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RESTRICTION OF THE POINCARE BUNDLE TO A CALABI-YAU
HYPERSURFACE

INDRANIL BISWAS AND L. BRAMBILA-PAZ

1. INTRODUCTION

Let X be a compact connected Riemann surface of genus g, where g > 3. Denote
by M¢ = M(n,§) the moduli space of stable vector bundles over X of rank n and
fixed determinant £. If the degree deg(¢) and the rank n are coprime, then there is
a universal family of vector bundles, U, over X parametrized by M. This family is
unique up to tensoring by a line bundle that comes from M,. We fix one universal
family over X x M, and call it the Poincaré bundle. For any x € X, let U, denote
the vector bundle over M, obtained by restricting U to x x M,. It is known that U
(see [BBN]) and U, (see [NR] and [Iy]]) are stable vector bundles with respect to any
polarization on X x M, and M, respectively.

A smooth anti-canonical divisor D on Mg is an example of a Calabi-Yau variety, i.e.,
it is connected and simply connected with trivial canonical line bundle. The Calabi-Yau
varieties are of interest both in string theory and in algebraic geometry.

In this paper we consider the restrictions of i and U, to X x D and x x D respectively,
where x € X and D is a smooth anti-canonical divisor. Denote such restrictions by
Up and (Up), respectively.

In Theorem 2.5 and Corollary 2.6 we prove the following :

If n > 3, then the vector bundle (Up), is stable with respect to any polarization on
D. Moreover, for the general Riemann surface X, the connected component of the
moduli space of semistable sheaves over D, containing the point represented by (Up).,
s isomorphic to the Riemann surface X.

Actually, we prove that for any point z of any X (not necessarily the general Riemann
surface), the infinitesimal deformation map for the family Up of vector bundles over
D parametrized by X, is an isomorphism from T, X to H'(D, End((Up).)) [Theorem
2.5]. Therefore, X is an étale cover of the above component of the moduli space of
semistable sheaves over D.

In Theorems 2.9 and 2.10 we establish the following property of Up when rank n > 3.
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For any polarization on X x D, the vector bundle Up is stable. Moreover, the
connected component M% (Up) of the moduli space of semistable sheaves over X x D,
containing the point represented by Up, is isomorphic to the Jacobian of X.

Let d = deg(€), and let X x M¢ x Pic’(X) — X x M(n,d) be the map defined by
(x, B, L) — (x, EQ L).

Consider the restriction to X x D x Pic’(X) of the pullback, using the above map, of a
universal vector bundle over X x M(n, deg({)). Theorem 2.10 is proved by establishing
that this vector bundle over X x D x Pic’(X) gives a universal family of stable vector
bundles over X x D parametrized by Pic’(X).

The above results are analogous to those on U, and U obtained in [NR|| and [BBN]
respectively.

It is known that the connected component, M$ (i), of the moduli space of semistable
sheaves over X x Mg, containing the point represented by U, is isomorphic to the
Jacobian of X [BBN]. As M. S. Narasimhan pointed out to one of the authors, in order
to be able to recover the Riemann surface X what is still needed is an isomorphism of
M (U) with Pic’(X) as polarized varieties. In the final section we produce a canonical
polarization on M% () and also on M% (Up). Using Torelli’s theorem we have (see
Theorem 4.3 and Theorem 4.4)

Let X and X' be two compact connected Riemann surfaces of genus g > 3. If
MSU) = M (U) or M&Up) =2 MS (Up), as polarized varieties, then X = X'.

Actually, we give a general construction of a certain line bundle equipped with a
Hermitian structure on a moduli space, My, of stable vector bundles over a compact
Kahler manifold Y of arbitrary dimension. The curvature of the Hermitian connection
on this line bundle has been computed in Theorem 4.1. If Y = X x M, or X x D, and
My = Pic’(X), then the curvature form represents a nonzero multiple of the natural
polarization on Pic’(X) given by the cohomology class of a theta divisor.

We note that if the assumption n > 4 is imposed, then all the results proved here
remain valid for g = 2.

Restriction of vector bundles to a Calabi-Yau hypersurface has been considered in

[, [O).
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2. VECTOR BUNDLES OVER A SMOOTH ANTI-CANONICAL DIVISOR ON THE MODULI
SPACE

Let X be a compact connected Riemann surface of genus ¢ > 3. Fix a line bundle
¢ over X of degree d, and also fix an integer n > 3 coprime to d. Let M := M(n,¢)
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denote the moduli space of stable vector bundles E over X of rank n and with the
determinant A" FE isomorphic to &.

It is well known that there is a universal vector bundle U over X x M. A universal
vector bundle U is called the Poincaré bundle. Let Ad(U) C End(U) be the subbundle

of rank n? — 1 defined by the trace zero endomorphisms. The vector bundle over M,
obtained by restricting U (respectively, Ad(U)) to x x M, where z € X, will be
denoted by U, (respectively, Ad(U),).

We know that both the vector bundles U and U, are stable (see [NR] and [BBN]).
In general, restrictions of stable vector bundles need not be stable. In this section we
will consider the restrictions of U, and U to certain subvarieties of M, and X x M,
respectively, and prove that they are stable.

Denoting the canonical line bundle of Mg by K, let D be a smooth divisor on
M in the complete linear system for the anti-canonical line bundle K;,,lg. Using the
Poincaré residue theorem, the canonical line bundle of D is the trivial line bundle. The
variety D is connected since K/T,llé is ample, and as M is also simply connected, D
must be simply connected. In other words, any such divisor D is a Calabi- Yau variety.

The restriction of U to X x D will be denoted by Up. For any x € X, the vector
bundle over D obtained by restricting the vector bundle i/, to the subvariety x x D C
x X Mg, will be denoted by (Up),. Let Ad(Up) denote the adjoint bundle of the vector
bundle Up over D. For any x € X, denote by Ad(Up), the vector bundle over D
obtained by restricting Ad(U,) to the subvariety x x D C x x M.

The divisor D induces the following exact sequence of sheaves over M.
0 — Opm(—=D) — Onm, — Op — 0. (2.1)
Tensoring (2.1) with Ad(U,) we have the sequence
0 — AdUy,) ® Op (~D) — AdU,) = AdUp), — 0. (2.2)

The following lemma plays a key role in the proofs of the results in this section.
Lemma 2.1. H'(M,, Ad(U,) @ Op,(—=D)) =0, fori=0,1,2.

Lemma 2.1 will be proved in Section 3. Meanwhile, in this section, Lemma 2.1 will
be assumed to be valid.

The restriction homomorphism F' : Ad(U,) — Ad(Up), induces a homomorphism

F: H(Me, AdW,)) — H'(D, AdUp).).

We will now deduce from Lemma 2.1 that the two homomorphisms Fy and F} are
isomorphisms.

Proposition 2.2. The homomorphism F; is an isomorphism, for 1 =0, 1.
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Proof. This proposition follows by considering the long exact sequence of cohomology
for the exact sequence (2.2) and then using Lemma 2.1. O

Theorem 2 (page 392) in [NR|] says that
H°(Me, AdU,)) = 0 and H' (Mg, AdU,)) = T, X .

Therefore, Proposition 2.2 has the following corollary.

Corollary 2.3. For anyx € X,
HY(D, Ad(Up),) = 0.

Moreover, H'(D, Ad(Up),) = T,X where T,X is the holomorphic tangent space of X
at x.

Since
i C if i=0
H<D’0D>:{0 if i=1

and
H'(D, End(Up).) = H'(D,Op)® H'(D, Ad(Up).)
we obtain from Corollary 2.3 that the following two equalities are valid
H°(D, End(Up),) = C (2.3)
HY(D, End(Up),) = T.X. (2.4)

Proposition 2.4. dim H'(X x D, End(Up)) = g. Moreover, there is a canonical
isomorphism o : H'(X,0) — H'(X x D,End(Up)).

Proof. Let p: X x D — X be the projection onto the first factor, and let
0— H'(X, R),End(Up)) — H'(X x D, End(Up)) — H*(X, R,,.End(Up)) (2.5)

be the associated exact sequence obtained from the Leray spectral sequence. From
(2.3) and (2.4) we obtain the following two canonical isomorphisms

R, EndUp) = TX
and
Ry End(Up) = Ox.

Now the proposition follows from the exact sequence (2.5). O

Since Pic(D) = Z, the stability condition of a vector bundle over D does not depend
on the choice of a polarization. Moreover, the vector space parametrizing infinitesimal
deformations of a vector bundle V over D, namely H'(D, End(V)), coincides with
HY(D, Ad(V)).
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Theorem 2.5. For any v € X, the vector bundle (Up), over D is stable. Moreover,
the infinitesimal deformation map

T,.X — H'(D, AdUp),)

for the family Up of vector bundles over D parametrized by X, is an isomorphism.

Proof. We will first prove that (Up), is polystable. The proof of the polystability
of (Up), given below is similar to the proof of [BBN|, Proposition 2.4].

For any z € X, let
T:Y — X

be a spectral cover which is unramified over z. (See [H] for the definition of a spectral
cover; also can be found in [BNR].)

The associated rational map
7 Prym(Y) — Mg

is a generically finite dominant rational map; Prym(Y) C Pic?(Y') is the Prym variety
for the covering m, where ¢ = deg(¢) + (g — 1)(n* — 1). The subvariety of Prym(Y)
where 7 is not defined — we will denote this subvariety by A — is of codimension at
least 3 and the subvariety of M, consisting of the complement of the image of 7 — we
will denote this subvariety by B — is of codimension at least 2.

The subvariety D N B of D is of codimension at least 2. Indeed, if it is not true, i.e.,
D N B is a divisor on D, then the fact that Pic(D) = Z would imply that D N B is
actually an ample divisor on D. This in turn would imply that there is a nonconstant
holomorphic function f on D — (DN B). On the other hand, since the codimension of
A in Prym(Y) is at least 3, the pullback of the function f to 7 '(D — (DN B)), being
a nonconstant function, would yield the required contradiction.

Using the criterion of [BBN, page 7, Lemma 2.1] for a vector bundle to be (semi)stable,
expressed in terms of the extension of a pullback, the following criterion for the polysta-
bility of (Up), is obtained. In order to prove that the vector bundle (Up), is polystable,
it is enough to show that (7|,-1(p))*(Up). on T (D) is polystable with respect to the
restriction of the natural polarization on Prym(Y') given by the restriction of the first
Chern class of a theta divisor on Pic“(Y').

Now since 7 is unramified over z, the vector bundle 7 (Up ), decomposes as a direct
sum of line bundles of same degree. More precisely, this vector bundle coincides with
the restriction of @,cr-1(,) Ly, where L, is the line bundle over Prym(Y’) obtained by
restricting a Poincaré bundle over Y x Pic“(Y') to y x Prym(Y"). So (7|,-1(p))*(Up)x
must be polystable, and hence (Up), is polystable.

The Corollary 2.3 says that (Up), is simple. Therefore (Up), is stable.
Let
T,X — H' M, AdU),) (2.6)
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be the infinitesimal deformation map for the family ¢/ of vector bundles over M,
parametrized by X. The infinitesimal deformation map

T,X — HY(D, Ad(Up),)

for the vector bundle Up over X x D, is simply the composition of the homomorphism in
(2.6) followed by the homomorphism Fj in Proposition 2.2. In [NR] it has been proved
that infinitesimal deformation map in (2.6) is actually an isomorphism. Since from
Proposition 2.2 the homomorphism F} is an isomorphism, the infinitesimal deformation
map for the family of vector bundles Up over D, parametrized by is an isomorphism.
This completes the proof of the theorem. O

Let M°((Up),) denote the connected component of the moduli space of semistable
sheaves over D with the same numerical invariants as (Up), and containing the point
that represents the stable vector bundle (Up),.

Corollary 2.6. For a general Riemann surface X, the moduli space M°((Up).) is
canonically isomorphic to X .

Proof. Consider the map
/6: X — MO((UD)J;)

defined by x —— (Up),. Theorem 2.5 implies that 3 is an étale covering map from X
to M°((Up).). The general Riemann surface of genus g > 2 does not admit a nontrivial
étale covering map to another Riemann surface. By this we mean that the subset of
the moduli space of Riemann surfaces of genus g representing all Riemann surfaces
having a nontrivial étale covering map to another Riemann surface, is a subvariety of
strictly lower dimension. Thus, for a general Riemann surface X, the map [ is an
isomorphism. O

Remark 2.7. In view of Corollary 2.6, the moduli space M°((Up),) constitutes an
explicit example of a complete family of semistable sheaves on a higher dimensional
variety such that all the members of the family are locally free and also do not have
the numerical invariants of a projectively flat vector bundle.

Remark 2.8. Let X7 — T be a smooth family of irreducible projective curves of
genus g, with g > 3. Suppose we are also given a family of Poincaré bundles, and a
family of smooth anti-canonical divisors, Dy — T', parametrized by T, for the family
of curves. Let My — T denote the relative moduli space of stable vector bundles for
the family Dy — T'. Let p : X7 — M7 denote the morphism which sends any point
x in the fiber X, over t € T to the stable vector bundle over the anti-canonical divisor
D, obtained from Theorem 2.5 (by simply restricting the Poincaré bundle to = x D).
Suppose that T is irreducible, and the general member in the family of curves X1 does
not have any nontrivial automorphism. Therefore, over an open subset U of T, the
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map p is an isomorphism. Since p is a morphism over 7', it must be an isomorphism.
Consequently, the assertion in Corollary 2.6 extends to all Riemann surfaces.

We will now consider the vector bundle Up over X x D. Actually, the results (and
proofs) are similar to those for U given in [BBN].

Theorem 2.9. The restriction of the Poincaré bundle U to X x D 1is stable with
respect to any polarization on X x D.

Proof. Since H'(D, Z) = 0, any polarization n on X x D is the form
n = a\+ by, a,b>0,
where \ and 7 are polarizations on X and D respectively.

Recall Theorem 2.5 which says that the vector bundle (Up), is stable for any x € X.
Furthermore, by definition, for any {d} € D, the vector bundle (Up)|xxay over X is
stable. Hence by Lemma 2.2 in [BBN], the vector bundle U, is stable with respect to
any polarization on X x D. O

Let M°(Up) denote the connected component of the moduli space of semistable
sheaves over X x D with the same numerical invariants as Up and containing the point
representing the stable vector bundle Up.

Theorem 2.10. M°(Up) = Pic’(X).

Proof. Let p: X x D — X denote the projection onto the first factor. Consider

the morphism
§: Pic®(X) — M°Up)

defined by L —— Up ® p*L. As in Lemma 3.4 of [BBN, page 12|, we have that 0 is
injective; we will omit the details. Moreover, the Zariski tangent space of M°(Up)
at the point Up @ p*L is naturally isomorphic to H'(X x D,End(Up)), which has
dimension g by Proposition 2.4. From the Zariski’s Main Theorem and the fact that
Pic’(X) is complete we have that § is actually an isomorphism. a

Remark 2.7 is also valid for the moduli space M°(Up).

The following section will be devoted to the proof of Lemma 2.1.

3. PROOF OF THE MAIN LEMMA

As D is linearly equivalent to K;,,lg, we have
Om(=D) = Ky, (3.1)
So Lemma 2.1 is equivalent to the following statement :

H' (Mg, AdU), ® Kp,) = 0
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for 7 < 2.

The ample generator of Pic(M) = Z will be denoted by ©. We will recall a
relationship between the canonical line bundle and a determinant bundle over M.

Define b := g.c.d(n,d), n’ := ¥ and X' := dM(bl_g)'

Take a point y € X — x. Since the anti-canonical line bundle KX,}E is isomorphic to
20 [Re], we conclude that

Ky, = (det()™ @ (A"U,)" >, (3.2)

13

where det(U) is the determinant line bundle over Mg, whose fiber over a point rep-
resented by a vector bundle E over X is canonically isomorphic to following line (cf.

[KM]) : . .
NPH (X, By QN TH'(X, E).
The determinant bundle depends upon the choice of the universal vector bundle, but

the expression of © in terms of the determinant bundle is valid even in the non-coprime
situation where there is no Poincaré bundle.

Proof of Lemma 2.1. The proof is an application of the idea initiated in [NR]|| of
computing cohomologies using the Hecke transformation. We will not deal with the
issues of codimension computation needed for the application of Hartog type results
on cohomology, since they have already been resolved in [NF].

Consider the projective bundle
p - PUy) — M

consisting of all hyperplanes in U,. Now P, := P(U,) parametrizes a natural family of
vector bundles over X of rank n and degree d — 1. Let )V denote this vector bundle over
X x P,. The restriction of V to X x {H}, where H C E, is a hyperplane representing
a point in P, over ¥ € Mg, fits in the following exact sequence

E,
0 — V]xx{m %E—>ﬁ — 0, (3.3)
where E,/H is supported at x. The general member of the family of vector bundles

over X, defined by V), is stable.

Thus, from a Zariski open subset of U of P, there is a natural projection

to the moduli space of stable vector bundles of rank n and determinant {(—z) :=
£ ® Ox(—x). The key point in [NR] is that the relative tangent bundle over U for the
projection p actually coincides with the relative cotangent bundle for the projection ¢
[, page 85].

Considering the exact sequence (3.3), from the definition of the determinant bundle
it follows immediately that we have the following isomorphism

det(V) = p'detd) ® Op, (1), (3.4)
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where Op, (1) is the tautological line bundle for the vector bundle U,.
Let L denote the line bundle over P, whose fiber over the point (E, H) € P, (as in
(3.3)) is the kernel of the homomorphism of the fibers
Vlxxquy)e — Eo

in the exact sequence (3.3). It is easy to check that Op (1) = L. Indeed, this is a
consequence of the exactness of the sequence (3.3) and the fact that the line bundle
N'"V|exp, over x X P, is isomorphic to A"U,. The last isomorphism is a consequence of
the fact that the Picard group, Pic(P,), of P, is discrete and for z # x, the line bundle
A™V|.xp, is canonically isomorphic to A"U,.

Since p, T ;el = Ad(U),, where Tgel is the relative tangent bundle for the projection

p, and furthermore the higher direct images of Tgel vanish, from the Leray spectral
sequence for the projection p we conclude that the following

H' (Me, AdU), ® Kn) = H(U, T @ p*Ku,)

= (U, T;™ @ (det(V) © L) @ (7,) ) (35)

is valid for any ¢ > 0, where T q*,rel is the relative cotangent bundle for the projection
g. Indeed, since z # y, the vector bundle V, over P, is canonically isomorphic to

p*U,, and furthermore, as we already noted earlier, the relative tangent bundle T’ ;el is
isomorphic to Tq*,rel_

Since Ky, is negative ample, and the restriction of to a fiber of ¢ is a noncon-
stant morphism, the restriction of p*K,, to a fiber of ¢ has strictly negative degree.
Furthermore,

HY(CP(r), Q' (k)) = 0

if i # r and k < 0 (see [Bd] and [BY, page 71, Theorem 4.3]). Consequently, if n > 4,
then the following equality

Rig (T @ (det(V) @ )72 @ (A"V,)™) = 0 (3.6)

is valid for 7 < 2.

Combining the equality (3.6) with the Leray spectral sequence applied to the vector
bundle T;,rel ® (det(V) ® L*)2" @ (A"V,)~2X, for the projection ¢, we conclude that

H(U, T;* @ (det(V) © L) @ (A""V,) ) = 0
for i <2 whenevr n > 4. Now the equality (3.5) yields that if n > 4, then
H' (M, AdU), ® Kp,) = 0

for ¢+ < 2. This completes the proof of the lemma when n > 4.

We now consider the remaining case, namely n = 3.
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First note that in this case the left-hand side of (3.6) vanishes for ¢ = 0 and i = 1.
Thus the proof of lemma will be completed once we are able to establish the following
equality

HO(M(n,€(~2)), R%(T;* @ (det(V) @ L) @ (A",) 7)) = 0.  (3.7)

Using a special case of Serre duality, which says that for a line bundle { over a
smooth projective surface S

H*(S, Qg @ () = H(S, Q@)
the following isomorphism is obtained

RQq*(T;vfel ® (det(V) @ L) @ (A™V,) %)

> (RO (T @ (det(V) © L) @ (A,)™) . (3.8)

Let Ad(U) denote the universal adjoint vector bundle over the smooth locus of X x
M(n,&(—x)). We observe that although there may not be any universal vector bundle
over the smooth locus of X x M(n,&(—x)), the universal adjoint always exists. The

restriction of Ad(U) to x x M(n,&(—=z)) will be denoted by Ad(U),. Let
O € Pic(M(n,&(—x)))
be the positive generator.

Now ROq.(T;"el @ (det(V) @ L) @ (A™V,)2Y) = AdWU), @ O"", where k > 0.

Since Ad(U), is semistable of degree zero, and Ad(U), = Ad(U)?, we conclude that
H (Mn,§(=2)), (R°0.(T;* @ (det(v) @ L) @ (70,)))") = 0.
Now (3.8) implies (3.7), and this completes the proof of the Lemma 2.1. O

If n > 4, then Lemma 2.1 is also valid for ¢ = 2. Consequently, all the results in
Section 2 remain valid for g = 2 if the condition n > 4 is imposed. We note that the
special situation where n = 3 and g = 2 has been left out in Theorem 2 of [NR].

4. A DETERMINANT LINE BUNDLE OVER THE MODULI SPACE OF VECTOR BUNDLES
OVER A KAHLER MANIFOLD

Let Y be a compact connected Kahler manifold of complex dimension d. Fix coho-
mology classes ¢; € H*(Y, Q), 1 <4 <r. Let M be a moduli space of stable vector
bundle E of rank r over Y with ¢;(E) = ¢; and fix the Hilbert polynomial. It is known
that in general there is no universal vector bundle over Y x M [Rd], [Ld].

Fix a point yo € Y. Let ¢ : yo — Y be the inclusion of yp and let ¢ : ¥ — 1y
be the projection. There is a natural vector bundle W over Y x M of rank r? with the
following property : for any m € M if E is the vector bundle over Y represented by
m, then the restriction of W to Y x m is isomorphic to Hom((i 0 ¢)*E, E'). The vector
bundle W is constructed using the observation that for any analytic subset U C M
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such that there is a universal vector bundle over Y x U, any two universal vector
bundles over Y x U differ by tensoring with a line bundle pulled back from U. This
observation is a simple consequence of the projection formula and the fact that any
automorphism of a stable vector bundle is a scalar multiplication.

Fix a Kahler metric w on Y. From a celebrated theorem of Yau and Uhlenbeck [[UY]]
(due to Donaldson for projective manifolds [Dd] and due to Narasimhan and Seshadri
[Ng for Riemann surfaces) for any stable vector bundle E over Y there is a unique
Hermitian-Einstein connection on E. Any two Hermitian-Einstein metrics differ by
multiplication with a constant scalar. This implies that the above vector bundle W
has a natural Hermitian metric induced by any of the Hermitian-Einstein metrics over
the vector bundles represented in M.

Given any vector bundle V' over Y x M, by a general construction of determinant
line bundle [KM]], [BGS] we have a line bundle det(V') over M whose fiber over m € M
is canonically identified with the line

d ot ; (-1)!
QAP (H (Y, Vi)
=0

where (/\tOpF )_1 means AYPF*. This construction of [KM], [BGY] gives a homomor-
phism from the Grothendieck K-group K (Y x M) to the group of holomorphic line
bundles over M.

Consider the element
(W — OB e K(Y x M), (4.1)
where O is the trivial vector bundle on rank 7% over Y x M. Let
L o= det((W — 0¥)=@D) — M (4.2)
be the determinant line bundle over M.

By a general construction of [BGY| ([[J] when Y is a Riemann surface), using the
earlier obtained natural metric on W and the Kahler metric w on Y as the input, we
have a Hermitian metric on £ which is known as the Quillen metric. Let {2 denote the
first Chern form for the Hermitian connection on £. Our next step will be to identity
the form €2, and in particular, to calculate the first Chern class of L.

Let v € HY(Y, Q) ® H'(M, Q) be the Kiinneth component of ¢;(W) € H?*(Y x
M, Q). Denoting the projection of Y x M onto the i-th factor by p;, consider

v o= (@WUPUpi(e)THNY] € H*M, Q) (4.3)
where ¢, as defined earlier, is the first Chern class of a typical vector bundle represented

in M and N[Y] is the cap product with the oriented generator of Hqy(Y, Q).

Let v be the differential 2-form on Y x M obtained by taking the (1,1)-Kiinneth
component of the first Chern form ¢, (W) for the Hermitian connection on W. Also,
let ¢ denote the (unique) harmonic two form on Y representing the cohomology class
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c1. Clearly the following two form
ro= [ GudupiE”
Y

on M is closed, and it represents the cohomology class v defined in (4.3).

Forany y € Y, let iy : M — Y x M be the inclusion defined by m —— (y,m).
Denote by ¢®?(W) the function from Y to the space of two forms on M which sends
any y € Y to i;ci(W), the pullback of the first Chern form of W. The volume form
w? on Y, for the Kahler form w, will denoted by dV. Now we are in a position the
describe the curvature form 2.

Theorem 4.1. The first Chern form §Q for the Hermitian connection on L has the
following expression:

Q0 - <d‘2”>r + (d+1)/yc°’2(W)dV.

Furthermore, the first Chern class of L is (d;’l)v.

Proof. The main theorem of [BGY] (Theorem 0.1) expresses the first Chern form
of £ in terms of the Chern character form of W and the Todd forms of the relative
tangent bundle for the projection ps of Y x M onto M. Since the virtual rank of
W —O%"” is zero, the lowest degree term of the Chern character of (W — @®)®(@d+1) jg
of degree 2(d+ 1). In other words, if ch;(V) € H*(Y x M, Q) denotes the component
of the Chern character ch(V) of V € K(Y x M), then ch,-(W - (9@’"2) =0 for 7 < d.
Thus there is no contribution of the Todd forms of the tangent bundle of Y in the
expression of the first Chern form of £ according to Theorem 0.1 of [BGY|. The first
part of the theorem now follows easily.

The second part of the theorem can be proved using the Grothendieck-Riemann-Roch
theorem. The relevant observation is that the Kiinneth component of the first Chern
class c; (W) in HY(Y, Q) ® H*(M, Q) vanishes. The second part of the theorem now
follows from the earlier observation that there is no contribution of the Todd classes of
Y in the Grothendieck-Riemann-Roch formula for the first Chern class of L.

The second part of the theorem can also be deduced directly from the first part.
The form izocl(W) on M vanishes identically. Hence by the homotopy invariance of
the pullback of a cohomology class, any 4;c, (W) is an exact form. This implies that
Jy »2(W)dV is a exact form. Now the second part of the theorem follows from the
first part. O

If either H'(Y,Q) = Oorcf™ = 0, then from Theorem 4.1 it follows that ¢;(£) = 0.
We will give examples where £ is a nontrivial line bundle.

Let A be an abelian variety of dimension g. For ¢ € H?(A, Z)N H"“'(A) let Pic®(A)
denote the component of Pic(A) consisting of line bundles L with ¢;(L) = ¢. The vector
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space H'(Pic®(A), Q) is canonically identified with H'(A, Q)*. Indeed, by fixing a
point of Pic®(A) it gets identified with Pic’(A) Since

Pic’(A) = Hom(H,(4, Z),U(1))

the vector space H'(Pic’(A), Q) is canonically identified with H'(A, Q)*. It is known
that the Kiinneth component in H'(A, Q) ® H'(Pic®(A), Q) of the first Chern class
of a universal line bundle over A x Pic‘(A) is the above mentioned isomorphism.

Let a € H?(A, Q)* be the Poincaré dual of ¢?=! € H?2(A, Q). The earlier
mentioned isomorphism between H'(Pic’(A), Q) and H'(A, Q)* identifies H*(A, Q)*
with H?(Pic®(A), Q). Let

a € H*Pict(A), Q)
be the element corresponding to the element a of H?*(A, Q)*.

Using the earlier remark on the Kiinneth component of the first Chern class of a
universal line bundle over A x Pic‘(A), from Theorem 4.1 it is easily deduced that in
this situation the following equality

all) = - (d; 1>a

is valid. If ¢ is a principal polarization on A then a is a principal polarization on
Pict(A).

If w is a translation invariant Kéhler form on A, then the first Chern form for the
Hermitian connection on £ coincides with —(d;’I
invariant closed form on Pic®(A) representing the cohomology class a.

)w, where @ is the unique translation

Now we will construct a second example where £ is nontrivial. Actually this partic-
ular example led us to the construction of L.

Let X be a compact connected Riemann surface of genus g > 2, Let M, and U as
before. Fix a Poincaré line bundle P — X x J, where J = Pic’(X).

It has been proved in [BBN] that the vector bundle U is stable with respect to any
polarization on X x M,. Furthermore, the vector bundle

Pisd @pis P — X X Mg x J,

where p;; is the projection of X x M, x J onto the product of the i-th and the j-th
factor, is a complete family of vector bundles over X x M. In other words, J is a
component of the moduli space of stable vector bundles over X x M.

Set Y = X X M, and in place of M substitute J realized as a component of the
moduli space in the above fashion. Note that the Jacobian J has a natural polarization
which is defined using the cap product on H;(X, Q). This polarization on J will be
denoted by ©.

Proposition 4.2. The first Chern class ¢1(L) coincides with 1© where [ is an integer
not equal to zero.
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Proof. Since Pic(M¢) = Z, any polarization on X x Mg is of the form
a[X] + b@ME’

where O, (respectively, [X]) is the positive generator of the cyclic group Pic(Me)
(respectively, H*(X, Z)), and a, b are strictly positive integers.

Let (3 denote the Kiinneth component in H'(X, Q) ® H'(J, Q) of the first Chern
class ¢1(P) € H*(X x J, Q).

Let go denote the projection of X x M, x J onto the factor M,. For a fixed x € X,
the first Chern class ¢;(Uloxm,) € H*(Me, Q) will be denoted by 4.

We now note that from the second part of Theorem 4.1 the following equality easily
obtained
d+1
_ *5d—1 * 02 4.4
aey = (T30 o a U, (4.4
where d = dimX x Mg = 14+ (r*> = 1)(g — 1) and Jxxm, 18 the Gysin map from
H{(X x M¢ x J, C) to H=2(J, C) defined by integration of forms along X x M.

The right-hand side of the equality (4.4) is equal to

(3L [

where [ is the Gysin map for the projection of X x J onto J. Using the isomorphism
between H?(Mg, Z) and Z, the cohomology class & is mr + 1, where m € Z [Rd]. This
implies that the integer [ Me 591 is nonzero.

Finally, [y 3% coincides with —©. This is because the (1, 1)-component 3 coincides
with the cohomology class on X x J defined by the natural identification between
HY (X, Q) and H*(J Q). This completes the proof of the proposition. O

Since © is a principal polarization on J, it can be recovered in a unique way from any
given integral multiple of ©. We equip the moduli space M5 (U) with the polarization
defined by the positive one among +c; (£). Now Proposition 4.2 and the Torelli theorem
for Riemann surfaces combine together to give the following theorem.

Theorem 4.3. Let X and X' be two compact connected Riemann surfaces of genus
g > 2. There is an isomorphism between MS%(U) and M%,(U) preserving their polar-
izations if and only if X =2 X'.

Now we set Y = X x D, where D, as before, is a smooth anti-canonical divisor
on Mg, and set M = M"(Up), defined in Section 2. Assume that n,g > 3. From
Theorem 2.10 we know that M%(Up) = Pic’(X).

Theorem 4.4. The first Chern class ¢, (L), where L is the line bundle over M°(Up)
defined in (4.2), coincides with a nonzero multiple of © on Pic’(X). Moreover, let X

and X' be two compact connected Riemann surfaces of genus g > 3. If MS(U) =
M (U), as polarized varieties with polarizations obtained from ¢ (L), then X = X',
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Proof. We have H*(D, Q) = 0 and Pic(D) = Z. The restriction of the cohomology
class § (defined in the proof of Proposition 4.2) on Mg to the subvariety D is nonzero.
Given this situation, the proof of the theorem is exactly identical to the combination
of the proofs of Proposition 4.2 and Theorem 4.3. O
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