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Green-Lazarsfeld Sets and the Logarithmic Dolbeault Complex

for Higgs Line Bundles

Indranil Biswas

1 Introduction

Let X be an irreducible smooth projective variety over C of dimension n. LetD =∑d
i=1Di

be a divisor of normal crossing with decomposition into irreducible components. Let

Ω∗(logD) denote the sheaf of logarithmic differential forms on X, which is a locally free

OX module with a structure of exterior algebra [D, p. 72, Definition 3.1].

Let [Di] ∈ H2(X,Q) denote the Poincaré dual of the divisor Di.

Fix rational numbers {α1, . . . , αd} with 0 < αi < 1 such that the cohomology class

ω :=
d∑
i=1

αi.[Di] ∈ H2(X,Q)

is in the image of H2(X,Z). Lefschetz’s 1− 1 theorem ensures that there are line bundles

on X with rational first Chern class −ω.

Let P(X) denote a component of the Picard group of X consisting of line bundles

with first Chern class −ω.

Define V := H0(X,Ω1
X) to be the space of all holomorphic 1-forms. The product

variety

M := P(X)× V (1.1)

is a component of the moduli space of Higgs bundles of degree −ω.

For any (ξ, θ) ∈ M we have the following complex of locally free OX-coherent

sheaves on X, which we will denote by D. :

D. : D0 = ξ ∧θ−→D1 = ξ⊗Ω1(logD)
∧θ−→D2 = ξ⊗Ω2(logD)

∧θ−→· · ·
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84 Indranil Biswas

· · · ∧θ−→Dn−1 = ξ⊗Ωn−1(logD)
∧θ−→Dn = ξ⊗Ωn(logD) −→ 0, (1.2)

where the map ∧θ is taking a wedge product with the section θ. Let H j(D.) denote the jth

hypercohomology of the complex. Following the terminology of [S1], we call the complex

D. the logarithmic Dolbeault complex and its hypercohomology the logarithmic Dolbeault

cohomology.

For j,m ≥ 0, define the Green-Lazarsfeld set

T jm := {(ξ, θ) ∈M | dimH j(D.) ≥ m} ⊂M. (1.3)

Let Pic0(X) be the abelian variety consisting of isomorphism classes of topologi-

cally trivial line bundles, which is same as the kernel of the natural homomorphism of

the Picard group of X to the Neron-Severi group of X.

Consider the product

G := Pic0(X)× V, (1.4)

which has a structure of an algebraic group given by the group structures of Pic0(X) and

V . The group G acts on M in the following way: for (ξ, θ) ∈ G and (ξ′, θ′) ∈M,

(ξ, θ) ◦ (ξ′, θ′) = (ξ⊗ ξ′, θ+ θ′). (1.5)

Our aim here is to prove the following theorem.

Theorem 1.6. Any irreducible component of T jm (defined in (1.3)) is a translation of an

algebraic subgroup of G by a point of M by the action defined in (1.5).

The special case of the above theorem where D is empty and there is no Higgs

field was proved in [GL]; whereD is empty was first proved in [A] (alternative proofs were

given in [S2], [B1]); where there is no Higgs field (Dmay be nonempty) was proved in [B2].

In [S2] it was proved that the translating element in M (in [S2] D is empty, so

M = Pic0(X) × V ) can be taken to be a torsion point. However, in the general case, the

question of torsion has a negative answer. Indeed, when the Neron-Severi group of X is

torsion-free, all the torsion points of the Picard group are contained in Pic0(X). So the

component P(X) cannot have a torsion point unless D is empty. Hence, the translating

point of M cannot be chosen to be a torsion point.

The proof of Theorem A is an extension of the proof in [B2], where the key point

was that using the “covering lemma” of Y. Kawamata, the space P(X) can be identified
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Logarithmic Dolbeault Complex for Higgs Line Bundles 85

with the moduli space of equivariant line bundles of degree zero on a suitable variety

equipped with an action of a finite group. In Section 3 we observe that the above identi-

fication extends to an identification between Higgs line bundles and equivariant Higgs

line bundles. Moreover, the logarithmic Dolbeault complex is the invariant part of the

Dolbeault complex of the corresponding Higgs bundle equipped with a group action.

2 Equivariant Higgs line bundles

Let Y be an irreducible smooth projective variety over C of dimension n. The group of

automorphisms of Y is denoted by Aut(Y). Let G be a finite subgroup of Aut(Y). The action

of G on Y is denoted by ρ.

We will assume that the quotient of Y by the action of G is a smooth projective

variety.

We recall the definition of an orbifold line bundle [B2].

Definition 2.1. An orbifold line bundle on Y is a line bundle L on Y together with a lift of

action ofG,which means thatG acts on the total space of L, and for any g ∈ G, the action of

g on L is an isomorphism between L and ρ(g−1)∗L. Two orbifold bundles are said to be iso-

morphic if there is an isomorphism between them which commutes with the actions ofG.

Define W := H0(Y,Ω1
Y ) to be the space of all holomorphic 1-forms. The group G

has a natural action on W; let

WG ⊂W

denote the space of invariants.

Definition 2.2. An orbifold Higgs line bundle is a pair of the form (L,φ) where L is an

orbifold line bundle and φ ∈WG.

For a pair (L,φ) as in (2.2), we have the following Dolbeault complex on Y (as in

(1.2)) :

C. : C0 = L ∧φ−→C1 = L⊗Ω1 ∧φ−→C2 = L⊗Ω2 ∧φ−→· · ·
· · · ∧φ−→Cn−1 = L⊗Ωn−1 ∧φ−→Cn = L⊗Ωn −→ 0. (2.3)

Since φ is invariant under the action of G, the action of G on L induces an action on the

hypercohomology H j(C.). Let

H j(C.)G ⊂ H j(C.)

denote the space of invariants.
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86 Indranil Biswas

The moduli space of all isomorphism classes of orbifold line bundles such that

the underlying bundle is topologically trivial (an element of Pic0(Y)) is a smooth projective

variety equipped with a group operation. We will denote this group by PG(Y), which is

clearly nonempty since the pullback of any element of Pic0(Y/G) is an element of PG(Y).

Let P0
G(Y) be an irreducible component of PG(Y), and let Pic0

G(Y) denote the component of

PG(Y) which contains the identity element.

Consider the product variety

MH(Y) := P0
G(Y)×WG, (2.4)

which is a component of the moduli space of orbifold Higgs line bundles. Imitating the

definition of Green-Lazarsfeld set (1.3), we define, for j,m ≥ 0,

S jm := {(L,φ) ∈MH(Y) | dimH j(C.)G ≥ m} ⊂MH(Y). (2.5)

The product group Pic0
G(Y) ×WG acts on MH(Y) as in (1.5). We will prove the fol-

lowing simple proposition, which is actually a corollary of Theorem 3.1 (a) of [S2].

Proposition 2.6. Any irreducible component of S jm (defined in (2.5)) is a translation of

an algebraic subgroup of Pic0
G(Y)×WG by a point of MH(Y) for the above action.

Proof. Let

M(Y) := {(L, θ) | L ∈ Pic0(Y), θ ∈ H0(Y,Ω1
Y )}

be the moduli space of rank one Higgs bundles on Y. The group G acts on M(Y) in the

following natural way: for g ∈ G and (L, θ) ∈M(Y),

g ◦ (L, θ) = (ρ(g−1)∗L, ρ(g−1)∗θ).

Let Γ ⊂ M(Y) be the fixed point set for this action (fixed by the entire G), which is an

algebraic subgroup of M(Y).

Let MG = PG(Y) ×WG be the moduli of orbifold Higgs line bundles. There is a

natural projection

f : MG −→M(Y)

given by forgetting the group action.

The image of f coincides with Γ . The map f identifies the component MH(Y) (of

MG) with Γ . Indeed, the group Hom(G,C∗) (the group of characters of G), denoted by Ĝ,

acts freely on MG, with the quotient being Γ . Also Ĝ acts freely on PG(Y)/Pic0
G(Y), the
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group of components of PG(Y). So f identifies the component MH(Y) with Γ . (The details of

this argument can be found in [B2].) From the semicontinuity considerations, the image

f(S jm) is clearly an algebraic subvariety of M(Y). Also, clearly this image is closed under the

action ofC∗ on M(Y). So, from Theorem 3.1 (a) of [S2] (p. 366), it follows that any irreducible

component of f(S jm) is a translation of a subgroup of M(Y). This completes the proof.

In the next section, we will use Proposition 2.6 in the proof of Theorem 1.6.

3 Relation between Dolbeault complexes

We continue with the notation of Section 1. So X is a connected smooth projective variety

over C of dimension n, and D is a divisor of normal crossing on X. This means that D

is a reduced effective divisor, each irreducible component Di of D is smooth, and they

intersect transversally.

Assume that the number αi = mi/N, where N is a fixed positive integer and

mi ∈ N, with 0 < mi < N.

The “covering lemma” of Y. Kawamata (Theorem 1.1.1 of [KMM], Theorem 17 of [K])

says that there is a connected smooth projective variety Y and a finite Galois morphism

π : Y −→ X

with Galois group G = Gal(Rat(Y)/Rat(X)) such that D̃ := (π∗D)red is a divisor of normal

crossing on Y and π∗Di = kiN.(π∗Di)red, 1 ≤ i ≤ d, where ki are positive integers.

Define D̃i := (π∗Di)red; so we have π∗Di = kiND̃i. Since the divisor D̃i is invariant

under the action of G, for any k ∈ Z, the line bundle OY (kD̃i) has an orbifold structure.

For a line bundle ξ on X, the pullback bundle π∗ξ has an obvious orbifold struc-

ture. Define

L := π∗(ξ)⊗ OY

(
d∑
i=1

kimiD̃i

)
. (3.1)

This line bundle L has an orbifold structure.

On the other hand, given any orbifold line bundle L on Y, the group G acts on the

direct image π∗L, and the invariant subsheaf

(π∗L)G ⊂ π∗L (3.2)

is a locally free OX-coherent sheaf of rank one.

The two constructions (3.1) and (3.2) are inverses of each other and give a one-to-

one identification of orbifold line bundles on Y with line bundles on X. (The details can

be found in [B2].)
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88 Indranil Biswas

If ξ in (3.1) is in P(X), then

c1(L) = π∗c1(ξ)+
d∑
i=1

kimi[D̃i] = π∗c1(ξ)+
d∑
i=1

mi

N
[kiND̃i].

But by definition, [kiND̃i] = π∗[Di]. Hence,

c1(L) = π∗c1(ξ)+
d∑
i=1

mi

N
π∗[Di] = 0.

So the above identification between orbifold line bundles on Y and Pic(X) identifies

P(X) with a component of PG(Y). We will call this component P0
G(Y).

Note that the action of G on Y induces an action of G on the direct image π∗Ωi
Y .

Lemma 3.3. Let ξ ∈ P(X), and let L be defined by (3.1). Then the invariant direct image

sheaf (π∗(L⊗Ωi
Y ))
G is canonically isomorphic to ξ⊗Ωi

X(logD) for any i ≥ 0.

Proof. First we note that π∗Ωi
X(logD) = Ωi

Y (log D̃) (recall that D̃ = (π∗D)red) for any i ≥ 0.

Since all the mi in (3.1) are strictly positive, we have the inclusion

π∗(ξ⊗Ωi
X(logD)) ⊂ L⊗Ωi

Y (3.4)

of OY coherent sheaves. So we have the composition homomorphism

γ : ξ⊗Ωi
X(logD) −→ π∗π∗(ξ⊗Ωi

X(logD)) −→ π∗(L⊗Ωi
Y ) (3.5)

induced by (3.4). Clearly, γ commutes with the action of G, with the action of G on

ξ⊗Ωi
X(logD) being trivial. So γ induces a homomorphism of OX-coherent sheaves

γ̄ : ξ⊗Ωi
X(logD) −→ (π∗(L⊗Ωi

Y ))
G. (3.6)

We will prove that γ̄ is an isomorphism, which will complete the proof of the

lemma. But before that, we make the following simple observation.

Lemma 3.7. The invariant direct image sheaf (π∗Ωi
Y )
G is canonically isomorphic to Ωi

X.

Proof. The homomorphism π∗Ωi
X −→ Ωi

Y given by the differential of π induces a homo-

morphism

Ωi
X −→ π∗Ωi

Y ,

 by guest on January 27, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/
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which in turn gives the following homomorphism of bundles on X

ν : Ωi
X −→ (π∗Ωi

Y )
G. (3.8)

(Note that since π is a finite and flat morphism, π∗Ωi
Y is actually locally free, and moreover

the sheaf of its invariants is also locally free.)

Let D′ ⊂ X denote the (reduced) divisor over which the map π is ramified.

The homomorphism ν gives a nonzero section, denoted by s, of the line bundle

(
top∧ Ωi

X)∗ ⊗ (
top∧ π∗Ωi

Y )
G. The homomorphism ν fails to be an isomorphism exactly over the

reduced divisor (div(s))red.

The homomorphism ν is clearly an isomorphism at any point x ∈ X − D′. So

(div(s))red ⊂ D′.
Take a smooth point x of the divisor D′. From the following observation we con-

clude that ν is an isomorphism at x.

Let U and U′ be two copies of the unit disk in C, and let p : U′ −→ U be the map

defined by z 7−→ zn, where n ≥ 1. Then the space of differential forms on U′ invariant

under the deck transformations (of p) is generated by the form zn−1.dz, which also hap-

pens to be a pullback of a differential form on U. Take any y ∈ π−1(x). Then there is a

neighborhood (in Y) of y of the form U′ × T and a neighborhood (in X) of x of the form

U× T such that the map π is of the form p× Id on U′ × T .

The above conclusion that ν is an isomorphism at x together with the earlier ob-

servation that (div(s))red ⊂ D′ imply that the divisor div(s) must be the empty divisor. This

completes the proof of Lemma 3.7.

We continue with the proof of Lemma 3.3. From Lemma 3.7, it can be easily de-

duced that the homomorphism γ̄ is an isomorphism outside the divisor D.

Let x ∈ D be a smooth point of the divisor. Then by a local checking on the unit

disk (as done in the proof of Lemma 3.7),we get that γ̄ is an isomorphism at x. This implies

that the subvariety of X where γ̄ fails to be an isomorphism must be of codimension at

least two. On the other hand, by a previous argument, γ̄ fails to be an isomorphism on a

divisor (possibly empty). Hence, γ̄ must be an isomorphism everywhere. This completes

the proof of Lemma 3.3.

A computation similar to that above can also be found in [EV].

Proof of Theorem 1.6. Let F : M −→MH(Y) be the morphism defined by (ξ, θ) 7−→ (L, π∗θ),

where ξ and L are related by (3.1). From the identification of P(X) with P0
G(Y) and from

Lemma 3.7, we conclude that F is an isomorphism.
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Take φ in (2.3) to be π∗θ. Since π is a finite and flat morphism, H j(C.) is identified

with the jth hypercohomology of the following complex of sheaves on X:

π∗L
∧φ−→π∗(L⊗Ω1

Y )
∧φ−→· · · · · · ∧φ−→π∗(L⊗Ωn−1

Y )
∧φ−→π∗(L⊗Ωn

Y ) −→ 0.

For any G module V, the inclusion VG −→ V of the invariants has a natural

splitting given by the kernel of∑
g∈G

g ⊂ End(V ).

Using this, it can be shown that the invariant subspace (H j(C′.))G is identified with the

jth hypercohomology of the following complex:

C′. : (π∗L)G
∧φ−→(π∗(L⊗Ω1

Y ))
G ∧φ−→· · · · · · ∧φ−→(π∗(L⊗Ωn−1

Y ))G
∧φ−→(π∗(L⊗Ωn

Y ))G −→ 0.

But from Lemma 3.3 and 3.7, the above complex C′. is identified with the complex D.

defined in (1.2). Now Theorem 1.6 follows from Proposition 2.6.
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