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The existence of a second-order phase transition associated with spontaneous super-
symmetry breaking in a prototype globally supersymmetric model with a conserved
fermion number is demonstrated. The model is solved exactly and it is shown that one
of the superfields develops a vacuum expectation value below a critical temperature and
that the ground-state energy is nonzero.
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Recently there has been great interest in the argued recently* that the difference in statistics
study of supersymmetric theories.! In such theo- of the particles belonging to the same supermulti-
ries, bosons and fermions are treated on the plet is in itself no sign of symmetry breaking
same footing by putting them in the same multi- and low-T properties of such systems may in
plet and supersymmetry (SUSY) connects the fact be the same as the 7=0 properties. In view
bosonic and fermionic components of such a of this controversy, it is of great interest to have
supermultiplet. This ensures the absence of a model which, while retaining the essence of
quadratic divergences in such a theory and avoids SUSY, is simple enough to be exactly solvable,
the problems associated with having fundamental In this Letter, we demonstrate the existence of
scalars in unified theories.? spontaneous supersymmetry breaking at low

Symmetry must be spontaneously broken if na- temperatures for one such model by solving it
ture is described by such a theory.® It is gen- exactly.
erally believed that SUSY is automatically broken We consider a prototype SUSY theory® of a
at temperatures 7 >0 even if it is unbroken at single scalar supermultiplet consisting of two
T =0, because bosons and fermions obey differ- complex scalars, A* and A”, and a Dirac fermion
ent statistics.® On the other hand, it has been | (and their antiparticles)., The Lagrangian of the

model which conserves fermion number is

L=]0A"2~ | MA" +g(A")?|2+ | 0A™| %= | [M +2g(A ) *|A=|2+ Y § ~ M)y
—-[2eA™Y _y. +g(A7)*y. y, +H.e. ], (1)

where ¥, and §_ are the usual chiral projections of y, and y° is its charge conjugate, M is the common

mass, and g is a coupling constant. The particles A*, A”, and y have fermion numbers 0, -2, and
-1, respectively. The Lagrangian is invariant under SUSY transformation (apart from a change by a
total space-time gradient):

0AT=€ ¢, OY=-[M+2g(A")*|A e, -[MA* +g(A")?]e_~ipA%e_-ifA"e,, OBA™=T.y,

where € is an infinitesimal anticommuting Majorana spinor.
The grand canonical partition function of the model can be obtained by the standard method in the
weak-coupling ( g—0) limit. We get®

Z(p, T)=Z 50, INZ 5(1, T)Z (34, 3T), (2)
with

Z g, 1) =115 { 1-expl =B(E, = )]} {1 —exp[ -BE,+ )]},

Ze(p, T)=II5{1+exp[-BE, - W]} {1 +exp[-BE, + W]},

E, =& +M)V?, pB=171,
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Here K is a vector in d spatial dimensions and
we have chosen units such that z=c=k3=1. The
chemical potential u has been introduced so as
to satisfy the constraint of the mean fermion-
number conservation, i.e.,

(2N(A™) —=2N (A7) +N(y) =N(§))=const=N, (3)

where N(A~) and N(y) are the number operators
for the particles A~ and ¢, respectively (the
overbars refer to the corresponding antipar-
ticles) and the angular brackets denote the usual
statistical-mechanical average. The interac-
tions between various particles have been kept
only to the extent of their mutual interconversion
and pair productions allowed by the Lagrangian
(1). We assume that the system attains equilib- |

rium with respect to all these processes.

Various factors in (2) may be interpreted as
follows. The first corresponds to A* particles
which have p=0 because they can be created
and destroyed freely. The second and third fac-
tors correspond to A~ and ¢ (including antipar-
ticles), respectively. Since these can be mutual-
ly converted while preserving SUSY, their u’s
are related. From (1) we see that reactions of
the type Yy ~A~ are allowed, so we must have
w(y) =3u(A7).” Of course, the particles and the
antiparticles have opposite u’s; this is reflected
in (2).

From the partition function, one can get all the
thermodynamics in the infinite-volume limit.
For example, the net fermion number density p
(=N per unit volume) is given by®

a,lpl=2wy(a, o) +W,(a, ¢) + W,(2a, a +¢) -2W,(4a, 2a +2¢),

Wyla, ¢)=b, ¥, =@ "Vginh(ra -r@)K,. (ra),

r =1
where
a, =241 (a/2) M~ ,
a=M/T, ¢=(M-p)/T,
by=1"Y224'T(d/2)a @ "D dr=4a+1).

Here K,(z) is a modified Bessel function of order
d.® From (2) we see that to keep the partition
function real, we must have | u| <M.° In fact,

we find from (4) that as T—, -0 and p in-
creases (for p>0) with decreasing T till u=M
for T=T, (say). For T<T,, u sticks at M. To
determine if SUSY is broken, we calculate the
vacuum expectation value (VEV) of the fields by
introducing symmetry-breaking terms and letting
them go to zero.'® The VEV of a given field is
given by the square root of the corresponding
particle-number density p of the field. We find
that, for 7< T,

plA") =(e"/T—1)"t,
plA) =(e(M—M)/T -1)-1,
p(¢) :(6(4M—2H)/T +1)°1,

Clearly as T -0, p(A*)=0=p(y), but p(A~) 0.
So the SUSY is broken at 7=0. As T rises, the
ground state will be depleted not only because
A~ will go to higher states but also because of
the interconversion of these into fermions. So
we expect the critical temperature 7, in this
case to be lower than that in the corresponding
Bose system. We also find that E, =p(A7)M #0

(4)

| which is a sure sign of SUSY breaking.!!

The critical properties of the model can be
studied as usual. We omit the details and present
the results. (i) The phase transition is a second-
order one accompanied by a discontinuity in the
specific-heat derivative, (ii) The system is in
the same universality class as the nonrelativistic
Bose system and, therefore, has the same expo-
nents, scaling functions, etc.'®® (iii) The pres-
sure, energy density, etc. are given by expres-
sions similar to (4) involving infinite sums. As
an example, we mention that 7', in the extreme
relativistic limit M < T, is given by T,=(26)
X(p/M)"'? for d=3 as compared with T_=v3 (p/
M)V? in the usual Bose gas.®

In summary, we have shown spontaneous sym-
metry breaking (which is due to the appearance
of VEV of one of the boson fields and E, being
nonzero) resulting in a second-order phase tran-
sition in a prototype model of a single scalar
multiplet in the weak-coupling limit, We em-
phasize that the symmetry breaking is not due to
different statistics of the particles but due to
the presence (or formation, if initially absent)
of bosons in the system,

(8)on leave from North-Eastern Hill University,
Shillong 793 003, India.
!For a review, see, e.g., P. Fayet and S. Ferrara,
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