v 7"

i

Pramana, Vol. 22, Nos 3 &4, March & April 1984, pp. 221-235. © Printed in India.

Complete mass spectra of g4 and Q4 mesons with improved Bethe-
Salpeter dynamics of confinement
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Abstract. The Bethe-Salpeter (Bs) dynamics of harmonic confinement developed by ANM
and collaborators over the last three years and already applied with considerable experimental
success to various hadron spectra and coupling structures has been significantly improved
through (i) a more exact treatment of 2 certain momentum-dependent operator Qq appearing
in the BS equation, using the techniques of SO (2, 1) Lie algebra, and (ii) asharpened definition
of the Qcp Coulomb term, so as to yield unambiguous values for different flavour sectors. The
resulting mass spectra of light (¢g) meson towers and semi-heavy (Q7) quarkonia which are
most sensitive to the improved treatment of @, reveal excellent agreement with experiment,
one in which only slight changes in the reduced spring constant (®)and quark masses (m,) over
the earlier parametrizations are involved. These changes are however found to have a
negligible effect on the (already good) numerical values of the other predictions (electroweak
and pionic couplings) depending on the g7 and gqq wave functions. A critical assessment of the
strong and weak points of this method is made vis-a-vis other related approaches.
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1. Introduction

It is generally believed (despite significant progress of lattice gauge theories on the
numerical front) that the Bethe-Salpeter (Bs) equation represents a most natural and
practical form of dynamics to describe the quark structure of hadrons. Now while for
heavy quarkonia the Bs equation reduces to the more orthodox Schrodinger equation
together with small corrections of O(V2/C?), the former differs qualitatively from the
latter for hadrons made up of light (u, d, s) quarks. Indeed it has been argued (Mitra
1981) that a closed form Bs equation is in all fairness the more appropriate form of
dynamics for uds spectroscopy which is intrinsically relativistic in character. (Even a
(0g) system, where Q is heavy and 7 light, requires an intrinsically relativistic
framework.) For light (or semi-light) meson spectroscopy, there is evidence of the use of
the Dirac equation and the associated languages of scalar vs vector (Critchfield 1975;

" Gunion and Li 1975), 3.scalar versus 4-scalar, mixtures of scalar and vector (Smith and

Tassie 1975; Critchfield 1975; Rein 1977; Jena 1983), etc potentials to simulate an
effective confining interaction. Since the Dirac equation (or the Breit equation) 1s an
incomplete response to the dynamics of a basically relativistic system (Bethe and
Salpeter 1957), it is not clear as to what extent issues such as the (scalar versus vec'tor)
nature of the confining potential have physical relevance. The Bethe-Salpeter equation,
on the other hand, being intrinsically four-dimensional in formulation (Bethe and
Salpeter 1957), avoids such controversies in a natural manner (since the kernel must
necessarily be a 4-scalar), and therefore puts the connection be%ween the Lorentz-
character of the potential and the problem of confinement in a much clearer

perspective.
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For some time we have been involved in the formation (Mitra 1981) of a Bethe-

Salpeter dynamics for 49 and ggq hadrons in the instantaneous approximation (Levy
1952; see also Fishbane and Namyslo

interactions (Kulshreshtha and Mitra 1983; Mittal and Mitra 1984). Under copditlons
of harmonic confinement, the pg equation has been explicitly -solved (Mitra and
Santhanam 1981 a, b) except for the presence of (i) a momentum-dependent term (Q,)
which has required a certajpn non-perturbative approximation (Mitra and Santhflnam
1981 a, b) and (ii) The coulomb (one-gluon exchange) interaction for which a
perturbative treatment has proved adequate. The model is characterized by a reduced

Kulshreshtha 1982; Kulshreshtha and Mitra 1983; Mitra and Mittal 1984; Mittal and

i icti I 99 and qqq systems have each been expressed
by a universal formula of the type (Mitra and Santhanam 1981a, b; Kulshreshtha et al
1982) F(M)= N + const, where N is the total yo quantum number for each system and
F (M) is a certain known function of the actua] hadron mass. The comparison of the
theory (Mitra and Santhanam 1981a, b; Kulshreshtha et g/ 1982) with the observed
mass spectra has been made somewhat indirectly, piz by ¢computing F (M) for 'the
observed masses of meson and baryon spectra of different species, and checking against
the expected behaviour of F (M), especially its universality for different members of a
common SU(6) multiplet (spin and flavour) and the unit spacing rule (AF = 1) for

ms of rather impressive agreement of a
more direct nature have beep found in respect of

(i) electroweak couplings of ¢7 systems illustra

tedby f, yirecand Vo e*e decays
(Mitra and Kulshreshtha 1982)

(i) electromagnetic couplings of qqq bar

yons, especially magnetic moments, proton
charge radius and A — N 7 helicity ampl

tudes (Mitra and Mitta] 1984)

(iii) pionic couplings of hadrons, highlighted by Ywpr I (p — nn) (Kulshreshtha and
Mitra 1983), (A - N m) and Gy, (Mittal and Mitra 1984)

These applications have been formulated in the
Feynman diagrams in which the key-ingredient to th

inputs used so far for the entire analysis are (Mitra and Santhanam 1979 a, b;

Kulshreshtha er g} 1982; Mitra and Kulshreshtha 1982; Mitra and Mittal 1984;
Kuishreshtha and Mitra 1983; Mitta] and Mitra 1984).

@ =015+001, my, = 0-28 1002, m, = 035+ 002 (1)
all in the GeV units,
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The main object of this paper is to have a fresh look at the problem of mass spectra

. with a view to providinga direct quantitative comparison of the predicted and observed

' masses with (marginal) modification in the parameters (1) if necessary; and to check on

. the other predictions noted above, which depend on the hadronic wavefunctions of the

. states concerned. To this end we have found it necessary to effect a three-fold
improvement in the earlier formalism: ‘

(a) A more exact treatment is now given of the operator (Mitra and Santhanam 1979 a,
b; Mitra and Kulshreshtha 1982)

Q,=49>V*+8q V,+6 @)

(b) A reassessment is made of the (perturbative) coulomb contribution to F(M) and
thence to M itself—wherein the variation of «, with the hadron mass under study is
postulated to be as follows:

127
(33 —2f)In (M */A?)

Since the a,-values predicted by this explicit (albeit adhoc) formula in the different
flavour sectors are in rather close accord with those employed in most phenomenolo-
gical calculations (Pennington 1983; Rosenberg 1982; Blumenfeld et al 1982), this
effective device removes an earlier arbitrariness in the a values hitherto employed
(Mitra and Santhanam 1981a, b; Kulshreshtha et al 1982) for different hadronic mass
zones. The M-dependence of «, of this nature has also been suggested in the bag model
(Carlson et al 1983).

(c) Meson states with unequal mass kinematics seem to go better with the (modified)
ansatz recently employed to investigate R-hadronic states (Mitra and Ono 1983), viz

o0 (M?) = . A & 250 MeV. | 3)

qu = Ty,My, @5 Typ = 4mymy /mi, “)

which is more in accord with the original suggestion (Mitra and Santhanam 1981a, b)
than with the one employed by Kulshreshtha et al (1982) and Mitra and Kulshreshtha
(1982) without the t,,-factor.

Since the basic formulation for g7 dynamics is already available in the literature
(Mitra and Santhanam 1981a, b; Mitra and Kulshreshtha 1982) in sufficient details, we
shall not go over it again but merely sketch the necessary steps clarifying only the newer
aspects bearing mainly on item (a). These are found to result in the effective replacement
of the quantity

Qu= NP H3N=3) = (V+) B

in the earlier mass formula (Mitra and Santhanam 1981a, b; Mitra and Kulshreshtha
1982) by an analogous function Q), behaving asymptotically as 10, Section 2 outlines
the essential steps of the new construction in terms of a non-compact group SO (1, 2)
whose eigenvalues are bounded from below only. Section 3 gives the results for meson
mass (M ) spectra for successively heavier quarks upto the (D, F )region, obtained from
a numerical inversion of the equation F (M) = constant for each state, where F (M) is
now calculated in accordance with the above improvements (a), (b), (c) over the previous
_ constructions (Mitra and Santhanam 1981a, b; Kulshreshtha et al 1982; Mitra and
Kulshreshtha 1982; Kulshreshtha and Mitra 1983; Mitra and Mittal 1984; Mittal and
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Mitra 1984). Very good fits are obtained with the input parameters (in GeV):
@ =014, m,y = 0:30, m, = 0-40, m, = 1-66, my, = 53, (6)

which differ only slightly from the values given by (1), employed earlier (Mitra and
Santhanam 1981a, b; Kulshreshtha et qal 1982; Mitra and Kulshreshtha 1982;
Kulshreshtha and Mitra 1983; Mitra and Mittal 1984; Mittal and Mitra 1984). The
resulting modifications in the various other quantities depending explicitly on the
hadronic wave functions which have been calculated so far (Mitra and Kulshreshtha
1982; Kulshreshtha and Mitra 1983; Mitra and Mittal 1984; Mittal and Mitra 1984) are
also found to be reproduced equally well. Section 4 concludes with a summary and a
brief comparison with some related approaches. Due to the relative insensitivity of the
difference between the input parameter sets (1) and (6) to the baryon states, a
corresponding reassessment on the baryon masses has not been undertaken in this

paper.
»
T
2. Improved solution of qq BS equation
We start with the ps equation (without the coulomb term for unequal mass kinematics
in the instantaneous approximation viz (Mitra and Kulshreshtha 1982)*
2MIq* ~37,(M? ~m?,)]¥ (g) = 02, [7,,M?V? + 0,
2 (m?+mi)M
—4Q1-S-3)+ - LTIM 'V, +6)]¥(q), (7
( )fmlmzq P —— (49°V,+6)]¥(q)
while Qq is given by (2), and the other symbols zre as defined in Mitra and Santhf’mam
(1981 a, b) and Mitra and Kulshreshtha (1982). Eliminating the (4q 'V, +6) term in the
usual manner leads to the simplified form
~72 1
[qzyz—%Mffzd’zmlzvf—Eli;i;“wéq-G(M)]WQ) =0, (8) ?

where use has been made of (4), and

(m3 +m3)? T2y, @ -
2 1 -1 — (9)
4 +[ 2mim? mym,M ’
GM)=37,,(M? —mi,) —3T12m, M “1(8J.8— 12), (10)
o(q) = eXP(*:’x(mf+m%)"112m1'2"152M)!//(<I)- (11)

As explained in Mitra and Santhanam (1979a, b), ¢(q) is the true wavefunction
satisfying the normal condition of probability conservation (which ¥ (q) does not). To
recall briefly why this vital property got lost in the transition from the four-dimensional

BS wave function ¥(q,) to the three-dimensional (instantaneous) function ¥(q), such ‘T’
problems in general reflect the foundational inadequacies inherent in a truncation from

* The slight difference of the coefficient of q° V. +3/2in (7) from the corresponding one in equation (8) of
Mitra and Kulshreshtha (1982) stems from neglecting the effect of the T, 1, term in the present case, unlike
that of Mitra and Kulshreshtha (1982). This reassessment results from the present approximation

w4 fw, & my /my which leads to [ 1+ ® Oand seems 1o be more justified than W; = w, considered in Mitra and
Kulshreshtha (1982). In either case, the results for m, = m, remain unaffected.

N ——.
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afour-dimensional to a three-dimensional framework. A good example of precisely this
kind of situation is provided by the celebrated Fkr model (Feynman et al 1971)in which
an attempt to suppress (by hand) the time-like excitations (because of the wrong sign of
the exponent associated with the “relative-time” degree of freedom) had resulted in an
overestimate (greater than unity) of the total probability, a malady which in turn
needed an effective form-factor (again adjusted by hand) for a possible remedy.

Further processing of (8) requires the use of the standard creation and annihilation
operators a;, a;7 defined by

a;=1//2[a:87* +04:B], & = 1/y/2[9:8 ™" —84:f] (12)

in terms of which (13) may be rewritten (in field-theoretic notation) as
[N+3/2—1/4¢0,—F,(M)]|¢> =0, o (13)

where

N=a}a;, &=8m,1,@*M™Q, (14)
0, = (@a;+af af ¥ —6— (2N +3)%, (15)
Fy (M) =1,,Q5  (M?—m?,) —8my,7,,®*M ~'Q ' (23.8 =3), (16)
Qy =4y, @M ty,)H? = 8p%y% 17)
A further transformation involving the use of the operators Q, (¢ = 1,2, 3) defined by
203 = N+3/2; Q, = 0, +i0,, (18)
20, =a;i" a, 20 = —a;a;, 19)

which shows that the number operator N appearing in (18) is directly connected with
0., while the other two quantities 4; %, af are related to Q, . The new quantities Q,
satisfy the commutation relations

[0:,0.]=%0.,[0. 07 ]=2¢s (20)

reminiscent of an SU(3) algebra, but it is really a non-compact SO(2,1) (because of the
relative definitions (19) of Q) which is nevertheless locally isomorphic to SO(3). In
terms of Q,-operators, (15) may be re-expressed as

~0,= +160% +6+160} o
= 8(C+Q3)+6+8(07 —01), (21)

Where C is the Casimir operator defined by
C=Qi+03+03=0.0-+03-0s (22)

and the non-diagonal part ~ (Q3 —Q%) connects states differing by two units of
excitation. The latter may be ignored in view of the large energy denominators involved
in such transitions (Mitra and Santhanam 1981a, b), and also the fact that this termis in
the first place merely a part of a non-leading term Qq in the Bs dynamics. Thus (13) is
reduced to an effectively diagonal form, leading to the algebraic equation

F,(M)—EQC+205+3/2)= N+3/2 : (23)

for a determination of M in terms of the cigenvalues of C and Q3. These eigenvalues
may be formally depicted as u(u+1) and m respectively, in the usual quantum
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mechanical language of angular momenta, but their values are not of the integral
and/or half-integral types. Instead their spectra are now governed by the generalized
Lie theory of G (1, 0) algebra, which classifies them into four different types (see, e.g.
Miller 1968). The type which is relevant to the present case corresponds to a rising Q;
spectrum in unit steps, but bounded from below, viz

@3)gg=m= —u+k, k=012... | (24)

where u is the parameter characterisin g the eigenvalue u(u + 1) of C. To determine the

value of u one must invoke the compatibility of (24) with (18), leading to the following
connection between the m and N quantum numbers ’

m=34N+3, N=0,12,... (25)

Distinguishing the two cases of even and odd N, a comparison of (24)and (25) gives the
following results for the Casimir operator in the two cases !

@ N=2nu= -3; uu+1l)= —& (26a)
®) N=2n+Lu=—5/4 uw+1)= +5/16, | (26b)

Both results are consistent with the generalized SO(2, 1) Casimir eigenvalues of the
form (Ghirardi 1972; Gardero and Ghirardi 1972)

C=1-%, (1=04), @7

thus providing further confirmation of the SO(2, 1) nature of the algebra of the Q,-
operators on hand.

Asaresult of these manipulations, the (approximate) eigenvalues of Qq given by (21)
are expressible as

Qv=<0,>= -3 ~2u(u+1)~12(N +3/22 (28)

where u(u + 1) alternates between —3/16 and + 5/16 for even and odd values of N
respectively. The quantity O\ now substitutes for the quantity Q,, equation (5), which
had appeared in the earlier treatment (Mitra and Santhanam 1981 a, b; Mitra and
Kulshreshtha 1982). Substitution of (28) in (23) leads to the explicit solution

Fuo(M)=F (M)+¢Q, = N+3/2, (29)

whose formal similarity to the earlier form (Mitra and Santhanam 1981a, b) can be
recognized except for the replacement Q,, - Q- Inclusion of the one-gluon exchange

(coulomb) term in a perturbative fashion addsa further correction to the left side of (29)
of amount

8a,M
coul = 5?2: ¢L(r)

_ 16 p Mo, (30)
3yt

1 2
- d3r
r

where
.00 = AN .Y, (06) (Br)exp (1 522), (31)

N;?=27B730(L+3/2); o, = l“(13:/(21).I-;~(3L/-;-i; : ’

(32)
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and o (M ?) is given by (3). Also according to the findings of an earlier analysis in
respect of qq, qqq, qqqq systems (Mitra 1982), the sum of the no and coulomb
contributions to F (M ) accounts for almost the entire zero point energy (zeE) for all
these systems (Kulshreshtha et al 1982; Mitra 1982) except for an overall shortfall of one
unit only in each case. In other words for qq, gqq, qqqq systems the effective zpe values
should be taken as 1/2, 2 and 34 respectively (Mitra 1982). Thus the final equation for
the determination of the mass M for a gg system is '

FH0+Fcoul =N+ 1/2’ (33)

where the two numbers on the left side are giveﬁ by (29) and (30) respectively.

3. Mass spectra of qg and Q7 states

To obtain the explicit masses (M ) of meson states from (33), we proceed stepwise from
light flavours, starting from the (gg) composites of (u, d) quarks (assumed equally
massive), successively to those of (4, d, s) and then on to semi-heavy quarkonia (Q7).

For a practical determination, it is most convenient to choose the input parameters
(m,, ®) beforehand, and for a given (NJLs) state to “hunt” for the M-value that will
reproduce the right side value, of (31) viz N + 1/2. Since moreover the change 0, — Q)
is small and should leave almost unaffected all but the lowest (N = 0) states, only small
changes from the original input values (1:1) are envisaged.

As to the coulomb term (30), it is fully determined by the Qcp parameter A and the
flavour number (f) according to the defining function (3) for a,. As to the M
dependence of a, this function is well behaved for all M > A but becomes singular for
M ~ A and negative for M < A, the last behaviour representing the physical limits on
the practical usefulness of such a parametrization for «. This affects only the lightest
meson (the pion) for which we must advocate the omission of the perturbative coulomb
term. Apart from this (small) exception, we stick meticulously to our general rule for
treating the pion as a gg composite on par with all other mesons, as recently discussed
elsewhere (Mittal and Mitra 1984). This is a far more conservative point of view than
most other approaches advocating the treatment of the pion as an effectively
elementary entity (Chodos and Thorn 1975; Brown and Rho 1979; Thomas et al 1981).
From a more general point of view too, the concept of a perturbative one-gluon
exchange correction to the mass of an unusually light hadron as the pion may well be of
questionable validity.

With these precautions, the theoretical values of M obtained for different ¢g states
are listed in table 1. The input (@, m, ) values are given in (6), which differ very little from

‘the earlier values (1), the differences arising as a result of the replacement Q, — QY as

well as the modified definitions of w?, (for unequal masses) and o, with respect to the
earlier treatment. The present set (6) of (m,, @) parameters are also in close accord with
a recent input employed for the determination of R-hadron masses (Mitra and Ono
1983), after normalizing such parameters to a limited fit to qg and Qg masses (L =0
states only). This last approach (Mitra and Ono 1983) used the definition (4) of cuf;‘a for
unequal masses, in common with this paper, but did not (till then), have the facility for
the replacement Q, — Q) which is particularly sensitive for N = 0. This sensitivity for
N = 0is borne out by the fact that even a formal solution of (31) for the (unusually low)
pion mass seems to exist only for the new value @}, but not for the older quantity Q.

P—7
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Table 1. Predicted meson masses for different flavour
sectors. Experimental masses are given with particle

symbols.

Meson (N, J, L, S) o M(GeV)
n(140) (0,0,0,0) —1135 0-141
p(770) } ©,1,0,1) 0-543 0-827
@(783) ‘
5(980) } (1,0,1,1) 0427 1-145
B(1235) (1,1,1,0)

D(1284) (1, 1,1,1) 0411 1215
£(1270) } 0390 1324
A, (1320) (1L,2,1,1)

P’ (1600) 2,1,0,1) 0355 1-560
.7, (1660) 22,20 0359 1-530
p2(1685) = g 23,21) 0341 1-682
A,(2040) = h (3,4,3,1) 0310 2:033
£3(2300) @,5,4,1) 0291 2:330
A8 (2510) 5,6, 5, 1) 0276 2:630
n(549) (0,0, 0, 0) 0852 0-536
n'(958) ©,0,0,0) 0497 0-923
$(1020) ©,1,0,1) 0467 1-005
E(1420) (1, 1,1,1) 0405 1-400
f(1515) a,2,1,1) 0:396 1-455
K (496) ©,0, 0, 0) 0867 0-529
K*(892) ©,1,0, 1) 0:5005 0916
0,(1280) 1,1,1,0) 0437 1236
0,(1400) 1,1,1,1) 0422 1-305
K ** (1430) L2111 0402 . 1418
K***(1780) 2,3,2,1) 0355 1-789
K**¥%(2086) T (3,4,3,1) 0324 2-155
D(1865) (0,0,0,0) 0347 1:869
D*(2010) ©,1,0,1) 0:334 2:016
F(1970) (0,0,0,0) 0338 1-973
F *(2140) ©,1,0,1) 0327 2115
B*(5283) (0, 0,0, 0) 0247 5284
B*(9) ©,1,0,1) 0246 5341

“ Alper et al (1980); * Binon et al (1983);
¢ Behrends et al (1983),

Table 1 exhibits the quality of the fits to the masses of various mesons which seems to
leave little to be desired in terms of the overall pictures. Because of the assumed isospin
degeneracy (m, = m,), (p, w), (f, 4,), (w, p;) etc states are degenerate in this model.
Similarly B and 4 mesons, each of N = 1 are predicted to be degenerate in view of the
equality of their J. S values and the absence of any other theoretical signature in (33) to
distinguish between them. Therefore the only meaningful check for these cases is a
comparison of their average mass, viz 1107 MeV, with the theoretical prediction (1145
MeV), which is quite reasonable. All other cases agree with data within 29/ for S =1
states and 57 for S = 0 states. Especially impressive are the fits to the masses of p and
A, towers (upto N = 5), and likewise for the K* series.

For the n, i states, the following assignments have been used for the calculation

In>= —iz(uﬁ+dc7)>cos(6+a)~— SS > sin (6 + o), (34)

/2
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1 ~
ln' > = \~\—/~.2:(uﬂ+dd)>sin(0+a) +\S§)cos(0+a), (35

where (Particle Data Group 1982) - ,
= —108% tana = /2, | (36)

As a result, the F (M) values in (33) and the preceding ones read as follows;

F,\ _ — [ sin? (0 + ) 1 _\/[cos?(0+w
(F,,:) F(55) (0052 6+ oc)) +F( \/_2_ (s _{‘dd))(sin2 0+ o) > 37
with the appropriate m, masses used for computing the F-functions with indicated
quark flavour.

Fits to the masses of heavy-flavoured (Qq) states depend on the assumption of a mass
m,, for each of these two sectors (c, b). The input value m, = 1-66 GeV fits the (D, F)
sector remarkably well, indeed better than those in the light meson sector, without any
changein the values of m,(q = u, d, s) already determined from the lighter meson zones.
The same is true of the B-meson with an input m, = 53 GeV.

In view of these high quality fits to the Qg mesons, it is tempting to predict the masses
of their (N, L)-excited states as well as other B-like mesons. These are recorded
separately in table 2 for some low lying excitations (N = 1). We have not attempted to
calculate the explicit masses of the heavy quarkonia (cc, bb), for reasons discussed in §4.

As for the baryon mass spectra a fresh assessment has not been found necessary for
the following reasons (i) The correction to the gqq equation arising from a more refined
treatment of the baryonic analogues of the Qq operator is negligible even for N = 0
states. (ii) The baryonic F (M ) functions have already exhibited (Mitra and Santhanam
1981a, b; Kulshreshtha et al 1982) a high degree of regularity on theoretically expected
lines with the input parameters (1), and are generally less sensitive to slight changes in
‘these values than are the g7 or Q spectra. (iii) The slight change of inputs for (&, m,)
from (1) to (6) is within their respective parametric uncertainties implicit in the earher
treatment (Mitra and Santhanam 1981a, b; Kulshreshtha et al 1982; Mitra and

Table 2. Predicted states of low lying QF
mesons upto L =1. The unstared and stared
states in the first column represent S = 0and §
= 1 respectively.

Meson (Q7) (N, J, L, S) o M (GeV)
cu 1,1,1,0) 0-305 2:473 .
(cu)* 1,2,11) 0-297 2:613
cs 1,1,1,0) 0-300° 2:554
(cs)* (1,2,1,1) 0-293 2:694
(bu) 1,1,1,0) 0-238 5942
(bu)* 1,211 0-237 6013
(bs) 0, 0,0, 0) 0.245 5412
(bs)* 0,1,0,1) 0.244 5.468
(bs) (1,140 0.237 6.031
(bs)* 1,2,1,1) 0-236 6102
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Table 3. Various physical quantities bearing on electromag-
netic and weak couplings of mesons.

Old calculation

Physical Present (Mitra and Kulshreshtha

quantity calculation 1982) Experimental
Jr (MeV) 92-13 89-1 93

Jx MeV) 86-95 ' 850 100?
Jo(MeV) 71:11 89-6 ?

r, {fm) 078 ‘ 077 0-663—0-73°
Iy (fm) . 0-52 0-50 0-534+0-05
25 0027 0026 0-029 +-004
Tyiete (keV) 625 643 6:54 +0-5
Ty ete- (keV) 0-686 072 0-76 4 0-07
Fyoete- (keV) 1-283 1-31 127+ 01
g% /an 2:203 214 —

“ Daly et al (1982) and Adylov et al (1977)

Kulshreshtha 1982; Kulshreshtha and Mitra 1983; Mitra and Mittal 1984; Mittal and
Mitra 1984),

We close this section with the results of a recalculation of the physical quantities
which depend on the hadronic wave functions (Mitra and Kulshreshtha 1982;
Kulshreshtha and Mitra 1983; Mitra and Mittal 1984; Mittal and Mitra 1984) asaresult
of the change of parametrization from (1) to (6), and the revised definition (4) of the
reduced spring constant @ for unequal mass kinematics. For the various electroweak
couplings of meson states, these results are summarized in table 3 together with the
results of the earlier calculation (Mitra and Kulshreshtha 1982) and the corresponding
experimental values for comparison. As may be seen from the table, the “good” features
are practically unaffected, rather exhibiting a slight overall improvement if anything.

For the electromagnetic couplings of ggq states, the complete formalism is much
more elaborate (Mitra and Mittal 1984) than for g7 states and has been described in
detail in a parallel publication (Mitra and Kulshreshtha 1982; K elshreshtha and Mitra
1983). As such we record here only the (slight) modifications arising out of the change of
parametrization from (1) to (6). For the charge radius of the proton we now get

(r2>12 087 fm (present) and 0-86 fm (Mitra and Mittal 1984)

to be compared with the experimental value of 0-87 (£ 0-01) fm. Similarly for the
magnetic moments* of baryons the results of the present calculation with parameters

* The calculational procedure for unequal mass kinematics which requires the use of a sort of weighted
average over the different ways in which the constituent quarks (of unequal mass) can interact with the
electromagnetic field has been outlined separately in the Appendix of Mitra and Mittal (1984). The same
procedure is adopted here, except for a slight redefinition of the weighting procedure which may be
symbolically compared as follows. In Mitra and Mittal (1984), the magnetic moment has been defined as

3 3
k=2 al5n
i=1 i=1

where i(="1, 2, 3)labels the different ways of combining the constituents, The present procedure corresponds
to the definition

3
k=1/3% (4;/B,)
i=1

For the precise definition of A;, B;, see Mitra and Mittal (1984).
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Table 4. Modification in the magnetic moment predic-
tions for baryons (in n.m. units) arising out of the change
in inputs from equations (1) to (6)

Mitra and

Baryon Present Mittal (1984) Expt.
p 271 2:796 2:793
n —1-847 —1-854 —1913
h 2-245 2:626 2334013 ¢
I~ —0748 —-0876 —0-89+0-14
A -077 —0-57 ~0-614 +0-005
=0 —1-5103 —1-518 -1236+ 001~ ®
E” ~0755 —0751 ~075+ 007

 Quoted in Bohm et al (1982); * Cox et al (1981);
¢ Aukenbrandt er al (1983)

(6), as well as those of a parallel calculation (Mitra and Mittal 1984) with parameters (1)
are recorded in table 4 together with the experimental data. Except for the A-case, the
overall agreement (with no free parameters) is almost unaffected.

As for the various pionic couplings, the results so far obtained with the input (1)
confined to equal mass kinematics and are practically unaffected by the change (1) to
(6). For completeness, we record these results only

G2, /4n = 13:02 MeV (Mittal and Mitra 1984) (expt: 146 £ 1),
I'(A - N=n) = 104-6 MeV (Mittal and Mitra 1984) (expt: 110-120).

4, Discussion and conclusions

The foregoing represent the results of a comprehensive reassessment of a Bethe-

~ Salpeter dynamics of harmonic confinement of light quarks under development for the

last three years. Since the initial proposals (Mitra 1981), the techniques have been
continuously refined (Mitra and Kulshreshtha 1982; Kulshreshtha and Mitra 1983;
Mitra and Mittal 1984) and the applications considerably diversified to meson and
baryon spectra (Kulshreshtha et al 1982), their electroweak couplings and their strong
(pionic) interactions under a single integrated framework, in which a universal spring
constant (@) representing the confining mechanism and the quark masses (m,) of the
concerned hadrons play central roles. Since other specialized applications such as R-
hadron spectra (Mitra and Ono 1983) and proton decay (Mitra and Ramanathan 1983,
1984), have been in progress and several more are envisaged, some of the weaker links in
the framework have needed strengthening in order to provide some overall credibility
to the entire approach. It is with this end in view that a major improvement in the
solution of the gg Bs equation has been undertaken in this paper through a more exact

treatment of the { goperator and a more systematic handle on the coulomb term. Sucha
treatment of the Q, term has led to a considerable refinement in its eigenvalue, resulting
in the eventual replacement Q,, — Q},, without otherwise affecting the formal structure
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of the original equation F(M)= N+ const. However, this refinement wh.ich is
numerically significant for N =0, has proved to be of considerable value in the
inversion of the equation F (M) = N + 1/2,leading to an explicit value of M in excellent
agreement with experiment all the way from very low mass mesons to excited states as
highas N = 5. While the overall shortfall of one unit in the zero point energy is still not
understood (and must at this stage be regarded as a free parameter), the same amount of
shortfall for most other hadrons (qqq, gq3g) (Kulshreshtha et al 1982: Mitra 1982) is
nevertheless suggestive of a rather general inadequacy in the approach which should be
susceptible to a separate examination of the foundations (instantaneous approxima-
tion, break-up into the coulomb and confining terms, etc) without violating the
numerical results noted above,

Another feature of our results is that for light (uds) quark composites (gg) the fits to
their mass spectra are on the whole less accurate (2-59;) than the almost perfect fits to
the semi-heavy (Q7) mesons, which have been obtained at the cost of a fresh input for
the heavy quark mass (my ) characterizing each flavour region (c, b). However, since thé
(Qq) states are so far available only for L = 0, it may be premature to draw any firm
conclusions in regard to the success of this model in respect of their excited states,
though table 2 formally records such predictions for low lying states. More serious is
the problem of QQ mesons which are much richer in spectroscopy than are the 0q
states. As had indeed been discovered earlier (Mitra and Santhanam 198 la, b), this
model seems inadequate for the ¢¢ spectra and even more so for bb spectra, reflecting
the growing importance of the coulomb term vis a vis the confining term. The success of
our s model up to 07 systems suggests that it works for two light quarks (gg) and even
up to one heavy quark (Q) and one light quark (g). In each case the constituents maintain
a ‘safe’ distance from each other so as to conform the Ho dominated character of the
formalism with the coulomb term treated perturbatively.

Hov_vever for a QQ system, the constituents are close enough to each other so as to
necessx.tate 4 more exact treatment of the coulomb term, something which the present
formah.sm does not yet facilitate, For such systems, on the other hand, the simpler Nr
Schrodinger equation is in principle adequate, as long as the important requirement of
exact treatment of the coulomb term is not lost sight of. In this respect since excellent
treatments already exist in the literature for the spectroscopy of heavy quarkonia (Ono
;nrté:;lézt)nerll eliSi;{Bcrteln;lan and 01}0 1981), the present approach is best regarded as
. inves?igat?onar% ;orte ese, 20&]1;1 Inregard to methodology as well as to the sys‘tems
dynamica mechanis'm ° aﬁnmfe t g.tvfzo approaches would presume;bly require a
of both the quark s 51 ; ezo pfje icting the momentum transfef (Q2 ) dependence

As 10 the ansatz (3) o :hQA)ﬁn the reduced spring constant w(Q ):
meaning only in the time-lik g ~dep§ndence of the ocb cl.la.r 8¢ %, It has a natural
when used acq 4ot otz r:-_gilon (Q = -1 of th’e 49 annihilation channel, but not
in different initial ang ?iial sI:alta “ ll? thl1S appllcgtlon), v&fhere‘ the legs rofor t9 gua‘rks
channel). Our defence of (hiy es (w e? ooked in the direction of the annihilation
perturbatively i largely shens Hiinsaltz ‘orl a term wh?ch has been employed only
values normally used jn potential enlo Olg“?a : mSOﬁ'ir - reprodx.lces the range of o,-
from a recent bag.mogy derivat'ca cufatlons, bl}t 1t seems to receive an added support

Other relativistia reatmone thltin of a very Similar formu!a (Carlson et al 1983).
include (i) the by at exist in the .hterat_ure for light quark spectroscopy,
lattice aan 0gtlnodel (Chodos et al 1974) oz its variants (Zhu Wei 1982), and (i) the

sauge models (Hamber 1982; Luscher 1983; Hamber 1983). So far there does not

AT

'\
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“seem to be enough evidence of an equally quantitative set of fits to the masses over so

many distinct flavour sectors in either of these models. In particular, the pion in bag
model treatments often needs a special status (Chodos and Thorn 1975; Brown and
Rho 1979; Thomas et al 1981) while the lattice gauge models (Hamber 1982; Luscher
1983; Hamber 1983) do not yet seem to exhibit adequate stability in the numerical results
(Hamber and Parisi 1983; Bernard et al 1983) when the lattice size goes to zero. More
importantly, these classes of models are not easily amenable to applications other than
hadronic mass spectra, especially to a wide range of processes relating to the
electroweak and hadronic couplings of mesons and baryons. On the other hand, the s
model lends itself most naturally to such relativistic applications through the elegant
(four-dimensional) language of field theory and Feynman diagrams (Mitra and
Kulshreshtha 1982; Mitra and Mittal 1984). '

It is pertinent once again to ask in what manner if any our Bs frameork compares with
standard Qcp. To the extent that the colour and spin dependence of the g-q or g-7
kernels are those of perturbative Qc, it is a fair inference that the present approach is
strongly Qcp-oriented, for the only difference lies in the spatial dependence. In this
connection it is useful to remember that perturbative Qcp is good only for the shortest
distances while its intermediate energy manifestations are often clouded in ambiguous
approximations. Attempts to circumvent such regions by defining suitably ‘scaled’
functions, e.g. in connection with the electromagnetic form factor of the deutron
(Brodsky et al 1983) can only be at the cost of the very nature of the information implicit
in the physics of intermediate and medium high energies (1-5 GeV) characterizing the
confining region that the Qcp theory is designed to unearth in the first place. Judged
from such angles, our effective Ho assumption on the spatial dependence of the pairwise
g-q or g-g kernels, while retaining other Qcp features (w.r.t. spin and colour) represents
in all probability a fair degree of implementation of the basic qcp spirit, at least until
such time as more reliable and practical tools of Qcp calculations become available for
the confinement region of hadron dynamics. This conclusion is greatly reinforced by the
entire sweep of agreements on a wide range of hadronic properties (from mass spectra
to coupling structures) obtained within a unified framework of harmonic confinement,
albeit at the cost of a rather fundamental constant (&) as a basic input. In retrospect, the -
Bs formalism for harmonic confinement has turned out to be a viable calculational
programme for hadron dynamics with a wide sweep of experimental successes, a
conclusion which has been considerably strengthened by the distinct success now
achieved in this paper on the absolute mass predictions of whole towers of ¢g states, as
well as those of the available Qg states employing a more refined formalism for the
operator Q than was hitherto possible (Mitra and Santhanam 1981a, b; Mitra and
Kulshreshtha 1982). Because of its basic simplicity and considerable ease of application
to wide ranging phenomena, without sacrificing fully relativistic features, this model
competes very favourably with contemporary approaches (Chodos et al 1974; Zhu Wei
1982; Hamber 1982; Luscher 1983; Lipps 1983; Hamber and Parisi 1983; Bernard et al
1983) whose applicational facilities still seem to be severely limited at the present stage
of theoretical development. Several other applications of a more sophisticated kind (e.g.
L-excited hadron couplings, high energy meson-baryon reactions and electromagnetic
masses of hadrons) are under way.
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