Ji
(
L⊗(n−1))⊗ Ji (K⊗(n−1−i)

X

)
−→ L⊗(−n+1).

Now for a section s ∈ H0(X,K⊗(n−1−i)
X ), consider the homomorphismψ(i, n−1)(−, s),

which sends any vector v ∈ Ji(L⊗(n−1))y to ψ(i, n− 1)(y)(v, s(y)). The differential operator

s ∈ H0
(
X,Diff iX

(
L⊗(n−1),L⊗(−n+1)))

defined by this homomorphism has (−1)is ∈ H0(X,K⊗(n−1−i)
X ) itself as its symbol. This

lifting of the symbol of a differential operator that maps any s to (−1)is immediately
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yields the decomposition (4.5) of differential operators. This completes the proof of the

lemma.

We note that the decomposition in Lemma 4.5 depends on the choice of projective

structure.
For an integer n ≥ 3, let

ρ : Jn0 (OX) −→ Jn−1 (L⊗(n−1))⊗ L⊗(−n−1)

be an isomorphism of algebra bundles giving an embedding of then-th order infinitesimal

neighborhood of∆ into P(X) such that the restriction of ρ to the second order infinitesimal

neighborhood 3∆ of ∆ is the canonical one defined above. Restricting ρ to the third order

infinitesimal neighborhood 4∆ of ∆, we get a projective structure P on X (see [D]).

Let

ρ(P) : Jn0 (OX) −→ Jn−1 (L⊗(n−1))⊗ L⊗(−n−1)

be the isomorphism giving the embedding corresponding to the projective structure P.

It can be checked that any automorphism of Jn−1(L⊗(n−1)), which as an auto-

morphism of Jn−1(L⊗(n−1)) ⊗ L⊗(−n−1) preserves its algebra structure, is actually conju-

gate to a unique automorphism J1(L⊗(n−1)) of the form c.Id + A, where c ∈ C∗ and A ∈
H0(X,Hom(Jn−1(L⊗(n−1)),

L⊗(−n+1))). The inclusion map

L⊗(n−1) ⊗ K⊗(n−1)
X = L⊗(−n+1) −→ Jn−1 (L⊗(n−1))

enables H0(X,Hom(Jn−1(L⊗(n−1)),L⊗(−n+1))) to be realized as a subspace of the space of

endomorphisms of Jn−1(L⊗(n−1)).

Now consider the automorphism

ρ ◦ (ρ(P))−1 : Jn−1 (L⊗(n−1)) −→ Jn−1 (L⊗(n−1)) ,
where ρ and (ρ(P))−1 are defined above. Let

ρ ∈ H0 (X,Hom
(
Jn−1 (L⊗(n−1)) ,L⊗(−n+1)))

correspond to ρ ◦ (ρ(P))−1 by the above decomposition.

Consider the decomposition of the differential operator ρ according to Lemma

4.5 for the projective structure P on X. Since, by definition, ρ(P) and ρ agree on the third

order infinitesimal neighborhood of ∆, it follows immediately that the components of ρ

in H0(X,K⊗iX ) vanish for all i ≤ 2.

Let

F(ρ) ∈
n−1⊕
i=3

H0 (X,K⊗iX ) (4.7)

be the element corresponding to ρ.
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Let G(n) denote the space of all embeddings of the n-th order infinitesimal neigh-

borhood of ∆ into P(X) whose restriction to the second order infinitesimal neighborhood

of∆ is the canonical one. Let P(X) denote the space of all equivalence classes of projective

structures on X.

Lemma 4.8. The map from the space of embeddings G(n) to

P(X)×
n−1⊕
i=3

H0 (X,K⊗iX ) ,
which sends any ρ ∈ G(n) to the pair (P, F(ρ)), constructed in (4.7), is a bijective identifi-

cation.

Proof. The above lemma follows from Theorem 2.10. We omit the details.

The following theorem is an immediate consequence of Theorem 3.6.

Theorem 4.9. For any compact Riemann surface X, the space of trivializations T(n),

defined in (3.3), is canonically identified with G(n + 2), the space of embeddings of the

(n + 2)-th order infinitesimal neighborhood of ∆ into P(X) restricting to the canonical

embedding on the second order infinitesimal neighborhood 3∆.

In the following two sections,we consider vector bundles over a Riemann surface.

Given a holomorphic vector bundle E over X, with H0(X, E) = 0 = H1(X, E), the kernel of

the Dolbeault operator for E is studied.

5 The kernel function of the inverse of a

Dolbeault operator

Let X be a compact connected Riemann surface of genus g. Let MX(r) denote the moduli

space of semistable vector bundles of rank r and degree r(g − 1) over X. Denote by Θ

the reduced divisor on MX(r) defined by all E with H0(X, E) 6= 0. In other words, Θ is the

generalized theta divisor on MX(r).

For a vector bundle E ∈MX(r), a vector bundle VE is constructed over X×X in the

following way:

VE := p∗1E⊗ p∗2(E∗ ⊗ KX)⊗ OX×X(∆), (5.1)

where KX is the canonical line bundle over X.

We recall some results of [B2] and, in order to be somewhat self-contained, some

proofs are also recalled.
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Proposition 5.2. For a vector bundle E ∈MX(r)−Θ, the restriction to the diagonal

H0 (X× X,VE) −→ H0 (∆, VE|∆) = H0(X,End(E))

is an isomorphism.

Proof. Since the restriction of the line bundle OX×X(∆) to ∆ coincides with the normal

bundle of ∆ in X×X, it follows immediately that with respect to the natural identification

of ∆ with X, the restriction of VE to ∆ is naturally isomorphic to End(E).

Tensoring the exact sequence

0 −→ OX×X(−∆) −→ OX×X −→ O∆ −→ 0

with VE, the exact sequence

0 −→ p∗1E⊗ p∗2(E∗ ⊗ KX) −→ VE −→ End(E) −→ 0

is obtained.

Given that H0(X, E) = 0 = H1(X, E), and invoking the Serre duality, the Künneth

formula asserts that

H0 (X× X, p∗1E⊗ p∗2 (E∗ ⊗ KX)) = 0 = H1 (X× X, p∗1E⊗ p∗2 (E∗ ⊗ KX)) .
Finally, the proof of the proposition is completed by considering the long exact sequence

of cohomologies for the above exact sequence.

Take any E ∈MX(r)−Θ. Let

φE ∈ H0 (X× X,VE) (5.3)

be the section that Proposition 5.2 associates to the identity endomorphism of E.

Let

ζ ∈ H0 (2∆, (p∗1KX ⊗ p∗2KX ⊗ OX×X(2∆)
)∣∣

2∆

)
denote the invariant section in Theorem 2.2; in a coordinate chart, ζ coincides with s(−2)

defined in (2.4).

Finally, consider the section

ΦE := (
φE ⊗ σ∗φE

)∣∣
2∆ ⊗ ζ∗ ∈ H0 (2∆, (p∗1End(E)⊗ p∗2End(E)

)∣∣
2∆

)
.

Since φE|∆ = IdE, we have ΦE|∆ = IdEnd(E). Therefore, the restriction of the above section

ΦE to 2∆ defines a holomorphic connection on End(E) (see [D]). However, any holomorphic

connection on a Riemann surface is flat.
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Let ∇E denote the above obtained flat connection on the vector bundle End(E).

Using the flat connection ∇E, the sectionΦE naturally extends to 3∆. On the other

hand, φE
⊗
σ∗φE is also defined over 3∆. So, using the homomorphism End(E) −→ OX

defined by A 7−→ trace(A)/r, we get a section

ζE ∈ H0 (3∆, (p∗1KX ⊗ p∗2KX ⊗ OX×X(2∆)
)∣∣

3∆

)
,

which restricts to the section ζ over 2∆. From Theorem 2.2, the section ζE defines a

projective structure on X. This projective structure on X is denoted by PE.

The above arguments are presented with more details in [B2].

The space of global smooth (p, q)-forms with values in E is denoted byΩp,q(E). As

we have H0(X, E) = 0 = H1(X, E), the Dolbeault operator

∂E: Ω
0(E) −→ Ω0,1(E),

which defines the holomorphic structure of E, is invertible.

Let KE denote the kernel of the pseudo-differential operator (∂E)−1, which is of

order −1. In other words,KE is a smooth section of p∗1E
⊗
p∗2(E∗

⊗
KX) over X×X−∆, and

for every f ∈ Ω0,1(E), the identity

(∂E)
−1(f) =

∫
X

〈KE, f〉 (5.4)

is valid. The pairing 〈KE, f〉 is defined using the contraction of E with E∗.

Lemma 5.5. The following equality is valid:

π ·KE = −φE,

where φE is defined in (5.3).

Proof. For any f ∈ Ω0,1(E), we have

∂E

∫
X

φEf =
∫
X

∂E(φE)f, (5.6)

as ∂Ef = 0. For any x0 ∈ X, let E∗x0

⊗
Kx0 denote the trivial vector bundle over X with

E∗x0

⊗
Kx0 as the typical fiber. Note that ∂E(φE(−, x0)) is a distributional section of the

vector bundle (E
⊗

(T0,1)∗)
⊗
E∗x0

⊗
Kx0 over X. Here φE(−, x0) denotes the restriction of φE

to X× x0. Since the section φE is holomorphic outside ∆, ∂E(φE(−, x0)) is supported at x0.

For a compactly supported C∞ function f on C, the identity

f · ∂
(
dz

z

)
= − f(0)δ(0)

2π
√−1
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follows immediately from Stokes’s theorem, where δ(0) is the Dirac delta function sup-

ported at 0, and (dz/z) is considered as a distributional section of K on a neighborhood

of zero.

Now, comparing (5.4) and (5.6), the lemma follows from the fact that the residue

of φE, considered as a meromorphic section of p∗1E
⊗
p∗2(E∗

⊗
KX), along the diagonal ∆,

is the identity endomorphism of E.

For any E ∈MX(r) with H0(X, E) 6= 0, the Dolbeault operator ∂E is not invertible. So

the kernel function of the inverse of ∂E defined on the image of ∂E, with the orthogonal

complement of kernel(∂E) as the target, is not given by a meromorphic section.

The holomorphic section φE is well behaved with respect to taking the direct

image. This is explained next.

Let π: X −→ Y be a covering map, possibly ramified, between two Riemann sur-

faces. For a holomorphic vector bundle E over X, the natural isomorphism

Hi(X, E) = Hi(Yπ∗E)

is valid for any i ≥ 0. Therefore, the condition E ∈ MX(r) − Θ ensures that π∗E is in

the complement of the generalized theta divisor on MY (rd), where d is the degree of the

covering π. We show that for every E ∈MX(r)−Θ, the section φπ∗E on Y× Y is obtained by

taking the direct image of φE. For that, we need the following lemma.

Lemma 5.7. For any E ∈MX(r), the vector bundle VE over X× X, defined in (5.1), has the

property that the direct image (π×π)∗VE is naturally isomorphic to the vector bundle Vπ∗E

over Y × Y.

Proof. From the definition of a direct image of a coherent sheaf, it is easy to construct

a natural homomorphism from Vπ∗E to (π× π)∗VE. The point to observe is that the mero-

morphic form (dz/z) on C pulls back to C as k · (dz/z) by the mapping f(z) = zk.
If π is ramified over D ⊂ Y, then the above homomorphism is an isomorphism

over the complement of (D× Y)
⋃

(Y×D) in Y× Y. Using the Grothendieck-Riemann-Roch

theorem, it can be checked that

c1((π× π)∗VE) = c1(Vπ∗E).

Therefore, the above homomorphism must be an isomorphism.

The following lemma shows how the section φE, which was constructed in (5.3),

behaves with respect to a direct image.

Lemma 5.8. Let E ∈ MX(r) − Θ. Using the isomorphism between (π × π)∗VE and Vπ∗E

obtained in Lemma 5.7, the section (π × π)∗φE ∈ H0(Y × Y, (π × π)∗VE) coincides with

φπ∗E ∈ H0(Y × Y,Vπ∗E).
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Proof. We already noted that the given condition E ∈ MX(r) − Θ implies that π∗E is

contained in the complement of the generalized theta divisor on MY (rd).

It is straightforward to check that the restriction of (π × π)∗φE to the reduced

diagonal in (Y − D) × (Y − D) coincides with the identity endomorphism of (π∗E) |Y−D,
where D ⊂ Y, as before, is the divisor over which the map π is ramified. Now, the lemma

follows from Proposition 5.2, which says that the restriction to the diagonal is an iso-

morphism.

In the following section, some natural differential operators on vector bundles

associated to E ∈MX(r)−Θ are constructed.

6 Differential operators on a vector bundle outside

the theta divisor

We start with the following lemma.

Lemma 6.1. Let E ∈MX(r)−Θ. For any n ≥ 0, the jet bundle Jn(End(E)
⊗
ξ) is canonically

isomorphic to End(E)
⊗
Jn(ξ).

Proof. This is an immediate consequence of the flat connection∇E on End(E) constructed

in the previous section. Indeed, any local section s of End(E)
⊗
ξ can be uniquely ex-

pressed as

s =
r2∑
j=1

ej ⊗ sj,

where {ej} is a fixed basis of the local system defined by the flat connection, and sj are local

sections of ξ. This decomposition gives an injective homomorphism from Jn(End(E)
⊗
ξ)

to End(E)
⊗
Jn(ξ), which is evidently an isomorphism.

Fix once and for all a line bundle L over X of degree 1− g such that L⊗2 = TX.

Given a projective structure on X, using the choice of the square root L of TX, the

one cocycle with values in PSL(2,C) defined by the transition functions admits a natural

lift to a one cocycle with values in SL(2,C) (see [Gu], [T]).

If X is equipped with a projective structure, then we have the following two

decompositions of differential operators.

Proposition 6.2. Let X be equipped with a projective structure. Let k, l ∈ Z, and n ∈ N
be such that k /∈ [−n+ 1,0], and l− k− j /∈ {0,1} for any integer j ∈ [1, n]. Then the space
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of global differential operators of order n from L−k to L−l, namely, H0(X,Diff nX (L−k,L−l)),

is canonically isomorphic to

n⊕
i=0

H0 (X,Lk−l ⊗ TiX) ,
with the property that the image ofH0(X,Lk−l+2 j) by this isomorphism is contained in the

subspace H0(X,Diff jX(L−k,L−l)) ⊆ H0(X,DiffnX(L−k,L−l)).

The above proposition is Theorem B of [B3]. This proposition gives a canonical

splitting (semisimplification) of the natural filtration of H0(X,DiffnX(L−k,L−l)) given by its

subspaces H0(X,Diff jX(L−k,L−l)) defined by the lower order differential operators, where

0 ≤ j ≤ n.

In Section 5, a projective structure PE was constructed from anyE ∈MX(r)−Θ. Now

using Lemma 6.1 and the fact that End(E)∗ = End(E), Proposition 6.2 has the following

consequence.

Proposition 6.3. Let E ∈MX(r)−Θ. Let k, l ∈ Z, and n ∈ N be such that k /∈ [−n+1,0], and

l−k− j /∈ {0,1} for any integer j ∈ [1, n]. Then the space of global differential operators of

order n from End(E)
⊗

L−k to L−l, namely, H0(X,DiffnX(End(E)
⊗

L−k,L−l)), is canonically

isomorphic to the direct sum

n⊕
i=0

H0 (X,End(E)⊗ Lk−l ⊗ TiX
)
,

with the property that the image of H0(X,End(E)
⊗

Lk−l+2 j) is contained in the

subspace consisting of operators of order j, namely, H0(X,Diff jX(End(E)
⊗

L−k,L−l)), of

H0(X,DiffnX(End(E)
⊗

L−k,L−l)).

Similarly, Corollary 2.12 has the following consequence.

Proposition 6.4. Let E ∈ MX(r) − Θ. The space of global differential operators of order

n from End(E)
⊗

Ln to L−n−2 admits the following natural decomposition:

H0 (X,Diffn+1
X

(
End(E)⊗ Ln,L−n−2)) = n+1⊕

i=0

H0 (X,End(E)⊗ KiX
)
.

The differential operator of order n+ 1,

Dn+1(E) ∈ H0 (X,Diffn+1
X

(
End(E)⊗ Ln,L−n−2)) , (6.5)

corresponding to the section of End(E) defined by the identity endomorphism, is a gen-

eralization of the Bol’s operator to the context of the vector bundles.
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Let f and g be two local sections of End(E)
⊗

Ln over U ⊂ X. Then

〈Dn+1(E)f, g〉 − 〈Dn+1(E)g, f〉

is a section of End(E)
⊗
KX over U, where 〈−,−〉 denotes the contraction of Ln with L−n.

In other words, the above operation defines a C-linear skew-symmetric pairing

End(E)⊗ Ln
⊗
C

End(E)⊗ Ln −→ End(E)⊗ KX (6.6)

on the coherent sheaf End(E)
⊗

Ln associated to the vector bundle End(E)⊗ Ln; the sheaf

End(E)⊗ KX is similarly the coherent sheaf associated to the vector bundle End(E)⊗ KX.

The above pairing is evidently nondegenerate. Indeed, it is an immediate consequence

of the fact that the symbol of Dn+1(E) is the section of End(E) defined by the identity

endomorphism of E.

In [B1, Theorem 4.1], it was shown that a projective structure on X induces a flat

connection on the jet bundle Jn(Ln). For any E ∈MX(r)−Θ, the jet bundle

Jn(End(E)⊗ Ln) = End(E)⊗ Jn(Ln)

has a natural flat connection induced by a flat connection on Jn(Ln) for the projective

structure PE together with ∇E on End(E).

In [CMZ], a natural isomorphism

φX : Jn−1(TnX )⊕ OX −→ DiffnX(OX,OX)

has been constructed for any Riemann surface X equipped with a projective structure.

(An alternative description of this isomorphism was later given in [B1, p. 465].)

For any E ∈MX(r)−Θ, using Lemma 6.1 and the projective structure PE, the above

isomorphism φX induces an isomorphism

φEX : Jn−1(TnX )⊗ End(E)⊕ End(E) −→ DiffnX(End(E),OX). (6.7)

If genus(X) ≥ 2, then TiX
⊗

End(E), where i ≥ 1, does not have any global nonzero

section, since TiX
⊗

End(E) is semistable of strictly negative degree. Now, using the long

exact sequence of cohomologies for the exact sequence (2.5), and using induction on n, it

follows easily that

H0 (X, Jn−1(TnX )⊗ End(E)
) = 0.

Therefore, the isomorphism φEX in (6.7) implies that the natural inclusion

H0 (X,End(E)
) = H0 (X,Diff0

X

(
End(E),OX

)) −→ H0 (X,DiffnX
(
End(E),OX

))
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is actually an isomorphism.

In the rest of the paper, we investigate some natural differential operators on

Riemann surfaces with a projective structure.

Appendix A: A differential operator

For a holomorphic function g on an open set of C, its n-th derivative, namely, ∂
ng
∂zn
, is

denoted by g(n). Also, often g′ is used instead of g(1). Let

γ : U −→ U1 (A.1)

be a biholomorphism between two simply connected analytic open sets of C. Fix on U a

square root (γ′)1/2 of the function γ(1). For an integer n ≥ 1 and a holomorphic function

f ∈ Γ (U1,O) on U1, define D(γ, n)f ∈ Γ (U,O) by

(D(γ, n)f)(z) = (f(n) ◦ γ)(z)
(
γ′(z)

)(n+1)/2 −
(

f ◦ γ
(γ′)(n−1)/2

)(n)

(z), (A.2)

where z ∈ U.

Evidently, the map f 7−→ D(γ, n)f is a differential operator of order n from Γ (U1,O)

to Γ (U,O). Alternatively, the C-linear homomorphism

ψ 7−→ D(γ, n)(ψ ◦ γ−1), (A.3)

where ψ ∈ Γ (U,O), is a section over U of the sheaf of differential operators of order n

on the trivial line bundle. Since the tangent bundle TU has a natural trivialization, the

symbol of a differential operator of order i from Γ (U,O) to Γ (U,O) is an element of Γ (U,O).

It is a simple calculation to check that the symbol of this order n differential operator

D(γ, n) vanishes identically. It involves a slightly more nontrivial computation to check

that the symbol of the order n − 1 differential operator also vanishes identically. The

conclusion is that the operator D(γ, n) is actually of order n− 2.

Another simple computation yields that if M is a Möbius transformation, which

means that

M(z) = az+ b
cz+ d ,

where ad− bc = 1, then

D(M,n) = 0 (A.4)
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for all n ≥ 1. In fact, more generally, for a Möbius transformation M as above, denoting

the function w 7−→ (cw+ d)k by M[k], where k ∈ Z, the following identity is valid:

D(M ◦ γ, n)(f)(z) = D(γ, n)(M[n−1]f ◦M)(z), (A.5)

where f ∈ Γ (M(U1),O) and z ∈ U. Since D(Id, k) = 0 for any k ≥ 1, the equality (A.5)

immediately gives (A.4). Similarly, the identity

D(γ ◦M,n)(f)(z) = D(γ, n)(f)(M(z))M[−n−1](z), (A.6)

where z ∈M−1(U), is valid.

Clearly, D(γ,1) = 0. To calculate D(γ,2), for a holomorphic function g on an open

subset of C, let

SD(g) := 2g′(z)g′′′(z)− 3
(
g′′(z)

)2
2(g′

(
z)
)2

denote the Schwarzian derivative of g (p. 164 of [Gu]). The identity

(D(γ,2)f)(z) = f(γ(z))SD(γ)(z)

2(γ′)1/2(z)
, (A.7)

which relates D(γ,2) with SD(γ), is valid. To calculate the symbol of the higher order

operators, let

D(γ, n) ∈ Γ (U,Diffn−2
U (O,O))

be the differential operator of order n − 2 defined in (A.3), which operates on the sheaf

Γ (U,O). The symbol of this operator D(γ, n) is calculated to be

symbol(D(γ, n)) = n(n2 − 1)(γ′)(n−3)/2

12
SD(γ). (A.8)

The equality (A.7) follows from (A.8).

For any simply connected open set W ⊆ C, let (LW,ΨW ) be a pair consisting of a

line bundle LW on W and a section

ΨW ∈ Γ (W,LW ).

Furthermore, there is a given isomorphismAW : L⊗2
W −→ TW, such thatA⊗2(Ψ⊗2

W ) coincides

with the section ∂
∂z
, of TW .

Let

DW (n) ∈ Γ
(
W,DiffnW

(
L⊗(n−1)
W , L⊗(−n−1)

W

))
(A.9)
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be the differential operator of order n on W defined by

DW (n)(fΨ⊗(n−1)
W ) = ∂

nf

∂zn
Ψ⊗(−n−1)
W ,

where f is a holomorphic function onW. Note that the operator DW (n) remains unchanged

if the isomorphism ΨW is replaced by −ΨW .

Let γ be as in (A.1), and let (LU,ΨU) and (LU1 , ΨU1 ) be as defined above. Fix an

isomorphism

Fγ : γ∗LU1 −→ LU

such that (A⊗2
U ) ◦ F⊗2

γ ◦ (A⊗2
U1

)−1(z) = dγ−1(γ(z)) for all z ∈ U, where AU and AU1 were defined

before (A.9); the homomorphism dγ is the differential of γmapping TU to γ∗TU1 . The above

condition determines Fγ up to the sign. This ambiguity of sign is removed by imposing

the condition that

(γ′)1/2Fγ(γ∗ΨU1 ) = ΨU.
The isomorphism between (γ∗LU1 )⊗i and L⊗iU , induced by Fγ, is denoted by F⊗iγ . Note, using

the identity

(γ′)1/2Fγ(ΨU1 ) = ΨU,
that Fγ automatically fixes a square root (γ′)1/2.

The following lemma follows from a simple computation.

Lemma A.10. Let γ be as in (A.1), and let (LU,ΨU) and (LU1 , ΨU1 ) be as defined above. Then

for any holomorphic function f ∈ Γ (U1,O), the identity

F⊗(−n−1)
γ DU1 (n)

(
fΨ⊗(n−1)

U1

)
−DU(n)

((
Fγ
(
ΨU1

))⊗(n−1)
f ◦ γ

)
= Ψ⊗(−n−1)

U D(γ, n)f

is valid, where D(γ, n)f is as in (A.2).

Note that the differential operator, which maps fΨ⊗(n−1)
U1

to Ψ⊗(−n−1)
U D(γ, n)f, does

not depend upon the choice of the square root (γ′)1/2. Indeed, if (γ′)1/2 is replaced by

−(γ′)1/2, then Fγ changes to −Fγ.
In Appendix B,we derive some implications of the operatorD(γ, n) in the context

of a Riemann surface equipped with a projective structure.

Appendix B: A Differential operator on a Riemann surface

with a projective structure

Let X be a Riemann surface equipped with a projective structure, which we denote by P.

Fix a pair (L, Ψ), where

Ψ : L⊗2 −→ TX (B.1)

is an isomorphism of line bundles.
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Take a coordinate chart (Uα,φα) compatible with P. Recall the pair (LW,ΨW ) con-

structed in Section 2 for any open set W of C. Substituting φα(Uα) for W, fix an isomor-

phism

θα : L|Uα −→ φ∗αLφα(Uα) (B.2)

such that θ⊗2
α ◦Ψ−1 = dφα. The isomorphism from L⊗i|Uα to (φ∗αLφα(Uα))⊗i, induced by θα, is

denoted by θ⊗iα . Note that there is a natural isomorphism between L⊗2
W and TW . Let Dα(n)

be the differential operator onUα obtained from the operator DW (n) defined in (A.9), using

the isomorphism θα, namely,

Dα(n) := (θ⊗(−n−1)
α )−1 ◦Dφα(Uα)(n) ◦ θ⊗(n−1)

α ∈ Γ (Uα,DiffnUα
(
L⊗(n−1),L⊗(−n−1))) , (B.3)

which maps sections of L⊗(n−1) to sections of L⊗(−n−1). Note that although there are two

choices of the homomorphism θα, differing by multiplication with−1, the operator Dα(n)

does not depend upon the choice of θα.

Let (Uβ,φβ) be another coordinate chart compatible with the projective structure

P. Since φβ ◦φ−1
α is a Möbius transformation, Lemma A.10 and the identity (A.4) combine

together to imply that the restrictions of the two differential operators Dα(n) and Dβ(n)

to the open setUα∩Uβ actually coincide. Thus patching these operators,we have a global

differential operator

DP(n) ∈ H0 (X,DiffnX
(
L⊗(n−1),L⊗(−n−1))) (B.4)

on X, which depends on the projective structure P. This differential operator is called

the Bol’s operator (see [Bo]). (An alternative construction of this operator can be found in

[B1].)

Take another projective structure P1 on X. Let φ and φ1 be two coordinate func-

tions on U0 ⊆ X compatible with P and P1, respectively. As in (B.2), let θ and θ1 be two

isomorphisms from L|U0
to φ∗Lφ(U0) and φ∗1Lφ1(U0), respectively. With a slight abuse of

notation, the isomorphisms of tensor powers induced by θ (and θ1) are also denoted by θ

(and θ1).

Consider the differential operator D(γ, n) defined in (A.2), after substituting U =
φ(U0) and γ = φ1 ◦ φ−1. Finally, let

Dn
U0

(P,P1) ∈ Γ
(
U0,Diffn−2

U0

(
L⊗(n−1),L⊗(−n−1))) (B.5)

be the differential operator of order n− 2 defined by

Dn
U0

(P,P1)
(
θ−1

1

(
fΨ⊗(n−1)

φ1(U1)

))
= θ−1(Ψ⊗(−n−1)

φ(U) D(γ, n)f),
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where f ∈ Γ (φ1(U0),O) and ΨU is as in Appendix A. The identities (A.4), (A.5), and (A.6)

together imply that for any two open sets U0 and U1 of X, the two corresponding differ-

ential operators, defined in (B.5), actually coincide over U0 ∩U1. Thus, patching up these

locally defined operators, we get a global differential operator

Dn
X(P,P1) ∈ H0 (X,Diffn−2

X

(
L⊗(n−1),L⊗(−n−1))) (B.6)

of order n− 2 on X.

The following lemma is immediate from Lemma A.10.

Lemma B.7. Let DP(n) and DP1 (n) be the two differential operators for P and P1,

respectively, as constructed in (B.4). Then the identity

DP1 (n)−DP(n) = Dn
X(P,P1)

is valid.

The space of all projective structures on the Riemann surface X is an affine space

for H0
(
X,K⊗2

X

)
(see [Gu]). Let ω ∈ H0

(
X,K⊗2

X

)
be such that

P1 = P+ω. (B.8)

Note that DP1 (2)−DP(2) ∈ H0
(
X,K⊗2

X

)
. The equality

DP1 (2) = DP(2)+ ω
2

is valid (see [HS], [CMZ]).

Lemma B.7 and the equality (A.8) together immediately imply the following lemma.

Lemma B.9. The following equality is valid:

symbol
(
DP1 (n)−DP(n)

) = symbol
(
Dn
X(P,P1)

) = n(n2 − 1)ω

12
.
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