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1. Introduction

THE study of the transmission of light through a cloud of particles is of
practical importance, since it is connected with natural phenomena such as
the opacity of clouds and smokes, and the visibility in fog and rain. So
far, such a study has been restricted only to those cases where the particles
are very small. Lord Rayleigh (1899), for instance, has used his theory of
the scattering of light by small particles to determine the attenuation of the
transmitted light. There is, however, no satisfactory simple theory, either
for transparent or opaque particles of bigger size, distributed in a transparent
medium. Mallock (1919) has.attempted to give a theory of the transmission
of light through a cloud of water droplets, but his theory is defective in
many respects. He has assumed the droplets to be opaque, which is not
true. Also, he has treated the problem on a geometrical basis, omitting the
effect of diffraction, which is not justified even with opaque particles.

Thirdly, his application of the theory of probability to the geometrical method
is also not correct.*

In this paper, a general theory is developed of the propagation of light
through a cloud of spherical particles, randomly distributed in a transparent
medium. Both the cases when the particles are opaque, as well as when they
are transparent are considered from the point of view of the wave-theory
of optics. It is shown that in general, there is always an attenuation of the
transmitted beam, which is of the exponential form. The numerical value
of the attenuation coefficient has also been calculated in a number of cases.
In particular, Mallock’s formule are corrected during the course of the
development of the theory.

2. Geometrical Treatment of the Problem

In.this section, we shall develop a theory of the effect on the trans-
mitted light of a number of opaque spherical particles distributed at random

* Richardson (1919) has also given a similar theory, but he too has taken the droplets to be
opaque, and has not taken diffraction into account. 171
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in a transparent medium, purely on the basis of geometric ideas. The case
in study may be illustrated by the transmission of light through heavy smoke,
where the particles composing the smoke can be considered to be opaque.

Suppose that a beam of cross-sectional area A traverses a column of
the smoke of length /, and that N is the number of particles per unit volume
of the medium. Assume further that the particles are all of the same size,
and have a radius a. On a geometric basis, the effect of each particle would
be to cut out a portion of the transmitted beam of area ma2, and thus reduce
the energy content by an amount corresponding to this area. In this way,
each particle reduces the energy content of the beam by a certain fraction,
and it would thus appear that if the number of particles #, be such that
ngra®= A, then the beam would be completely.cut out. However, it is not
so, on account of the fact that some of the particles would screen those behind
them, and thus increase the chance of a portion of the direct radiation
coming through. It is therefore a question of probabilities to determine
what fraction of the energy is transmitted by the particles in the medium.
In our case, the number of particles, n, is evidently = NAL

The problem at hand is identical with one in which » disks, each of
radius a, are thrown at random on an area A, and it is required to find the
probable area covered by the n disks. Let P, be the probable fraction of
the area covered after m disks are thrown, and let p be the fraction of the
area covered by a single disk when alone, i.e., p ==a?/A. Now, on adding
one more disk, it may fall on the area already covered, or on the area un-
covered. The probability of its falling on the empty area is evidently
(1 —P,). Hence, the probable fraction of the area covered after (m+ 1)
disks are thrown is

Ppyy=Pp+p(l =P,) =Py (1 —p) +p (1)
Now, P, = p, so that
P,=p(l~p)+p,
P,=p(1—p)*+p(1—p)+ p, etc., giving
Py=p [(1=py+(1—p 2+ 1]
—p[I=(=pll—(1=p) = [t~ (1= pV] 0

Thus, the probable fraction of the area not covered after » disks are
thrown is

Qn': 1- Pn: (1 '“p)”' (3)
Coming back to the problem of the transmission of the beam of
light, the probable fraction of its area A, not cut out after it has encountered
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n particles is given by (3).  Henee, the intensity of the transmitted beam is
[ L1 mad AN, 4)

where I; imtensity of the incident beam.  Sinee ma*/A is a small quantity,
: gt
we g I;}l, ("'mﬁN/. (5)
Thus, it is seen that the intensity of the transmitted beam is never
zero, but that it diminishes ex cponentially with increase of the thickness of
the medium.  Also, from the relation Q, (1--p)® it is seen that the
effects of the particles are maltiplicative, cach one diminishing the intensity
in the ratio (1 p): 1. This result s important, since we have started
with the assumption that the effect of cach particle is subtractive, ie., cach
subtracts a portion of the energy from the incident beam, corresponding
to its arca.  However, on account of the random distribution of the parti-
cles, the effect becomes multiplicative.

Incidentally, 1t may be noted that if # 1/p, ic., if the total arca of all
the particles ts cqual to the area of the aperture, then Q,,: - (1~ 1/n)*- e,
Hence, the probable fraction of the energy coming through is 1/e.  Mallock
has wrongly assumed the value 1/2 for this quantity without any proof.

The actual value of the attenuation coeflicient derived in this section
is not correct, for, as is shown in Section 3, diffraction effects produce a doubl-
ing of its value.  But, before proceeding 1o consider these, it will be infer-
esting to discuss what the attenuation would be, according to geometric
ideas, if the particles were not all of the same size. In this case, we must
expect a distribution of size among the particles.  As a general case, suppose
that the number of particles per c.c., having a radius between @ and
a-- dais

dN  f(a) du, (6)

where f(a) 1s the function giving the law of distribution.

Now, since all the particles are not of the same size, the Ipplication
of the theory of 7rolmb;llty has to be modificd.  Let py, pa, ps,--- be the
fraction of the area covered by the first, second, third, cle., particles, when

alone. These can be equal or different. Then, we have the general relation
similar o (1), wiz.,

me‘l Pﬂx A Pmir (l - Pm‘) Pm (1 - pm+1)'+” Pmi1 (7)
Hence,

P Q- (1=p)
Py=: p) (1= pa)+ pa, Q= (1= py) (1= p2)
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P,=p, (1—py) (1 —pa)+ps(1—p3)+ps, Qz= (1—p) (A—py (1 — Pa),
etc.

Thus, every one of the quantities Q,, is symmetrical in p;, ps, - - - so that
the order of the quantities py, py,* - - p, is immaterial. Hence, we may regard
each particle as producing an effect independent of the rest, and reducing
the energy of the transmittedebeam in the ratio (1—p,):1. Hence,
expression (4) can be generalised, and written as

"’-:—"717 7
Il/Iz':: (1 "'pl) (1 "‘P‘z) ' (1 ""Pn\)ﬁ e
If we denote by a, the radius of the nth particle, p, = =a,2/A. Also, on

account of the distribution (6), the summation 2p, can be written as
1

Zna, /A= nlfa%N. 9)
- Hence, I,/1;=exp [— =l fa*dN]
= eXp [ — »la2N] (10)

where a3 is the mean square of the radius.

As a particular case, we may take the Maxwelhan law of distribution
given by f(a) = a?e~“%, or

dN = a2e“* da. (11)

In this case, a® = §87~r a2, where a is the mean radius, so that
I,/1; = exp (— 3m2a%NI/8). (12)
This expression can also be put in terms of the most probable value

of the radius, a,,, as

I;/I;=exp [— 37 a,,2 NI/2]. (13)
So far, we have been dealing with spherical particles. This assump-
tion is, however, unnecessary, for the shape of the obstacle is unimportant.
The really important quantity is the area of the beam that it cuts out. If
we represent the area of a particle by a, then, p = a/A, and (5) can be written

in the form
| I,/1; = exp [ — aIN]. (14)

In the case, where the size of the particles isnot the same,
I;/1; = exp [—lfadN]. (15)
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. Transmission uccording to the Wave Theory

It is well known that a small opaque circular obstacle placed in the
path of a beam of light produces a diffraction pattern, whereby part of the
energy is diffracted in directions away from the forward one.  On account
of this, it is evident that the reduction of energy in the forward direction
will be greater than that due to the mere cutting off of a portion of the wave-
front by the obstacle. Ty the following discussion, it will be shown that the
reduction iy exactly double of what wouldsbe expected on the geometrical
theory.

In this connection, it is important to consider what we mean by the
intensity of the trinsmitted beam, The aperture of the incident beam is
always finite, and will have a definite arca Ao Consequently, this will
produce a diffraction pattern of its own. If we take the amplitude of the
incident wave as unity, the intensity in the exact forward direction would
be A%A® and the pattern would extend over a solid angle of the order of
AYA. We may therefore speak of two quantities as representing the inten-
sity of the transmitted beam: (o) the intensity in the exact forward direction,
and (/) the total intensity in the diffraction pattern, which is in general
comprised within a small solid angle. I the beam is brought to a focus on
a photographic p I;m.- and we take a microphotometer record of the intensity,
then the height of the peak would represent the quantity (@), If, on the
other hand, we focus the beam on a photocell, the current pmduced would
represent the quantity (A). The distinction between the two is necessary,
since the reduction due to the existence of an obstacle is not th(, same for
both, as is shown below,

We will now consider l!w seneral method of finding the reduction in
the forward intemsity. Let U be the amplitude of the diffraction pattern
produced by the aperture Al 'T’hcn I _/ | U |29, where £ is the solid angle,
represents the total enerpy in the diffraction pattern, the integration being
done over all the solid angles where [UJ* is finite. On the other hand,

Uy l® represents the intensity in the forward divection per unit solid
angle,"if U, is the amplitude in this direction.

Now, suppose that an obstacle of area « be introduced in the path of
the beam. Then, this would produce a diffraction pattern of its own. Let
u be the amplitude in the diffraction pattern due to an aperture comple-
mentary to the obstacle. Then, the amplitude in the pattern due to the
obstacle is, by Babinet's principle cqual to -—u. The two patterns due
respectively to the aperture A, and the obstacle « will be superposed, the
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second of which would obviously cover a larger solid angle. In this case,
the total energy in the transmitted beam is

I =f|U —u|2dQ, (16)
where the integration is to be carried out over the same range of solid
angles, as was done for I. On the other hand, the intensity in the exact
forward direction is

= [Up~ 2 (1)
From these formule, the reduction in intensity either of I ot of I, can be
calculated.

Coming now to the particular case in which we are interested, assume
for simplicity that the obstacle « is spherical, and has a radius a. The
diffraction would now consist of two parts, (1) the pattern due to the
aperture A, covering a solid angle of the order of A2/A, and (2) the pattern
due to the obstacle, covering a much larger solid angle of the order of A%/a.

Evidently, I,= A% and I = (A — «)?/A% so that the ratio I,/I,=
(1 —2a/A), since a is small. Thus, the intensity in the exact forward
direction is reduced in the ratio (1 — 2ma%/A): 1, or double the reduction
as given by the geometric theory.

In order to evaluate I', assume that the pattern due to aperture extends
over a solid angle 2,; £, is ~ A%)/A. Then,
I r:fIUIZdQ = A. (18)
£2
Take now the whole pattern due to the aperture and the obstacle, and
assume it to extend over the solid angle £2. Then the total energy in this is

[1U —uj®de. (19)
Q
But, outside £2,, U =0, so that the above expression can be written as
[0 —ul*dR+ [|u|*dQ. (20)
.Qo Q _.QO
Hence,
I'=[|0-u%dQ =[|U —u|*dR —[u|*dQ.
Qe Q 2 -9,

Now, 2, i1s € £, so that the energy of the pattern due to the obstacle con-
tained within Q is very negligible. Hence, f |u]? dR = _[ |u|%dQ, which
Q-0 Q

must be equal to a, by Babinet’s principle. Also, _/ |U —u|? d@ will be equal
Q

to (A — a), so that
I'=A —2a,
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Thus, I'/T =(1 —2a/A), (21)

le., the total intensity is also reduced in the same ratio as the forward
Intensity, the reduction being double that given by the geometric theory.

A physical interpretation can also be given for this double loss in the
total transmitted intensity. The cause has already been explained as due
to the effect of diffraction. Now, by Babinet’s principle, the energy in the
diffraction pattern due to an opaque disk is the same as that in the pattern
due to an aperture of the same size, and hence equal to a. In this way, the
forward wave loses an amount of energy « due to diffraction, in addition
to an equal amount lost due to the blocking by the opaque obstacle. This
is exactly what is shown by the formulz above.

However, it must be noted that we have assumed in this derivation
that the energy of the difffaction pattern due to «, contained in the solid
angle embraced by the pattern of the transmitted light is negligible. This
will be true, only if « <€ A. However, if this is not the case, then the
additional loss of energy will not be o, but less. In general, therefore

/1 =(1 — co/A), (22)

where ¢ =2, only if « is small compared to A. If the obstacle is of dimen-
sions comparable to those of A, then the pattern due to it will be quite small,
and we have to take ¢ nearly equal to 1, as is found from geometrical consi-
derations. This is quite natural, since geometrical optics applies rigorously
when large sizes are taken into consideration. However, in the exact forward
direction, the reduction in intensity is always double that given by the
geometric theory. The double loss of energy, and the conditions determin-
ing its occurrence do not seem to have been pointed by anybody so far.

We will now consider what the effect of a cloud of particles would be
according to wave theory. Assuming that the incident wave is represented
by u=exp (2mict/X) at x=0, which corresponds to the beginning of the
cloud, the wave at a distance x within the medium can be represented by

2ni
, —— (Ct - [.L.X.')
y=ete

where p is the refractive index, and k, the absorption coefficient. Taking
now a thin layer of the medium of thickness dJ, the number of particles
in this thickness per unit area of cross-section will be Ndl. As already seen,
the effect of each particle would be to reduce the amplitude by «. Hence,
the wave, after passing the thickness d/ would be represented by

2mi

(1=Nad) e » @~ 9.
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Comparing this with the above equation, we get =1, and exp (— kdl)
= (1 — Nadl)=exp (— Nadl). Hence, the absorption coefficient for the
amplitude is k= Na, and that for intensity will be double this, namely
2Na. Hence, the intensity of the beam after passing through a length [ of
the medium is ;

I,=1; e2Ne (23)
where I; is the incident intensity. For gpherical particles of radius @, this
o .
S 191 = e~2m@N, (24)
This expression differs from that given by the geometric theory only in
that there is an additional factor 2 in the exponent, the reason for which
has already been explained. :

4. Passage of Light through Transparent Spheres |

This case is of practical importance in connection with the study of
the transmission of light through a cloud of water droplets, as in fog,
cloud or rain. Mallock has wrongly supposed that one can take the water
particles as opaque. This is, prima facie, not true, since the droplets are
by their very nature transparent, and not opaque. Consequently, portions
of the wave-front transmitted through the droplets must also be taken
into consideration. The portions passing through the droplet will, however,
be retarded with respect to the rest of the wave-front, the extent of the
retardation depending on the distance each portion has passed through the
drop. Changes in amplitude will also occur in the wave-front on account
of the convergence of the rays passing through the drop. These features
must be taken into account in a proper theory of the phenomena.

The actually observed facts also show that the drops cannot be regard-
ed as opaque. The work of Barus (1907, 1908), and of others has shown
that the transmitted light is often highly coloured and that this colour is
complementary to the colour of the light scattered by the particles them-
selves in the forward direction. Also, these colours are found to undergo
periodic changes with increase in particle size, reappearing for values of the
radii in the ratio of natural numbers. These phenomena indicate that the
light transmitted through the drop must be taken into account.

The most rigorous method of attacking the problem would be to use
the electromagnetic theory of light, and to determine the effect of a
dielectric sphere on the field. Such a theory has been given by Mie (1908),
Debye (1909), Rayleigh (1910) and Bromwich (1920). However, this method
does not give any simple expression for the intensity of the diffracted and
the transm'itted light, if the size of the droplets is not small compared with
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the wave-length of light. The nature of the phenomena could only be
studied by numecrical computation, which again is prohibitively tedious.
It is thercfore desirable to give a theory based on optical principles, which
would yicld expressions that can readily be applicd.

We shall now attempt to give such a theory for the diffraction of light
by a transparent sphere. The theory will be developed to include also the
diffraction of light in dirgctions inelined to the forward one.  As alrcady
said, one must take into account both thg amplitude and phase changes
that occur in the transmitted wave-front.  However, if we assume that the
difference in refractive index between the sphere and the surrounding medium
is small, then we can as a good approximation, take that the eflects of
refraction are negligible.  In this case, we can neglect the changes in
amplitude, and take only tie phase-changes into consideration, the path
retardation  of any portion of the wave-front being calculated on the
assumption that it has passed straight through the drop.

T. A. S. Balakrishnan (1941) has developed a theory for the diffraction
by a single droplet based on similar wdeas.  In this paper, the theory is
worked out more fully, and it is extended to the consideration of the
transmission and forward scattering by a cloud of transparent spherical
droplets.
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Fi6. 1. Passage of Light through a Sphere

B

5. Derivation of the Formule

In this section, the formule for the diffraction of light by a spherical
droplet is derived, for the case when the amplitude changes can be neglected,
and the wave-front can be supposed to have passed straight through the
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drop. Let P,RP,’ be a plane wave-front which, after passing through
a droplet of centre O, and radius a, emerges out as P,R'P," (Fig. 1). The
phase of the emergent wave-front will evidently not be uniform throughout,
but will lag behind in the portions which have passed through the drop.
Let RR,R’ be any ray, and let the angle between OR, and OO’ be 6.
Then, this ray suffers a retardation of 2a (z— 1) cos 6 with respect to the
portions of the wave-front passing ou'tside the drop. Thus, the plane
wave-front, on the whole, would be distorted into one having a concave
part in the centre. -

Qur idea is to find the Fraunhofer diffraction pattern of this emergent
wave-front, ie., we wish to find the intensity in a direction making an
angle ¢ with the incident direction. For this, we proceed in a manner
analogous to the usual theory of diffraction “by a circular aperture (vide
Max Born, Optik, pp. 155 et seq.). Taking polar co-ordinates, if (r, «) be
the co-ordinates of an element at R" with respect to O’ as origin, and the
horizontal radius as the initial position of the radius vector, then the
diffracted amplitude in the direction ¢ due to this element is

}l sin ~ {ct 2(p—1)acos 0+ rcos asin ¢} r dr da,

where the amplitude of the incident wave-front is assumed to be unity,
and A is the wave-length of the light. Substituting a sin 6 for r, and
integrating between the proper limits, we get that the amplitude in the direc-
tion ¢ due to the portion of the wave-front which has passed through the
drop is -

2 =
a2 . 2w . ) '
X, = f f s1n~A~{cl—-2(;L~1)acosﬁ+ a sin 9 cos a sin ¢}
0 0 sin 9 cos 0 dfl d.
Putting y = 2nct/A, é=4n (u—1) a/A, and y= 27 sin ¢ a/A,
nf2 2n

X, = f f sin (X — ¢ cos 8-+ 7 sin 6 cos a) sin 6 cos 8 df da.

Integratmg with respect to a, this can be written as

X, = &T——a—f JO (n sin 6) sin (X — & cos §) sin 6 cos 8 d6. (25)

The effect of the portion of the original undisturbed wave-front covered
by the drop is obtained by substituting =1 in the above expression,

Ei‘,
|
*‘g‘

—
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which makes ¢== 0, and gives the value
2 X 2
2ma® s )
Xy i ma si J‘ Jo (9 sin 6) sin @ cos 6 df

3";’“ . 1()"7) sin X, (26)

The amplitude X of>the diffracted wave due to the complete wave-front

which has traversed the drop is the suln of the amplitude due to the

portion which has passed through the drop, and that due to the portion

which has passed outside it. The former is given by X;, and the latter by

subtracting X, from the effect due to the undisturbed wave-front, which we

may call X, In the region outside that covered by the source, X, is

evidently zero, so that

X Xy — X, 27

In the forward direction, i.e., for ¢.= 0, X, is finite, so that the resultant
amplitude, X’, in the forward direction, is

XX "} Xl"—'Xo-, (28)
where X" and X, arc the values of X, and X, when ¢=0. For this
particular case, since ¢ 0, n vanishes, and the integral in the expression
for X, can be casily integrated, giving

af2
o] 2 .
X/, - ‘}\”;’ sin (X — £ cos ) (£ cos 0) d (& cos 6)
S0
2mu®

AEE sin X [£ sin §-1- cos §— 1] |- /\E - cos x [£ cos £— sin §].

Also, X, “‘;" sin X, since Lt ° 1577) -4, so that
N->0

X' X+ 2mai/A-sin X -(cos §/€%-sin §/E— 1/2—1/§ %)
- 2ma?/A-cos X (cos £/€ — sin £/£2).

Now, if A be the aperturc of the beam, then X, is clearly equal to
A/A. sin X, so that

X’ A s/i\nX [l i 2:1“ {ccz;«f n ﬁlgé_ _ ; _ 2315}]
. AcosX [’f%{: {ee;é %Lf}] 29)

Now, the quantity 2=a*/A is small, (since A can be made as large as we
please), so that its square can be neglected. Hence, the intensity in the
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forward direction due to the wave-front that has passed through a droplet is

=5 [1- 5 g a2 -] =5 [1- 50 | .

This expression gives the reduction in intensity due to a single droplet. In

order to find the effect of a cloud of droplets, we proceed in a manner .

similar to what we adopted for a cloud of opaque particles. Let the incident
wave be represented by u = sin [g{-r (ct —-;Lx)], «the origin being at the
Py /

boundary of the cloud. Then, from (29), the amplitude of the wave after
passing through a layer of the cloud of thickness dl is

u = [I — Ndl 2=a® f(¢)] sm 5 " (et — dly— Ndl 2na’s (§) cos Y (c! —-a’l) (30

where g (€) is the expression (sin &/¢%2— cos §/§). From the wave-theory,
we know that «' must be of the form

U = e gin 2 3 " (ct — pdl) (31

Putting the expression (30) above in this form
W =[] — 2aNa* f (&) dly2+ {2aNa? ¢ (£) dlyH* sin {Z;I (ct—di) =<,
where tan e = 27Na?g (€) dlj{1 — 2=Na?f (¢) dI}.

Since both the quantities 27Na?f (§) dl and 2#Na2g (€) dl are small com-
pared to unity, this may be written as

w=[1 —2aNa®f (&) dl] sin {2m (ct — dl) — €}
= g2 NPApHY gip {%1’ (ct — dI) -—e},

where tan e = 27Na? g(é)dl = e.

Comparing this with (31), we see that k= 2#Na?/ (¢) and p = 1+ Ndag (¢).

Since the absorption coefficient for intensity is double that for amplitude,

we get that the intensity after passing through a length / of the cloud is
[;=1, exp [— 4ma®NI f(£)], (32)

where I, is the incident intensity. v

6. Colours of the Transmitted Beam

Equation (32) above gives the formula for the attenuation of the directly
transmitted beam. Ordinarily, for particles whose radii are larger than
the wavelength of light, £ is large, so that terms in 1/£% can be neglected.
(32) then goes over into the form

1,1, = exp [ — 4ra®NI(1/2 — sin £/£)]. (33)
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This expression clearly shows that the attenuation of the transmitted light
is different for different wavelengths, the attenuation coefficient depending
on § and hence on A. Taking particles of a fixed size, the value of ¢ will
cvidently depend on the wavelength A of the light, and from (33) it is clear
that the intensity will be a maximum for those for which sin ¢ is + 1, and
a minimum for which sin € is — 1. Now, the visible spectrum comprises
the range of values 0-4 u to 0-7 ob A, so that if the drops are small enough,
there will be only one maximum, and the golour of the source will be due
to the predominant effect of the range of wave-lengths in the neighbourhood
of this maximum. This explains the reason why the transmitted light is
vividly coloured. In Fig. 2, f(¢) is plotted against &, and it shows the manner
in which f (¢) underﬂgoes maxima and minima.

\\ | ‘
TAVAVA-

[ 1 . 1.
0 ) <0

Fi1G. 2. Graph of f (¢) against ¢

4

As the size of the droplet is changed, the value of A for which the
maximum occurs will vary, and consequently, the colour of the transmitted
beam will also vary. Since the varying function is sin £, we should expect
a cyclic change of colours as ¢ increases; the colours will repeat themselves
for values of ¢ which are in the ratio of natural numbers, i.e., for values of
the radius a which are in this ratio. This is in accordance with Barus’
observations (1907).

F (&)

If the size of the droplets is further increased, the range of values of ¢
may comprise two or more maxima, and also the difference between the
maxima and minima of intensity will not be pronounced, since (sin ¢)/¢
becomes intrinsically small. Hence the colours will become less and less
vivid. In the limiting case of very large values of ¢, sin /¢ becomes small
compared to %, and (33) reduces to

1/, = exp [— 27a®NI]. (34)
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There is no term depending on A, so that no colours will be exhibited. It
is also interesting to notice that this is identical with the intensity in the
forward direction given by a large opaque sphere of the same size. The
following simple physical argument shows that this must be the case. When
the particles are large, the path retardation between the central ray, and
the rays passing outside the drops will comprise a number of wavelengths.
We can therefore divide the portion ofethe wave-front which has passed
through the droplets into half-pgriod zones, of which the outer ones will
practically cancel out. The resultant effect will only be due to the innermost
rings, the area of which relative to the total area of the wave-front that has
passed through the drop is smaller, the larger the drop. Thus, the forward
intensity must approach the value for an opaque disc. In fact, the vanish-
ing of the term (sin £)/¢ mathematically represents this fact.

7. The Intensity of Forward Scattering

As already mentioned, we can employ our theory to consider the nature
of the light scattered in the forward direction by the droplets. This would
comprise the region just outside the region covered by the source. Here,
¢ is small, but the éffect of the incident wave is zero. The amplitude is
therefore X = X;"— X,’. Substituting for X’; and X’,,

2ma? . cosé  siné 1 1 2ma® cosé siné
kb X — o b _
X 5 sin [ ze + g 3 .fz] + —— cosX [ z £ ] (35)

As before, neglecting terms in (1/£%) as an approximation, we get the intensity

as equal to
(2ma?/A)? (1/4 — sin £/§). (36)

This expression refers to the intensity diffracted by a single droplet. But
the light reaching it, and the light diffracted have both to travel through the
fog, and the total path will not differ from /, since ¢ is small. Hence, the
expression (36) has to be multiplied by the expression

exp [ — 4ma®NI (1/2 — sin &/9)].

Also, since we have assumed a random distribution of the droplets, there
will be no phase correlation between the light scattered by different particles.
Hence, the light diffracted out of the cloud in the forward direction, per
c.C., is Ir =N (2ma®/A)2- (1/4 — sin &/€).

exp [ — 4na*NI (1/2 — sin £/€)]. 3D

This 1s of the form Bxe=®*, where x = N (1/4 — sin £/¢). The correspond-
ing expression for the transmitted light is I,= I,e~®*. Now, the former
expression is zero when x = 0, and reaches a maximum for x = 1/C, after

which it diminishes. The latter is a maximum at x =0, and steadily
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diminishes as v increases.  Henee, if the maximum value of x, upon which
the colours depend, is less then [/C, then corresponding to it I will be a
maximum, while 1; is & mmimum.  Similarly, for the minimum value of x,
the reverse will be the case. Thus, the colour in the region immediately
surrounding the source will be complementary to that of the source itself.

However, it is to be noted that for this phenomenon to be prominent,
the maximum value of xamust be [ess than 1/C, or N/ must be less than a
quantity which depends on the size of the droplets.  1n other words, if the
density of the fog is fixed, there is a limit to the depth of the fog beyond
which the colours are not complementary, but will tend to be more and more
identical.  The phenomenon of complementary colours can best be observed
with fairly thin wlum 1w of cImuL as for instance when the sun is seen
through the pufly of steam emitted by a locomotive.

In the limiting case of very large drops, the expression (36) for the
forward intensity reduces to (za* A% This is again identical with that for
an opaque obstacle of the same size,

8. Concluding Remarks

The theory developed in this paper for the transmission of light through a
medium containing a cloud of particles cannot be expected to be strictly valid
for very small sizes of the particles, since Huygens™ principle, and the idea

of complete wave-fronts, on which it is based cannot be applicd when very
small dimensions are concerned.  The correct procedure in these cases is
to apply the theory of scattering of light, as for example, the theory developed
by Mic and others (Joe, cit). These however do not yield any simple
expressions ; but for very small droplets, the theory of Rayleigh can be used.
In this case, the attenuation has actually been worked out by Lord Rayleigh
(loc. cit)) and can be represented by

(38)

a3 0 :{Mh 0 I
11, cxp[ N/ 12 x” C(pr1) _a]

(p*12)F AT
In the case when (- 1) is small, (p* - 2)* can be put as cqual to 9,
so that

. I/, exp [ - 1287 (u*— 1)* «®NIJ2TN]. (39)
This theory is certainly not true for larger particles. ILis not possible to say
exactly at what stage the line of argument advanced in this paper cases (o be
valid, although we can take it to be applicable, il the radius is larger than
the wave-length of light.  This point will be discussed more in detail in a
later publication.
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Summary

The phenomenon of the transmission of light through a cloud of
particles distributed at random in a transparent medium is theoretically
investigated on the basis of wave-optics. The cases of both transparent
and of opaque particles are considered, and it is found that the trans-
mitted beam is progressively attenuated, the intensity diminishing exponen-
tially with the increase in the thickness of the medium. The actual values of
the attenuation coefficient are calculated in both cases, It is found that for
an opaque particle, the diminution of intensity in the forward direction is
actually double what would be expected from simple geometric consider-
ations. For transparent particles, the transmitted intensity shows spectral
variations, and this explains some of the phenomena hitherto not well
understood, such as the colours shown by the transmitted light, and the
complementary nature of this colour and the colour of the light scattered by
the cloud in the forward direction.
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