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Projective Structures on a Riemann Surface, 11
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1 Introduction

This is a continuation of an earlier work [BR] (referred to as Part I), where we studied some
algebraic-geometric aspects of projective structures on a compact Riemann surface.

For a compact Riemann surface X, let A be the diagonal divisor in X x X, and let
pi, 1= 1,2, be the projection of X x X onto the i-th factor. We denote by A,, the n-th order
infinitesimal neighborhood of A in X x X, defined by the nonreduced divisor (n + 1)A, and
denote by L a square root of the holomorphic tangent bundle Tx of X.

We recall that a projective structure on X is an equivalence class of coverings by
holomorphic coordinate charts such that all the transition functions are Mébius trans-
formations. The line bundle M := piL Q p5L Q) Oxxx(—A) admits a natural trivialization
over A;. In Part I, it was shown that a projective structure on X can be viewed as a choice
of an extension of the trivialization of the line bundle M on A; to a trivialization on A,.

The question that we address here is the interpretation of the trivializations of
M on higher order infinitesimal neighborhoods of A. As in Part I, the motivation for this
comes from mathematical physics. As in the earlier case, the results are of independent
geometric interest.

In Theorem 3.6 (cf. Remark 3.1), we prove that for n > 3, the space of all trivial-
izations of M on A,, which restrict to the canonical trivialization over A,, is canonically
identified with the space of all projective structures on X together with a differential of
order i for each i € [3,n].

In Theorem 3.11, we establish that for n > 2, the above space of trivializations

can be identified with a certain natural class of differential operators on X of order n.
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The differential operators in question map sections of L™~ to sections of £L&""1 and
have the following form in local coordinates:
e, dvt

T T ; fi
where f; are local holomorphic functions.

P. Deligne has shown in [D] that a projective structure can also be defined as the
extension of a natural embedding of A, in a certain projective bundle Py, to an embedding
of Az. The projective bundle Py, over X coincides with the projectivized jet bundle P(J*(£)).

In Theorem 4.9, we show that the above space of trivializations of M over A,, is
canonically identified with the space of all embeddings of A, into P(J}(£)),which extend
the above mentioned canonical embedding of A,.

In Sections 5 and 6, we consider vector bundles over X. In Section 5, we recall the
construction of a natural flat connection on the endomorphism bundle of a semistable
vector bundle E of rank r and degree r(g — 1), where g = genus(X), and with H°(X, E) = 0.
The main step in the construction of the flat connection on End(E), for such a vector
bundle E, is the existence of a natural section of pE & p3(E* X Kx) @ Oxxx(A). Here we
give an interpretation of this section as the kernel of the inverse of the Dolbeault operator
on E.

A vector bundle E of the above type is known to give a projective structure on X. In
Section 6, we make some observations on the spaces of differential operators associated
to E, by making use of the flat connection on E and the projective structure on X.

The results of Appendices A and B are used in Sections 2 and 3.

We now describe briefly the relationship of this work with some questions con-
cerning conformal quantum field theory (CQFT) and vertex algebras (see [K]). Those with
no interest in such questions may proceed immediately to Section 2.

The present work is part of a continuing study of a certain model quantum field
theory on a curve, known as the b—c system, which appears in CQFT and string theory (see
[R2] for a review of earlier work). This study is based on the development of a geometric
understanding of its operator product expansion (OPE) on a compact Riemann surface
of arbitrary genus. The concept of an OPE has been made precise in the theory of Vertex
Algebras, a mathematically precise formulation of CQFT on the complex plane (see [K]).

The OPE of the b — ¢ system on the complex plane is a Laurent expansion of the
product of the two quantum fields b(z) and c(w) in powers of z — w. The singular part is a
first order pole, while the holomorphic part has as coefficients normal ordered products
:0" !bc : (w), which are generators of certain algebras. For n = 1 and 2, the algebras in
question are infinite oscillator and Virasoro algebras, respectively (see [KR]); for n > 2, it
is an infinite W-algebra (see [FKRW]).
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The OPE is usually defined only on the complex plane, though recent work of
Beilinson and Drinfeld (see [G]) gives it a meaning in the higher genus case as well. Our
viewpoint is different: as shown in earlier work (see [R2] and references therein), the
singular part of the OPE leads to the consideration of the line bundle M on X x X. In the
present paper, we make the geometric ansatz that the sum of the one point function of
the first n (n > 2) terms of the holomorphic part of this OPE can be identified with trivi-
alisations of the line bundle M on A,, which restrict to a canonical trivialisation on A,. In
[R1] and Part I, the cases n = 1 and n = 2 were studied, respectively. Theorems 3.6, 3.11,
and 4.9, stated above, now give three different global geometric interpretations to this
sum of terms coming from the OPE of the b — c system. Mathematical physicists can im-
mediately recognise them as describing aspects of so-called “W-geometry.” Remarkably,
our geometric ansatz correctly captures the geometry of the very complicated algebraic
expansion into normal-ordered operators, which is the OPE. Those familiar with the
Grassmannian formulation of soliton equations (see [SW]) may note some fascinating

parallels between our results and some formulas to be found there (see also [M]).

2 Projective structures on a Riemann surface

A projective atlas on a Riemann surface X is a covering {U,, ¢« }aecr 0f X by holomorphic
coordinate charts, where ¢, is a biholomorphism from U, to an open set in C, such that
any composition of maps ¢p o dp; !, «, B € 1, is the restriction of a Mébius transformation
to dy (Ll06 N Uﬁ). Such an atlas on X gives a one cocycle on X with values in PSL(2,C), the
Mobius group of automorphisms of CP!. Another projective atlas {Uy, Go}xcr is called
equivalent to {Uy, dulacr if {Uy, dotaciur is also a projective structure. A projective struc-
ture on X is an equivalence class of compatible projective atlases, and it determines an
element in H!(X, PSL(2, C)) (see [Gul).

Let X be a compact Riemann surface equipped with a projective structure ‘L.
Choosing a line bundle £, with £®2 = Ty, is equivalent to choosing a lift of the element
corresponding to 3, in H!(X, PSL(2, C)), to an element in H!(X, SL(2,C)) (see [T]). The map
from H!(X, SL(2, C)) to H!(X, PSL(2,C)) in question is the one induced by the natural pro-
jection of SL(2,C) onto PSL(2,C).

2(a) A line bundle on the self-product

We first recall an alternative description of a projective structure from Part I.
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Let X be a compact connected Riemann surface. Fix a line bundle £ on X, which

is a square-root of Tx, along with an isomorphism
Y. L8 Ty, (2.1)

Let pi, i = 1,2, denote the natural projection of X x X onto the i-th factor.
It was shown in Part I that the space of all projective structures on X has the
following description in terms of the line bundle M := piL @ p5L & Oxxx(—A) on X x X.

Theorem 2.2. Take any nonzero integer n. The restriction of the line bundle M®" on
X x X to the (nonreduced) divisor 2A has a canonical trivialization. This trivialization is
invariant under the involution of X x X, defined by switching coordinates if n is even; and
it is anti-invariant if n is odd. To each projective structure on X, there is a naturally as-
sociated trivialization of the formal completion of M®" along A, invariant (respectively,
anti-invariant) under the involution of X x X if n is even (respectively, odd), with the prop-
erty that the trivialization restricts to the natural trivialization of M®" over 2A. Moreover,
this association gives a bijective map between the space of all projective structures on X
and the space of all trivializations of M®" over 3A that restrict to the natural trivialization
over 2A. O

Remark 2.3. (1) A trivialization of the formal completion of M®" along A means com-
patible trivializations of the line bundle M®™ over infinitesimal neighborhoods of A in
X x X of every order [Ha, p. 194]. This is equivalent to trivializing M®" over some analytic
neighborhood of A.

(2) The restriction of the line bundle Ox,x(—nA) to Ais Kf“, the n-th tensor power
of the cotangent bundle; and hence the restriction of M®" to A is the trivial line bundle. If n
is even, then the trivialization is canonical;if nis odd, then there is a natural trivialization
up to sign. This indeterminacy of sign can be removed by using the ordering of factors in
the Cartesian product X x X. There is a natural trivialization of M®" over 2A, which is an
extension of the trivialization over A. A description of this trivialization using coordinate
charts is given in (2.4). This trivialization over 2A is determined by the condition that
when n is even (respectively, odd), then it is invariant (respectively, anti-invariant) under
the involution of X x X defined by switching coordinates. Thus, if the involution and the
trivialization are denoted by T and s, respectively, then s coincides with T*s (respectively,

—T*s) if n is even (respectively, odd).

Denoting by q;, i = 1, 2, the projection of CP! x CP! onto the i-th factor, the line
bundle g30M) @ q30(n) @ Ocp1 xcp1 (—MAo), where Ag C CP! x CP! is the diagonal divisor,
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has a canonical trivialization given by the section

o d n/2 d n/2
S(Tl) = (Zl — Zz) (a—Zl> ® (a—zz> N (24)

where (z1,z;) is the coordinate function on CP! x CP* obtained from the obvious coordi-

nate function z on CP! = CU{oo}, and (%)1/2 denotes a section of O(1) such that ((%)1/2)®2
coincides with the section % by the natural isomorphism between Ogp1(2) and Tepi. Note
that though there are two choices for the section (%)l/z, the section in (2.4) does not
depend upon the choice.

For any biholomorphism ¢: U — U’, between open sets of CP!, the two sections,
s(n) and (¢, d)*s(n), respectively, defined over U x U, actually coincide when they are
restricted to 2A,N (U x W). Thus, s(n) gives a trivialization of M®" over 2A for any Riemann
surface X. Indeed, the above property of s(n) ensures that for any two coordinate charts
on X, the two pullbacks of s(n) using the two coordinate functions actually coincide on
the first order infinitesimal neighborhood of the diagonal.

We noted earlier that for a projective structure ‘B3 on X, the element
p € HY(X, PSL(2,C)),

corresponding to 3, lifts to a cohomology class
p € H'(X, SL(2,0))

using L. The line bundle on X associated to p, for the natural action of SL(2,C) on O¢p1 (1),
is canonically identified with L.

The diagonal action of SL(2,C) on CP' x CP! naturally lifts to the line bundle
10 ® q50(n) @ O(—nAy), preserving its trivialization.

For a covering of X by coordinate charts compatible with a given projective
structure, the pullbacks of Ogp1(1) by coordinate maps patch together to produce the
line bundle £ on X. The trivialization of qgi0(n) & q50(n) @ O(—nAy) gives a trivialization
of M®™" over an analytic neighborhood of A. The association between projective structures
and trivializations, which is mentioned in Theorem 2.2, is obtained by restricting this
trivialization to the completion of X x X along A.

Theorem 2.2 has been proved in Part I with n = 2. The proof is identical to it in
any other case.

Restricting M®" to 2A and 3A, respectively, and using the trivialization of M®"

over A, we have the exact sequence

0 — K — (M®n)|3A - (M®n)|2A — 0.
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Hence, if ¢ and 9’ denote the trivializations of (M®")|35 corresponding to any two pro-

jective structures P8 and B’ on X, then
P — P e H° (X, KE?),

since P and 3’ agree over 2A.
On the other hand, the space of all projective structures on X is an affine space
for HO (X, K§?) (see [Gul). Thus

P — P e HO (X KE?).

The relationship between these two observations is provided by the following

identity (see Lemma 3.6 of Part I):

. n ,
‘B—‘B=E(‘B—‘B). (2.5)

2(b) Decomposition of a differential operator

For a holomorphic vector bundle E on X and a positive integer n, the n-th order jet bundle
of E, denoted by J™*(E), is defined to be the following direct image on X:
SE
FAE) = pie (p;E ® Oxfxz(—(n n 1)A)> !
where, as before, p; is the projection of X x X onto the i-th factor. Since A is an effective
divisor, p3E @ Oxxx(—(n + 1)A) is a subsheaf of piE Q) Oxxx(—nA). So, there is a natural

exact sequence

0 — K" QE — J™(E) — JYE) — O.
The inclusion K%“‘“) & E — J"*(E) is constructed by using the inclusion

K;i?(n+l) _ ]n+1 (ox)

which is defined at x € X by (df)®™+1) — 1 /(n 4+ 1)1, where f is any function with
f(x) = 0.
The sheaf of differential operators Diffy(E,F) coincides with Hom(J"(E), F). The

homomorphism
o: Diff}(E,F) — Hom (K{" ® E, F),

which is obtained by restricting a homomorphism from J"(E) to F to the subsheaf K{" @ E,
is known as the symbol map.

Furthermore, for any two integers r, s € N, the natural projection

]T‘JrS(E) - ]S(E)
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admits a canonical lift
H: Ir+S(E) SN ]r (]S(E)) ,

which is an injective homomorphism of vector bundles.

Now consider the following commutative diagram:

0 L£n-1 — K%n ® L@(n—l) In (L®(n—1)) In—l (L®(n—1)) 0
L |
0 Kx ® In—l (L@(n—l)) N ]1 (In—l (L@(n—l))) N ]n—l (L@(n—l)) s> 0.
(2.6)
The differential operator Dy(n) constructed in (B.4) of Appendix B gives a homomorphism

D, : Ji1 (L) s g (g8l (2.7)

which is a splitting of the top exact sequence in (2.6). The composition poD,, is a splitting
of the bottom exact sequence in (2.6). In other words, o D, is a holomorphic connection

on J*1 (L8M=1). Thus we have the following lemma (see [B1, Theorem 4.1]).

Lemma 2.8. For a Riemann surface X with a projective structure, for any n € N, the jet

bundle J™ (L#") is equipped with a natural flat connection. O

Using the splitting D, in (2.7) as the base point, the space of all splittings of the
top exact sequence in (2.6) is identified with

HO (X, Diff;fl (L®(n—l)’ L@(—n—l))) '

Similarly, the space of all splittings of the bottom exact sequence in (2.6) is identified
with

HO (X, End (]n,1 (L@(nfl))) ® KX) .

The composition of a splitting of the top exact sequence in (2.6) with the inclusion
i (in (2.6)) is a splitting of the bottom exact sequence in (2.6). Thus we have a natural
homomorphism

®: HO (X, lef;(tfl (L®(n_l), L®(—n—1))) — s HO (X, End (In—l (L®(n_1))) ® KX) .

Using the GL(n, C) invariant polynomials A — trace (A'), 1 <1i < n, on M(n,C)

we have a map
H: H®(X,End ("' (£®" ")) ® Kx) — @ H® (X, KFY), (2.9)
i=1

which is known as the Hitchin map (see [Hi]).
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The following decomposition of differential operators, which was constructed
in Corollary C of [B3], is very useful for our purpose. However, we wish to give here an

alternative construction of the decomposition.

Theorem 2.10. Let X be a compact Riemann surface equipped with a projective struc-
ture. The map

n
Ho ®: H (X, Diffy " (£, L8 1)) — HHO (X,KF)
i=1
is bijective. 0

Proof. We first consider the case where the genus of X is at least 2. The remaining cases
are treated separately.

Our first step is to establish the injectivity of the map H o ®@.

For D e HO(X,Diffy '(£®n-1 £&n-1)) et ¢ € HOX,K§') be the component of
H o ®(D) of lowest degree. In other words, o # 0, and furthermore, if j < i, then the
component of H o ®(D) in HO(X, K%j) vanishes identically. It is a simple computation to
check that the symbol of the differential operator D coincides with ¢. (This implies that
D is actually of order n — i.) Thus H o ® must be injective.

We complete the proof by showing that the dimensions of the domain and the
target of H o @ coincide.

Using the long exact sequence of cohomologies for the exact sequence of vector
bundles on X,

0 — Diff;( (L®(n—1)’£®(—n—1)) _ Diff?_l (L®(n—1)’L®(—n—1)) _ Kff(“_i_l) — 0,

it can be deduced that
H! (x,Diff; (L®(”*”,L®‘*“*“)) —0 (2.11)

for all j <n — 2. Indeed, if n > 2, then
H! (X, Diff§ (£®M1 L8 1)) = H! (X, K§") =0,

since the genus of X is at least two. Now (2.11) follows from the exact sequence
HY (X, Diff} (6500, £9001) ) — HY (X, Diff) ™ (80, £50n-1))

— H (X,KZ"T) — 0

by using induction on j.
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Finally, (2.11) implies that

dim H° (x,Diff; (L®‘“‘“,L®““‘”)) = ) dimHO (X, K

U )

for all j <n — 1. This can be seen by considering the long exact sequence
0 — HO° (X Diff)j( (L®(“_” L®(—n—1))> — s HO° (X Diff>j<+l (L®(“_1) L®(—n—1))>

— HO (X, KZ" ) — HY (X, Diff] (L8, L8 ))

and using induction on j. Since the map H o ® descends to a map between weighted
projective spaces, it must be bijective. This completes the proof of the theorem in the
case where the genus of X is at least 2.

If X = CP!, then the dimension of both the domain and the target is 0. To see that
the domain has dimension 0, observe that J*~1(L®™-1) is a trivial bundle, as it admits a
flat connection ensured by Lemma 2.8.

If X is an elliptic curve, then Diffy '(£®M-1 £&n-1) i actually isomorphic to
@, HO(X, K$Y). This follows from the observation that J*~!(L&™~1) is isomorphic to the
symmetric power S"1(J}(L)) (see [B1]). This completes the proof of the theorem. ]

The isomorphism H o ® depends upon the projective structure that was used in
its construction. The homomorphisms ® or H are not individually isomorphisms. In fact,
if g > 1, then

n

dim H® (X, End ("' (£2™V)) @ Kx) > ) dim HO (X,K§) .

i=1

Now, any element D € HO(X, Diffy(L®M -V £®n-1)) decomposes uniquely as
D = c¢Dgpn) + Do,
where ¢ € C and Dy € HO(X, Diffy ' (£®n-1 £@n-1)) Hence Theorem 2.10 has the follow-
ing corollary.
Corollary 2.12. For a Riemann surface X with a projective structure, the decomposition
HO (X, Diff} (L&Y, Lenl)) = é HO (X, Kg
i=0
is valid. u

The differentials appearing on the right-hand side may be viewed as the Laguerre-
Forsyth invariants of the differential operator (see [W]).

In the next section, we establish an identification between a certain subspace of
the space of differential operators HO(X, Diff}(L®M-1 £®-n-1)) and the space of trivial-

izations of M over an infinitesimal neighborhood of the diagonal.
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3 Differential operators on a Riemann surface

We continue with the notation of the previous section, but in the present section, we do
not assume that the Riemann surface X is equipped with a projective structure.

For a nonnegative integer n and an integer d > 3, let

Sin,d) e H° <x x X M ) (3.1)
' P ME @ Oxxx(—dA)
be a trivialization of M®" over dA, such that its restriction to A is the constant function
1. Furthermore, denoting the involution of X x X by 7, the section S(n, d) is required to
coincide with t*S(n, d) (respectively, —t*S(n, d)) if n is even (respectively, odd). Hence the
restriction of S(n, d) to 2A is the canonical trivialization referred to in Theorem 2.2.
Consider the restriction of the section S(n, d) to 3A. We denote by Bs, ) the natural

projective structure on X associated to it by Theorem 2.2. Let

M@n
S'n,d) e H® [ X x X, 3.2
n, d) e < x M®“®0Xxx(—dA)> 3.2

be the trivialization associated to the projective structure Ls, ¢ using Theorem 2.2.

Let & denote the direct image

. S(n, d) 0 a-1
E, = Pix (S/(TL, d)) € H (X:I (OX))

on X of the function over dA given by the quotient of the two trivializations defined in (3.1)

and (3.2), respectively. The image of & in J2(Ox) coincides with the image of the constant
function 1.

Setting d = n + 2, let
ME.: ]nJrl(L@n) N ]n+1(L®n)

be the homomorphism defined by multiplication with &. The multiplication in question

is the natural surjective homomorphism
MO @ TML) — THLEL),
where L and L’ are any two line bundles on X, which sends any two local sections s and

s’ of L and L', respectively, to s ® s'.

Notation 3.3. Foranyintegern > 1,let 7(n) denote the space of all trivializations S(n, n+

2) of M®™ over (n + 2)A that restrict to the canonical trivialization over 2A.

Note that there is a one-to-one correspondence between T(n) and the space of all
trivializations of M over (n + 2)A that restrict to the canonical trivialization over 2A. The

map is defined by simply taking the n-th tensor power of a section of M over (n + 2)A.
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For any S(n,n + 2) € T(n), let D = Dy, (n+ 1) be the differential operator
defined in (B.4) for the projective structure Psnniz constructed earlier. Since D is a

homomorphism from J*(L®") to L&"-2 the composition
DS =Do Mg (34)

is an element of HO(X, Diff} "' (L®", £L8("-2)). The earlier observation that the image of &
in J?(Ox) coincides with the image of the constant function 1, implies that the difference
Ds — D e HO (X, Diffy 2 (L&", L8 2))
Let PB(X) denote the space of all projective structures on the Riemann surface X.

The following theorem identifies HO(X, Diff;}’z(L@‘, L£21-2))) with the space of trivializa-
tions.

Theorem 3.5. For a compact Riemann surface X, the map

W: Tn) — PX) x H® (X, Diff} ? (L&, L2 2))
defined by S(n,n + 2) — (Psmn+2), Ds — D), where Py ni2) was constructed earlier and
Ds was defined in (3.4), is bijective. O
Proof. To construct the inverse of W, for any

(P, D) € PX) x H® (X, Diff} > (L&, L8 2)) |
consider the differential operator D’ := Dg(n + 1) + D, where Dy(n + 1) is the operator
constructed in (B.4). Let

M: JUHL(L8Y) s (g en)

be the homomorphism defined by the identity D’ = Dgin + 1) o M.

Let S € T(n) be the trivialization associated to the projective structure 3 by The-
orem 2.2. Since M € H%((n + 2)A, 9), the product M.S € T(n).

Associating M.S to (3, D), the inverse of the map W is obtained. It is rather
straightforward to check that this map is indeed the inverse of W. ]

From Theorem 2.10, together with the fact used in the proof of Theorem 2.10 that
for any

D’ e HO (X, Diff} " (L&n-1 getn-n))

the lowest order term of H o ®(D’) is the symbol of D’, it immediately follows that if X is

equipped with a projective structure, then
n+1

HO (X, Diff} 2 (L2, £22)) = Y HO (X, KTY).
i=3

Now the following theorem is a consequence of Theorems 2.10 and 3.5.
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Theorem 3.6. For a compact Riemann surface X, the space of trivializations T(n) is

identified, in a canonical fashion, with the Cartesian product

n+1
P(X) x (@ HO (X, K;‘f’i)> : O

i=3

Let
Z(m+ 1) C HO (X, Diff}"™" (L& L8-2)) (3.7)

be the subset consisting of all differential operators with symbol 1. The vector space
V= HO (X, Diff§ ! (L®", L8 2))

acts on X(n + 1) simply by addition.

It is somewhat surprising (at least to the authors) that the action of V on £(n + 1)
has a distinguished orbit. This is the orbit containing the differential operator Dyp(n+1),
defined in (B.4), where B3 is a projective structure on X. The observation noted down in
(B.6) that the difference of two such operators differ by an operator of degreen—1, implies
that the orbit defined above does not depend upon the choice of the projective structure.

Let

Yom+1) CcXn+1) (3.8)

denote the distinguished orbit for the action of V.

Remark 3.9. Using the exact sequence of coherent sheaves,
0 —> K;@()('H—l) ® L®(n—1) N ]i+1(£®(ﬂ—1)) N ]i(L®(n—1)) — 50

and the isomorphism between £®2? and Ty, it readily follows that
/\n]nfl(’a@(nfl)) = Oy. (3.10)

Hence, the top exterior product A\"J*1(L®™~Y) has a canonical trivialization.

We describe a property of the class of differential operators Xy(n) defined in (3.8),
in terms of the trivializations above. Fora D € Zy(n), let V be the holomorphic connection
on J*1(L®M-1) constructed using the map p in (2.6) and the splitting given by D. It is
straightforward to check that the connection on A"J*}(£L®"~1) induced by V coincides

with the natural connection on Ox using the isomorphism (3.10).
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Consider the map
PX) x HO (X, Diffy 2 (L&, L2 72)) — Lon + 1),

defined by (3, D) —> Dg(n+ 1)+ D. Lemma B.9 implies that this map is an isomorphism.
Now the following theorem is easily derived from Theorem 3.5.

Theorem 3.11. For any compact Riemann surface X, the space of trivializations T(n) is

canonically identified with the space of differential operators Xq(n + 1). O

For any trivialization t € T(n), its restriction to 3A gives a projective structure 3
on X. If D is the differential operator that corresponds to t by Theorem 3.11, then B is

the unique projective structure such that
D —Dgpnh+1)e HO (X,Diff&*z (L®n,ﬁ®(_“_2))) .

Remark 3.12. Following Notation 3.3, we noted that the space T(n) is identified in a
canonical fashion with the space of all trivializations of M over (n+ 2)A, which restrict to
the canonical trivialization of M over 2A. Thus, denoting the space of such trivializations
of M by T, Theorems 3.6 and 3.11 remain valid if T(n) is replaced with T, in their
statements.

Let
Px(n) :=P (J** (L&) — X

denote the projective bundle over X of dimension n+1 consisting of all lines in the vector
bundle J**1(L®M). Let

Px :=P(J" (£%")) C Px(n)

denote the projective bundle over X for the natural surjection of J**(L®") onto J™(L%M).
A differential operator D € H°(X, Diffy " (£®", £8("-2))) with the constant func-

tion 1 as the symbol, naturally gives a section of the fiber bundle
Axn) :=Px(n) — Px

by simply considering D as a homomorphism of J**!(L®") onto L& "2,

Conversely, for any section of Ax(n), there is a differential operator such that
the section arises from it in the above fashion. Indeed, any section s of Px(n) is given
by a surjective homomorphism, say, H, of J**1(L®") onto a line bundle ¢ over X. If s is a
section of Ax(n), then the restriction of H to £®-"~2 is nowhere zero. In other words, ¢

is isomorphic to L& ~2 by H.
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Thus we have a one-to-one bijective correspondence between the space of sections

of Ax(n) and a subspace of the space of differential operators
HO (X, Diff} ™ (L, L2n=2)) .

The subspace in question consists of all operators with symbol 1.

Using the above one-to-one correspondence, the class of operators Xq(n + 1) de-
fined in (3.8) gives a class of sections of Ax(n). Let 8 denote this class of sections. It is
interesting to be able to characterize geometrically the class of sections S. Also, it is
interesting to be able to directly find the element in J(n), given by Theorem 3.11, which
corresponds to any given element of S.

4 Embeddings of the higher order infinitesimal
neighborhoods of the diagonal in a projective bundle

The structure sheaf of the subscheme nA C X x X is isomorphic to the ringed space

(X>pl*OnA)»

where p; is the projection of X x X onto the first factor. The Ox-algebra p;,0na on X
coincides with the jet bundle J"~!(Ox) with its natural algebra structure.
Another natural embedding of X in a fiber bundle over X is obtained from the

following exact sequence of coherent sheaves:
00— Kx®L — JHL) — L —> 0.

In this case, X is embedded in the projective bundle P(X) := P(J}(L)). Denoting the image
of X in P(X) by X, the structure sheaf of nX is the ringed space

where q is the projection of P(X) onto X.

Lemma 4.2. For any n > 0, the vector bundle q.0  ,,x on X, defined in (4.1), is canoni-

(n+1)
cally isomorphic to

Ox ® ]nfl(L®(nfl)) ® L®(fn71). O
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Proof. Forx € X, let P, := q~!(x) be the projective line. The (n — 1)-th order infinitesimal

neighborhood of the point
x:=P,NX

in P, coincides with the fiber (4.0, 3)x.
In order to determine the infinitesimal neighborhood of %, consider the following

exact sequence of coherent sheaves on Py:
0 — Op (—n+1)Xx) — Op, —> J™(Op,)x —> 0.

Since H!(Py, Op,) = 0, the n-th order infinitesimal neighborhood of X, namely, J™(Op, ),

coincides with
C@H' (P, Op, (—(n+ 1)x)). (4.3)

Using Serre duality, and the canonical isomorphisms Op, (—X)x = (Kx), and £®? =
Tx, and the natural self-duality of HO(P,, Op,(n — 1)) induced by the natural trivialization
of the line /\ZII(L)X, the vector space in (4.3) is identified with the fiber at x of the vector
bundle

Ox @ (]n71(£J®(n71)) ® L@(fnfl)) )

The details of the last part of the argument can be found in Section 3 of [B1]. This com-
pletes the proof of the lemma. ]

Given a projective structure on X, for any n € N, there is a natural compatible
embedding of the n-th order infinitesimal neighborhood of A into the projective bundle
P(X) (see [D]). The compatibility of embeddings means that the embedding of the (n—1)-th
order infinitesimal neighborhood is obtained by restricting the embedding of the n-th
order infinitesimal neighborhood. To obtain these embeddings, first observe that if X is
CP!, then P(X) is X x X, and so the embedding is the (tautological) diagonal embedding.
Then observe that this tautological embedding commutes with the diagonal action of
Aut(CP') on CP! x CP!. This immediately implies the earlier statement on the existence
of canonical compatible embeddings for any Riemann surface with a projective structure.

The embedding of the second order infinitesimal neighborhood 3A of A into P(X)
actually does not depend upon the choice of the projective structure. A direct construction
of this embedding of the second order infinitesimal neighborhood of A into P(X) is given
below.

In view of Lemma 4.2, giving an identification of the second order infinitesimal

neighborhoods of the above type is equivalent to giving an isomorphism

J2(0x) — JHL) @ L83, (4.4)
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where the fiber J4(0Ox)x C J?(Ox)x at any x € X is given by the jets of functions vanishing
at x. Since the map defined by f —— df identifies ](Z)(Ox) with J'(Kx), we have a natural
isomorphism of the type (4.4) as soon as we have established the following statement.

For any nonzero integer i, there is a nondegenerate bilinear pairing
JHT) @ JHE®) — JHL®

between J'(Tx) and J*(L®Y) with values in L.
Now, the operation of taking the Lie derivative with respect to a vector field is

exactly such a pairing. Indeed, the Lie derivative
(V,s) —> Lys,

where s (respectively, V) is a local section of L&' (respectively, Tx), defines an isomorphism
of J1(Tx) with JH(L®Y)* @ L®. The Lie derivative of sections of any tensor power of L is

defined using the isomorphism V¥ in (2.1), together with the Leibniz identity
Lv(s®t) = (Lvs) @ t + s ® Lyt.

The canonical isomorphism of the type (4.4) that we are seeking is obtained by setting
i=1and -2.

To equip X with a projective structure is equivalent to extending the above
identification, of the second order infinitesimal neighborhoods of A and X, to an iden-
tification of their third order infinitesimal neighborhoods (see [D, Definition 5.6 bis]).

The following lemma is needed in our study of embeddings of the higher order

infinitesimal neighborhoods of A.

Lemma 4.5. For a Riemann surface with a projective structure, the space of all differ-
ential operators of order n — 1 from £®"~1 to L2~ admits a natural decomposition of

the following form:

n—-1
HO (X, Hom (]n—l(LQ@(n—l))) L®(_”+”)) _ @ HO (X, K;@(}i) ) 0
i=0

Proof. Let V/C be a vector space of dimension 2 equipped with a symplectic form w.
Denoting by L the line bundle Op(1) on the projective line P = P(V), the vector bundle
J*(L®*) on P is shown to be canonically isomorphic to J*(L®") @ L#* ™ in the following
two cases: (1) when k < 0; (2) when k > n.

The first step in constructing the isomorphism is to consider the long exact se-
quence of cohomologies for the exact sequence

O — L®k ® O[P(—(Tl + ]-)X) —> L®k — ]n(]—®k)x — Oa
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where x € P. Note that in the first case, H(P,L®%) = 0; and in the second case,
H! (P,L®* ® Op(—(n + 1)x)) = 0. A choice of 0 # w € V representing x provides an iso-
morphism between Op(x) and L. Now after noting that H(P, L®!) = S'(V*) = SY(V) (using
w), and also using Serre duality when k < 0, the key point in the construction is that
for any 0 # v € V, the following two vector spaces are both canonically isomorphic to
S™(V). The first vector space is the kernel of the homomorphism S™!7%(V) — S™*2(V)
defined using the contraction with (v¥)®™+1) where k < 0 and v* € V*, is the dual of v with
respect to w. The second vector space in question is the cokernel of the homomorphism
Skn=1(V) — S¥(V) defined using the multiplication with v®"+1) where k > n. Indeed, in
the first case, the isomorphism is defined using the multiplication with v®~*~1 on S™(V);
and in the second case, it is defined using the contraction with (v*)®k—m)

Since the isomorphism between J*(L®) and JM(L®") @ L®*™ is equivariant for the

actions of SL(V) on P and L, it induces an isomorphism
P, k) JTHL®R) — T LEY) @ L8k

over X. Here, X is a Riemann surface equipped with a projective structure together with
a choice of a square root of the canonical bundle, whenever n and k satisfy either of the
above two conditions. (The choice of a theta characteristic provides a lift of the transition
functions of a projective atlas to SL(V).)

Now consider

b, — D@, 2 — 1 i) J (L) @ T (kg )

s ]i(L®i) ® ]i(L®i) ® L@(*n+l)’ (46)

where i <n — 1. The symplectic form w on V induces a nondegenerate form on any S*(V)
(which is symmetric if i is even and skew-symmetric if i is odd), and hence on J(L®!) over
PP. This is because any fiber of J{(L®!) is canonically isomorphic to S'(V) (see [B1]). Since
this form on JYL®!) is equivariant under the action of SL(V), we have a nondegenerate
form on J{(L®') using the coordinate charts on X compatible with the projective structure.

Thus (4.6) gives the pairing
Pi,n-1): (L) QT (Kgmfl—u) ., 8n)

Now for a section s € HO(X, K;‘f’(”_l_”), consider the homomorphism {{i,n—1)(—, s),

which sends any vector v € JHL®MY), to P(i,n — 1)(y)(v, sy)). The differential operator
5 e HO (X,Diff; (L®(n71)’£}®(7n+1))>

defined by this homomorphism has (—1)'s € HO(X,K$™'7Y) itself as its symbol. This

lifting of the symbol of a differential operator that maps any s to (—1)'s immediately
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yields the decomposition (4.5) of differential operators. This completes the proof of the
lemma. ]

We note that the decomposition in Lemma 4.5 depends on the choice of projective
structure.
For an integer n > 3, let

p: IB(OX) N ]n—l (£®(n—l)) ® L@(—n—l)
be anisomorphism of algebra bundles giving an embedding of the n-th order infinitesimal
neighborhood of A into P(X) such that the restriction of p to the second order infinitesimal
neighborhood 3A of A is the canonical one defined above. Restricting p to the third order

infinitesimal neighborhood 4A of A, we get a projective structure 3 on X (see [D]).
Let

p(m) IS(OX) _ ]nfl (L®(n71)) ® Letn-1)
be the isomorphism giving the embedding corresponding to the projective structure 3.

It can be checked that any automorphism of J*~1(L®M™-1) which as an auto-
morphism of J*1(L®M-V) @ L®8"-1 preserves its algebra structure, is actually conju-
gate to a unique automorphism J!(£L®™~1V) of the form c.Id + A, where c € C* and A €
HO(X,HOIII(]“_I(L@(H_I)),
L£®=n+1))) The inclusion map

L@(n—ll ® K;(?(n—ll — L@(—n-H) N In—l (L®(n—1))
enables HO(X, Hom(J"~1(L®M-1) £®=n+1))) to be realized as a subspace of the space of
endomorphisms of J*~1(L&M-1),

Now consider the automorphism

po (p(;’p))—l . ]n—l (L®(ﬂ—1)) N ]n—l (L®(ﬂ—1)) ,
where p and (p())~! are defined above. Let

5 e HO (X, Hom (J"~! (L®(n71)) yL@(—nﬂ)))
correspond to p o (p(P))~! by the above decomposition.

Consider the decomposition of the differential operator p according to Lemma
4.5 for the projective structure P on X. Since, by definition, p(3) and p agree on the third
order infinitesimal neighborhood of A, it follows immediately that the components of p
in HO(X, K%i) vanish for all i < 2.

Let
n-1

Flp) € PH (X, KE) (4.7)
i=3

be the element corresponding to p.
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Let §(n) denote the space of all embeddings of the n-th order infinitesimal neigh-
borhood of A into P(X) whose restriction to the second order infinitesimal neighborhood
of Ais the canonical one. Let 3(X) denote the space of all equivalence classes of projective

structures on X.

Lemma 4.8. The map from the space of embeddings §(n) to
n-1
PX) x PH® (X, K,
i=3

which sends any p € §(n) to the pair (3, F(p)), constructed in (4.7), is a bijective identifi-

cation. O
Proof. The above lemma follows from Theorem 2.10. We omit the details. [ |
The following theorem is an immediate consequence of Theorem 3.6.

Theorem 4.9. For any compact Riemann surface X, the space of trivializations T(n),
defined in (3.3), is canonically identified with G(n + 2), the space of embeddings of the
(n + 2)-th order infinitesimal neighborhood of A into P(X) restricting to the canonical

embedding on the second order infinitesimal neighborhood 3A. O

In the following two sections, we consider vector bundles over a Riemann surface.
Given a holomorphic vector bundle E over X, with H°(X,E) = 0 = H'(X, E), the kernel of
the Dolbeault operator for E is studied.

5 The kernel function of the inverse of a

Dolbeault operator

Let X be a compact connected Riemann surface of genus g. Let Mx(r) denote the moduli
space of semistable vector bundles of rank r and degree r(g — 1) over X. Denote by ©
the reduced divisor on Mx(r) defined by all E with H°(X, E) # 0. In other words, © is the
generalized theta divisor on Mx(r).

For a vector bundle E € Mx(r), a vector bundle Vg is constructed over X x X in the

following way:
Ve :=piE @ p3(E* ® Kx) ® Oxxx(A), (5.1)
where Ky is the canonical line bundle over X.

We recall some results of [B2] and, in order to be somewhat self-contained, some

proofs are also recalled.
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Proposition 5.2. For a vector bundle E € Mx(r) — ©, the restriction to the diagonal
HO (X x X, Vg) —> HO (A, Veln) = HO(X, End(E))
is an isomorphism. O

Proof. Since the restriction of the line bundle Ox.x(A) to A coincides with the normal
bundle of A in X x X, it follows immediately that with respect to the natural identification
of A with X, the restriction of V¢ to A is naturally isomorphic to End(E).

Tensoring the exact sequence
0 — Oxxx(=A) —> Oxxx —> 0ar —> 0
with Vg, the exact sequence
0 — PIE®Ppi(E* ® Kx) — Vg —> End(E) — 0

is obtained.
Given that H%(X,E) = 0 = H!(X, E), and invoking the Serre duality, the Kiinneth
formula asserts that

HO (X x X, pIE®ps (E* ® Kx)) =0 =H' (X x X, pjE® p} (E* ® Kx)).

Finally, the proof of the proposition is completed by considering the long exact sequence

of cohomologies for the above exact sequence. ]

Take any E € Mx(r) — ©. Let
dr € HO (X x X, Vg) (5.3)

be the section that Proposition 5.2 associates to the identity endomorphism of E.
Let

¢ e H (24, (PTKx ® p3Kx ® Oxxx(24)) )

denote the invariant section in Theorem 2.2; in a coordinate chart, ¢ coincides with s(—2)
defined in (2.4).

Finally, consider the section
O := (e ® 0" Pe)|,, ® ¢* € H? (24, (p{End(E) ® p;End(B))],,) -

Since ¢r|p = Idg, we have ®g|, = Idgngr). Therefore, the restriction of the above section
®¢ to 2A defines a holomorphic connection on End(E) (see [D]). However, any holomorphic

connection on a Riemann surface is flat.
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Let VE denote the above obtained flat connection on the vector bundle End(E).

Using the flat connection VE, the section ®¢ naturally extends to 3A. On the other
hand, ¢r Q) o*dr is also defined over 3A. So, using the homomorphism End(E) — Ox
defined by A — trace(A)/r, we get a section

e e H (SA, (pTKx ®PrKx ® OXXx(ZA))|3A) )

which restricts to the section ( over 2A. From Theorem 2.2, the section (¢ defines a
projective structure on X. This projective structure on X is denoted by Pg.

The above arguments are presented with more details in [B2].

The space of global smooth (p, q)-forms with values in E is denoted by QP4(E). As
we have H°(X, E) = 0 = H!(X, E), the Dolbeault operator

de: Q°(E) — Q%Y(E),

which defines the holomorphic structure of E, is invertible.

Let K¢ denote the kernel of the pseudo-differential operator (3g)~!, which is of
order —1. In other words, Xt is a smooth section of pjE &) p3(E* &) Kx) over X x X — A, and
for every f € Q%!(E), the identity

(0e)1(f) = J (Ke, 1) (5.4)
X

is valid. The pairing (K¢, f) is defined using the contraction of E with E*.
Lemma 5.5. The following equality is valid:
- Ke = —p,
where ¢¢ is defined in (5.3). O

Proof. For any f € Q%!(E), we have
3 | et = | Belpor, (5.6
X X

as 0gf = 0. For any xo € X, let m denote the trivial vector bundle over X with

| S ®Q Ky, as the typical fiber. Note that 0e(dpe(—, %)) is a distributional section of the

vector bundle (E ®(T%!)*) ®W over X. Here ¢g(—, xo) denotes the restriction of ¢

to X x xg. Since the section ¢ is holomorphic outside A, 9¢(de(—, xo)) is supported at xq.
For a compactly supported C* function f on C, the identity

(5 (g) __f0)8(0)
z ) 21/ —1
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follows immediately from Stokes’s theorem, where 6(0) is the Dirac delta function sup-
ported at 0, and (dz/z) is considered as a distributional section of K on a neighborhood
of zero.

Now, comparing (5.4) and (5.6), the lemma follows from the fact that the residue
of ¢, considered as a meromorphic section of pjE Q) p5(E* Q) Kx), along the diagonal A,
is the identity endomorphism of E. ]

For any E € Mx(r) with H°(X, E) # 0, the Dolbeault operator 9 is not invertible. So
the kernel function of the inverse of ¢ defined on the image of d¢, with the orthogonal
complement of kernel(d¢) as the target, is not given by a meromorphic section.

The holomorphic section ¢ is well behaved with respect to taking the direct
image. This is explained next.

Let m: X —> Y be a covering map, possibly ramified, between two Riemann sur-

faces. For a holomorphic vector bundle E over X, the natural isomorphism
H(X, E) = H(Y7,E)

is valid for any i > 0. Therefore, the condition E € Mx(r) — © ensures that 7,E is in
the complement of the generalized theta divisor on My(rd), where d is the degree of the
covering . We show that for every E € Mx(r) — ©, the section ¢, .t on Y x Y is obtained by

taking the direct image of ¢¢. For that, we need the following lemma.

Lemma 5.7. For any E € Mx(r), the vector bundle V¢ over X x X, defined in (5.1), has the
property that the direct image (7t x 71), V¢ is naturally isomorphic to the vector bundle V, ¢
over Y x Y. O

Proof. From the definition of a direct image of a coherent sheaf, it is easy to construct
a natural homomorphism from V. ¢ to (7 x 7). Ve. The point to observe is that the mero-
morphic form (dz/z) on C pulls back to C as k - (dz/z) by the mapping f(z) = z*.

If 7t is ramified over D C Y, then the above homomorphism is an isomorphism
over the complement of (D x Y)[J(Y x D) in Y x Y. Using the Grothendieck-Riemann-Roch
theorem, it can be checked that

cillrr x ), Ve) = c1 (V).
Therefore, the above homomorphism must be an isomorphism. ]

The following lemma shows how the section ¢, which was constructed in (5.3),

behaves with respect to a direct image.

Lemma 5.8. Let E € Mx(r) — O. Using the isomorphism between (m x n), Vg and V.
obtained in Lemma 5.7, the section (m x m),pr € HOY x Y, (m x ), Ve) coincides with
$Gr e € HOY x Y, Vi p). O
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Proof. We already noted that the given condition E € Mx(r) — © implies that m,E is
contained in the complement of the generalized theta divisor on My(rd).

It is straightforward to check that the restriction of (m x 7),¢bg to the reduced
diagonal in (Y — D) x (Y — D) coincides with the identity endomorphism of (m.E) |y_p,
where D C Y, as before, is the divisor over which the map 7t is ramified. Now, the lemma
follows from Proposition 5.2, which says that the restriction to the diagonal is an iso-
morphism. ]

In the following section, some natural differential operators on vector bundles

associated to E € Mx(r) — ® are constructed.

6 Differential operators on a vector bundle outside
the theta divisor

We start with the following lemma.

Lemma 6.1. LetE € Mx(r)—©. For any n > 0, the jet bundle J*(End(E) ) &) is canonically
isomorphic to End(E) Q) J"(&). O

Proof. Thisisanimmediate consequence of the flat connection V* on End(E) constructed
in the previous section. Indeed, any local section s of End(E) ® & can be uniquely ex-

pressed as

2
S = E e ® sj,
=1

where {e;} is a fixed basis of the local system defined by the flat connection, and s; are local
sections of &. This decomposition gives an injective homomorphism from J™*(End(E) &) &)
to End(E) ® J™(&), which is evidently an isomorphism. ]

Fix once and for all a line bundle £ over X of degree 1 — g such that £®? = Ty.

Given a projective structure on X, using the choice of the square root £ of Tx, the
one cocycle with values in PSL(2, C) defined by the transition functions admits a natural
lift to a one cocycle with values in SL(2,C) (see [Gul, [T]).

If X is equipped with a projective structure, then we have the following two

decompositions of differential operators.

Proposition 6.2. Let X be equipped with a projective structure. Let k,1 € Z, and n € N
be such that k ¢ [-n+1,0], and | — k — j € {0, 1} for any integer j € [1,n]. Then the space
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of global differential operators of order n from £~* to £~!, namely, HO(X, Diffy (L%, £L71)),
is canonically isomorphic to
n .
PH (XL 'eTy),
i=0
with the property that the image of H°(X, L*~'*2}) by this isomorphism is contained in the
subspace HO(X,Diffj((L*k,L*‘)) C HO(X, Diff% (L%, L7Y). O

The above proposition is Theorem B of [B3]. This proposition gives a canonical
splitting (semisimplification) of the natural filtration of H°(X, Diffy (L%, L) given by its
subspaces HO(X, Diff;(L*k, L7Y) defined by the lower order differential operators, where
0<j=n

In Section 5, a projective structure P was constructed from any E € Mx(r)—©. Now
using Lemma 6.1 and the fact that End(E)* = End(E), Proposition 6.2 has the following

consequence.

Proposition 6.3. LetE € Mx(r)—0. Letk,l € Z,andn € Nbe such thatk ¢ [-n+1,0], and
l—k—j ¢ {0,1} for any integer j € [1,n]. Then the space of global differential operators of
order n from End(E) ® L% to L7, namely, HO(X, Diff 3 (End(E) @ £L7%, £L7Y)), is canonically
isomorphic to the direct sum

é H (X,End(B) ® L* ' ® Ty ,

i=0
with the property that the image of HO(X,End(E)® L**?)) is contained in the
subspace consisting of operators of order j, namely, HO(X,Diff;(End(E)®£ﬁk,£71)), of
HO(X, Diffy(End(E) @ L%, L7Y). O

Similarly, Corollary 2.12 has the following consequence.

Proposition 6.4. Let E € Mx(r) — ©. The space of global differential operators of order
n from End(E) ® L™ to L "2 admits the following natural decomposition:
n+1 )
H® (X, Diff} ™" (End(E) ® L™, £L77?)) = @D H® (X, End(E) ® K) . O

i=0

The differential operator of order n + 1,
Dnp1(E) € HO (X, Diff ! (End(E) ® L™, L7"72)), (6.5)

corresponding to the section of End(E) defined by the identity endomorphism, is a gen-

eralization of the Bol’s operator to the context of the vector bundles.
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Let f and g be two local sections of End(E) @ L™ over U C X. Then
(Dnt1(B)f, 9) — (Dnya(Blg, f)

is a section of End(E) Q) Kx over U, where (—, —) denotes the contraction of L™ with L™,

In other words, the above operation defines a C-linear skew-symmetric pairing

End(E) @ L™ ® End(E) ® L™ —> End(E) ® Kx (6.6)
C

on the coherent sheaf End(E) K L™ associated to the vector bundle End(E) ® L™; the sheaf
End(E) ® Kx is similarly the coherent sheaf associated to the vector bundle End(E) ® K.
The above pairing is evidently nondegenerate. Indeed, it is an immediate consequence
of the fact that the symbol of D, ,;(E) is the section of End(E) defined by the identity
endomorphism of E.

In [B1, Theorem 4.1], it was shown that a projective structure on X induces a flat
connection on the jet bundle J*(L"). For any E € Mx(r) — ©, the jet bundle

JMEnd(E) ® L™) = End(E) ® J™(L™)

has a natural flat connection induced by a flat connection on J*(L") for the projective
structure P together with V* on End(E).

In [CMZ], a natural isomorphism
dx: TV HTR) @ Ox — Diff(Ox, Ox)

has been constructed for any Riemann surface X equipped with a projective structure.
(An alternative description of this isomorphism was later given in [B1, p. 465].)
For any E € Mx(r) — O, using Lemma 6.1 and the projective structure Pg, the above

isomorphism ¢x induces an isomorphism
¢%: M HTE) ® End(E) @ End(E) — Diff}(End(E), O). (6.7)

If genus(X) > 2, then T} Q) End(E), where i > 1, does not have any global nonzero
section, since T} ) End(E) is semistable of strictly negative degree. Now, using the long
exact sequence of cohomologies for the exact sequence (2.5), and using induction on n, it
follows easily that

H® (X,J"1(T}) ® End(E)) = 0.
Therefore, the isomorphism ¢¥ in (6.7) implies that the natural inclusion

HO (X, End(E)) = H° (X, Diff} (End(E), Ox)) — H° (X, Diff} (End(E), Ox))
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is actually an isomorphism.
In the rest of the paper, we investigate some natural differential operators on

Riemann surfaces with a projective structure.

Appendix A: A differential operator

For a holomorphic function g on an open set of C, its n-th derivative, namely, g];—ng, is

denoted by g™. Also, often ¢ is used instead of g'!’. Let
v: U— U, (A.1)

be a biholomorphism between two simply connected analytic open sets of C. Fixon U a
square root (y')!/2 of the function y". For an integer n > 1 and a holomorphic function
f e I'(Uy, Q) on U,, define D(y,n)f € I'(U, O) by

()
n 1o (n+1)/2 foy
(Dly,n)f)(z) = (f( 'o Y)(z) (’Y (Z)) - (W) (2), (A.2)
where z € U.
Evidently, the map f — D(y,n)f is a differential operator of order n from I'(U;, O)
to I'(U, Q). Alternatively, the C-linear homomorphism

P — Dy, n)p oy}, (A.3)

where V) € T'(U, 0), is a section over U of the sheaf of differential operators of order n
on the trivial line bundle. Since the tangent bundle TU has a natural trivialization, the
symbol of a differential operator of order i from I'(LL, O) to I'(U, O) is an element of I'(LL, O).
It is a simple calculation to check that the symbol of this order n differential operator
D(y,n) vanishes identically. It involves a slightly more nontrivial computation to check
that the symbol of the order n — 1 differential operator also vanishes identically. The
conclusion is that the operator D(y,n) is actually of order n — 2.

Another simple computation yields that if M is a Moébius transformation, which
means that

az+b

M(z) = ——
@ cz+d’

where ad — bc = 1, then

D(M,n) =0 (A.4)
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for all n > 1. In fact, more generally, for a Mébius transformation M as above, denoting
the function w — (cw + d)* by MM where k € Z, the following identity is valid:

D(M ovy,n)(f)(z) = Dy, n)(M™1f o M)(2), (A.5)

where f € I'(M(U;),0) and z € U. Since D(Id,k) = 0 for any k > 1, the equality (A.5)
immediately gives (A.4). Similarly, the identity

Dy o M, n)(f)(z) = Dly, ))({f)(Mz)MI(z), (A.6)

where z e M~1(U), is valid.
Clearly, D(y, 1) = 0. To calculate D(y, 2), for a holomorphic function g on an open
subset of C, let

29/(2)9///(2) -3 (9//(2))2
2(g' (2))°
denote the Schwarzian derivative of g (p. 164 of [Gu]). The identity

8D(g) :=

_ fy@)8D)(2)
(Dly, 212 = =5 s =

(A.7)
which relates D(y, 2) with 8D(y), is valid. To calculate the symbol of the higher order
operators, let

D(y,n) e I'(U, Diff{;%(0, 0))

be the differential operator of order n — 2 defined in (A.3), which operates on the sheaf

I'(U, Q). The symbol of this operator D(y,n) is calculated to be

2 7\(n—3)/2
symbol(Dfy, ) = " 11)(;) $D(y). (A.8)

The equality (A.7) follows from (A.8).
For any simply connected open set W € C, let (Lw, Yw) be a pair consisting of a
line bundle Ly, on W and a section

Yw € "W, Lw).

Furthermore, there is a given isomorphism Ayy : Lﬁ/z —> Tw, such that A®2(‘P{%2) coincides
with the section a%, of Tw.
Let

Dwin) e T (W, Diffy, (L5, 157")) (A.9)
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be the differential operator of order n on W defined by

onf
D) (FY™ ) = Wi,

where f is a holomorphic function on W. Note that the operator Dy, (n) remains unchanged
if the isomorphism ¥,y is replaced by —Wy, .

Let v be as in (A.1), and let (Ly,Yu) and (Ly,,Yy,) be as defined above. Fix an
isomorphism

Fy: v*'Lu, — Lu
such that (A§?) o F&? o (Af?)~(z2) = dy~'(y(2)) for all z € U, where Ay and Ay, were defined
before (A.9); the homomorphism dvy is the differential of y mapping Ty to y*Ty, . The above
condition determines F, up to the sign. This ambiguity of sign is removed by imposing
the condition that

)2F, (v Wy,) = Y.
The isomorphism between (y*Ly,)® and L§', induced by Fy, is denoted by F&'. Note, using
the identity

)2F, (Wy,) = Yy,
that F, automatically fixes a square root (y)"/2.

The following lemma follows from a simple computation.
Lemma A.10. Letybeasin(A.1),andlet (Ly,Yu) and (Ly,, Yu,) be as defined above. Then
for any holomorphic function f € I'(U;, O), the identity

F$(7n71)®u1 ) (f\yﬁinfl)> — Dy ((Fy (\PUI))@J(TL*I) fo Y) — W%(inil)D(’Y,Tl)f
is valid, where D(y,n)f is as in (A.2). O

Note that the differential operator, which maps f‘}’ﬁ’(l“_” to Y& VD (y, n)f, does
not depend upon the choice of the square root (y')!/2. Indeed, if (y)!/? is replaced by
—(y))¥/2, then F, changes to —F,.

In Appendix B, we derive some implications of the operator D(y,n) in the context

of a Riemann surface equipped with a projective structure.

Appendix B: A Differential operator on a Riemann surface

with a projective structure

Let X be a Riemann surface equipped with a projective structure, which we denote by .
Fix a pair (£, V), where

Y. L®2 5 Ty (B.1)

is an isomorphism of line bundles.
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Take a coordinate chart (U, ¢,) compatible with 3. Recall the pair (Lyw, ¥yy) con-
structed in Section 2 for any open set W of C. Substituting ¢4(U,) for W, fix an isomor-

phism
Oy L'Uq — C]);Lq)“(u“) (B.2)

such that 0920 ¥~! = d¢,. The isomorphism from L&y, to (%L, u.)®", induced by 0, is
denoted by 6%'. Note that there is a natural isomorphism between L7 and Ty . Let Dy(n)
be the differential operator on U, obtained from the operator Dy, (n) defined in (A.9), using

the isomorphism 60,, namely,
Daln) := (O )71 0 Dy ) 0 0™V € T (U, Diffy, (LMY, £8-1)) - (B.3)

which maps sections of L%~V to sections of L®~~1, Note that although there are two
choices of the homomorphism 6,, differing by multiplication with —1, the operator D(n)
does not depend upon the choice of 6,.

Let (Ug, ¢pp) be another coordinate chart compatible with the projective structure
B. Since pp o P! is a Mobius transformation, Lemma A.10 and the identity (A.4) combine
together to imply that the restrictions of the two differential operators Dy(n) and Dg(n)
to the open set U,NUg actually coincide. Thus patching these operators, we have a global
differential operator

Dy(n) € HO (X, Diff} (L&Y gon=1)y) (B.4)

on X, which depends on the projective structure B. This differential operator is called
the Bol's operator (see [Bo]). (An alternative construction of this operator can be found in
[B1].)

Take another projective structure 3; on X. Let ¢ and ¢; be two coordinate func-
tions on Uy € X compatible with 3 and 3, respectively. As in (B.2), let 6 and 0; be two
isomorphisms from Ly, to ¢*Lywuy and ¢ily,wy), respectively. With a slight abuse of
notation, the isomorphisms of tensor powers induced by 0 (and 0,) are also denoted by 6
(and 04).

Consider the differential operator D(y,n) defined in (A.2), after substituting U =
¢(Up) and y = ¢; o ¢~ L. Finally, let

DY, (B, PBr) € T (uo,Diffﬁgz (L®‘“‘”,L®““‘“)) (B.5)

be the differential operator of order n — 2 defined by

D3, 3, ) (07" (WS )) = 8 (Wi Dly, ),
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where f € T'(d;(Ug), O) and Wy is as in Appendix A. The identities (A.4), (A.5), and (A.6)
together imply that for any two open sets Uy and U; of X, the two corresponding differ-
ential operators, defined in (B.5), actually coincide over Uy N U;. Thus, patching up these

locally defined operators, we get a global differential operator
DY(P, P1) € HO (X, Diffy 2 (L®nY L&) (B.6)

of order n — 2 on X.

The following lemma is immediate from Lemma A.10.

Lemma B.7. Let Dyg(n) and Dy, (n) be the two differential operators for P and P,

respectively, as constructed in (B.4). Then the identity
'Dapl n) — Ds:p(‘ﬂ-) = D;}(‘B, P1)

is valid. O

The space of all projective structures on the Riemann surface X is an affine space
for HO (X, K§?) (see [Gul). Let w € H° (X, K§?) be such that

Py =P+ w. (B.8)

Note that Dy, (2) — Dy(2) € HO (X, K§?). The equality
w
Dy, (2) = Dp(2) + =

is valid (see [HS], [CMZ]).
Lemma B.7 and the equality (A.8) togetherimmediately imply the following lemma.

Lemma B.9. The following equality is valid:

21
symbol (Dgs, (n) — Dys(n)) = symbol (DL(E, Py)) = w 0
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