

SOLIOMETRY—A NEW ELECTROANALYTICAL TECHNIQUE

A. K. N. REDDY

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore

SOLIIONS, a family of liquid-state devices, are thin-layer redox cells in which the current is controlled by the diffusion of that component of the redox couple present in a relatively small concentration¹. A typical example is the iodine-iodide solion fabricated with two closely spaced, plane parallel, inert electrodes of equal area. (The iodine, actually tri-iodide I_3^- concentration is usually in the millimolar range, and the iodide concentration in the molar range; further, the inter-electrode distance is between 10^{-3} to 10^{-1} cm). The steady-state current-potential curve of such a solion shows a characteristic diffusion-limiting current, I_1 , given by Fick's first law :

$$I_1 = \frac{2nFADC^\circ}{L}$$

where n is the number of electrons involved in the redox reaction ($n = 2$ for $I_2 + 2e = 2I^-$, or $I_3^- + 2e = 3I^-$); A , the area of each electrode; D , the diffusion coefficient of the diffusing component, *viz.*, I_2 (I_3^-) in the iodine-iodide solion; C° , the bulk concentration of this component, and L , the inter-electrode distance.

The linear variation of I_1 with C° in a solion does not seem to have been exploited hitherto for analytical purposes. However, by adding to the redox solution a species X which reacts stoichiometrically to generate or consume the diffusing component, the bulk concentration of the latter is altered to $C^\circ \pm \Delta C^\circ$, and as a consequence, the limiting current changes to $I_1 \pm \Delta I_1$. Hence, measurements of ΔI_1 permit² the estimation of the species X through the relation

$$\Delta I_1 = \left(\frac{2nFDA}{L} \right) \left(\frac{\nu}{M} \right) C_x$$

where ΔI_1 is in μA , C_x is the concentration of the species X in $\mu g \text{ cm}^{-3}$, *i.e.*, in ppm, and ν is the number of moles of the species X (of formula weight M) reacting with one mole of O to produce R , or with one mole of R to produce O . The reaction between O/R and X need not be of the oxidation-reduction type; if it is, then $\nu = n'/n$ where n' is the number of electrons involved in the

transformation ($O' + n' e = R'$) of the (O') and reduced (R) forms of the species

The new technique being proposed here is called *soliometry* rather than *thin-layer amperometry with amperometric indicator* because the former stresses the utilization of solion devices for whereas the latter relates the technique to methods of electro-analysis.

An idea of the sensitivity S accessible to soliometry can be gained by writing

$$S = (\Delta I_1 / C_x) = 2FD \left(\frac{A}{L} \right) \left(\frac{n'}{M} \right)$$

and by noting that if $FD \approx 1 \mu A \text{ molar}$, $n' = 1$ and $M = 100$, then

$$S = 2 \times 10^{-2} (A/L) \mu A/\text{ppm}.$$

The (A/L) ratio depends on the apparatus. If the plane parallel electrodes are mounted on an anvil and shaft of a micrometer, one can achieve an (A/L) ratio of 10^3 corresponding to $A = 10 \text{ cm}^2$ and $L = 10^{-2} \text{ cm}$ in which case $S = 20 \mu A/\text{ppm}$. Thus, hundredths of a microgram of X can be determined if the changes in the limiting current are read to an accuracy of 1% . This analysis of concentrations at the 10^{-2} ppm level requires a solution volume of $AL = 10^{-3} \text{ cm}^3$ only. It has been claimed³ that the close electrode distance conveniently attainable is of the order of 10^{-3} cm which means that analysis of 10^{-2} ppm (10^{-7} molar level) can be achieved in 10^{-3} cm^3 of solution. Thus, soliometry is a trace analysis of microquantities of solution. An added feature is the easy adjustment of the (A/L) ratio by a variation of the inter-electrode distance.

With the aid of solions based on iodine-cerous-ceric, vanadous-vanadic, etc., couples, the soliometric technique can be adapted to solions based on iodimetry, cerimetry, vanadimetry. There are two restrictions on the species to be estimated: (1) it must react quantitatively with one of the compounds O and R of the solion couple; (2) the reaction by which the species

produces or consumes the diffusing component of the solion must be fast enough to produce a time-independent limiting current. If however X undergoes a slow reaction with a component of the solion couple, then the time variation of the limiting current can be used to study the kinetics of the reaction⁴.

The theory of interference is similar to that in potentiometric titrations. Thus, if $E^{\circ}_{o/R}$ is the standard electrode potential for the redox couple of the solion and $E^{\circ}_{o''/R''}$ is that for the oxidized and reduced forms of another species Y present along with the species X to be determined, then R'' will interfere if $E^{\circ}_{o''/R''} < E^{\circ}_{o/R}$, and O'' will interfere if $E^{\circ}_{o''/R''} > E^{\circ}_{o/R}$.

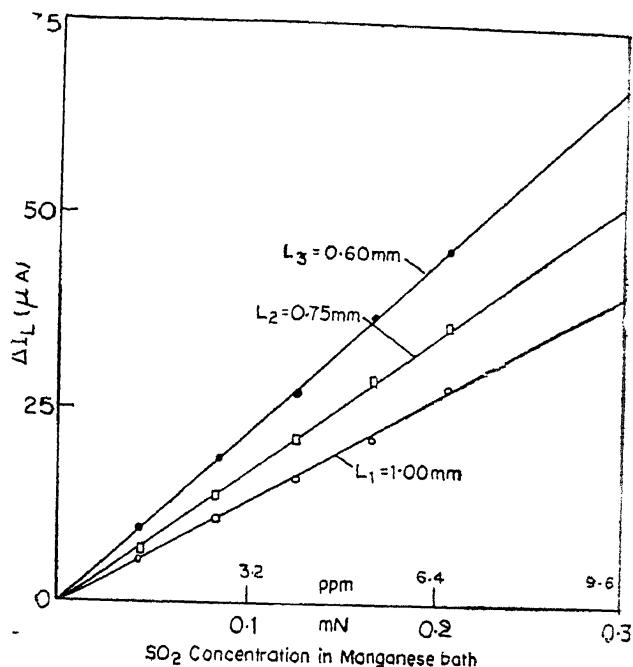


FIG. 1. Determination of SO₂ in manganese bath.

In collaboration with Gopal Reddy⁵, the soliometric technique has been established for over a dozen estimations including amongst others the analysis of sulphite, sulphide, selenite, available chlorine in hypochlorite, copper (II) arsenic (III),

tin (II), ferrocyanide, antimon, (III) and stannous, hydrogen peroxide, iodate, disulphide and sulphate.

The apparatus consisted of two glass electrodes on microscope slides held with Available in the arm and shaft of a micrometer (with a graduation of 0.01 mm). The micrometer assembly was attached to a laboratory stand so that the two glass electrodes could be lowered into a manganese bath containing the mixture of the solion electrode and the species X being determined. Using a micrometer to read the changes in solion length, a galvanometer and a 1.5 V Leclanche cell to polarise the iodide-iodide solion to about 0.2 volt, regular interference commences around 0.5 volt. Determinations at the ppm level have been carried out even with this set-up. As may be seen from the results⁵ on the determination of sulphite in the manganese bath (Fig. 1),

Soliometry has recommended itself particularly as an extremely simple, inexpensive and direct technique of trace analysis. With proper choice of the electrode assembly and the selection of the solions to achieve compensation of the 'interference coefficient of the diffusion coefficient' as well as a direct output of the difference ΔI_L , it is envisaged that the technique can be refined to go down to the 0.1 ppm level with less than 10^{-4} cm² diffusion.

1. Hard, R. M. in Hampel, C. A., Ed., *Handbook of Electrochemistry*, Reinhold Publishing Corporation, New York 1964, p. 1073.
2. Reddy, A. K. N., *Abstracts of Special Lectures on Concentration of Chemists, Mysore, December 1, 1971 and of Plenary Lecture at Tenth Australian Electrochemistry Conference, Townsville, February 16, 1972.*
3. Anderson L. B. and Reiley, C. N., *J. Electroanal. Chem.*, 1965, **10**, 303.
4. Reiley, C. N., *Rec. Pure and Appl. Chem.*, 1964, **18**, 137.
5. Reddy, A. K. N. and Gopal Reddy, N. (in course of publication).