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7. Introduction

WHILE engaged upon some determinations of the refractive index of
transparent powders by the method of immersing them in liquid mixtures
of the same refractive index, Christiansen (1884) observed some very
remarkable and interesting colour cffects. If white light was employed,
the transmitted light was highly coloured, the colour corresponding to the
particular wave-length for which the two substances have the same refrac-
tive index. Lord Rayleigh (1885) repeated these experiments, and found
that the transmitted spectrum was remarkably narrow. The subject was
investigated in detail by Sethi (1921), who studied the effect of the size
and number of the particles and of the thickness of the medium on the
transmitted light, and also the light scattered in other directions. He
extended his studies to the colours shown by emulsions of immiscible liquids,
whose refractive indices are equal for some wave-length in the visible
range. The elegant method of preparing these emulsions in a stable state,
discovered by Holmes and Cameron (1922), enabled Sogani (1926) to make
a thorough study of the phenomena exhibited by these “ chromatic emul-
sions .

Lord Rayleigh has rightly remarked (1899) that a proper theory of the
Christiansen phenomenon must be based on wave-optical ideas. Following
the lines suggested by Rayleigh, both Sethi and Sogani have tried to explain,
theoretically, the phenomena observed by them. But their method is not
comprehensive, since separate theories have to be worked out to explain the
transmission colours, and the colours of the light scattered in other direc-
tions. In this paper, an attempt is made to explain the whole range of
phenomena on a single theory based on the diffraction of light by a trans-
parent sphere, whose refractive index is not appreciably different from that
of the surrounding medium. The author (1943 @) has already developed
such a theory in connection with the study of the transmission of light
through a cloud of transparent droplets. As a particular case, the theory
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has been used to explain the occurrence of coronz when a bright object is
viewed through thin cloud (1943 5).* The application of the theory to the
explanation of the properties of chromatic emulsions forms another parti-
cular case, not covered by the previous one. The theory is strictly applicable
only to spherical particles, and hence only to the case of chromatic emul-
sions ; nevertheless as we shall see in the-course of the papcr, it suffices to
give a good account of the phenomena observed in the Christiansen experi-
ment with particles of arbitrary shape.

2. Intensity and Spectral Nature of the T ransmitted Light

If a sphere of radius a, and of refractive index w, bc placed in a
medium of refractive index w,, then the amplitude of the wave diffracted
in a direction making an angle ¢ with the incident direction can be shown
(1943 a) to be ‘

X =X—X, (N
mf2
where X;=KsinX [ J; (n sin 6) cos (¢ cos 6) sin 0 cos 0 d0
o 3

nf2
— K cos X [ T, (nsin ) sin (¢ cos 6) sin 6 cos 0 d0, @
0
X,=K sin X-J; (n)/n, (3)
é=dm (u—po) a/A, 9= 2map, sin (¢)/A and K == 27a®/A, (4)

the incident wave being represented by sin X, and A being its wave-length
in vacuum.

In the exact forward direction, however, the effect of the incident wave
would also be present. If we denote the amplitude duc to the incident
wave as X, then that due to the transmitted wave is

X=X+ X — X/ (5)
where X" and X' are the values of X; and X, when ¢-. 0. For (this case
7=0, and the integrals in (2) can be integrated (1943 ) giving

X’:XO—}—KsinX{C—cf)sz—g-{_:ﬂnf 1 _ D

& ETY
B sin §  cos ¢
K cos X { £ T}
=X, — KC,’ sin X — KS' cos X (say) (6)

* Hereafter, these papers will be referred to as (1943 a) and (1943 b) respectively
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Optical Theory of Clhromatic Emulsions 69

where K= 2ma?/A. Now, if A be the aperture of the beam, X, is evidently
= A sin ()/A, so that
. A 2ma® ) A 2ma® ,
X:781HX{1~TC1}~7\-COSX{TS}‘ (7)
The above expression applies to a single droplet. Applying the method

used in Section 5 of (1943 @), it is easily shown that the attenuation coeffi~
cient is

b=— 47a*NC/’ (8)
and the refractive index, #, is given by
n—po= NAa®S’ )

where N is the number of droplets per unit volume. Thus, if / be the
thickness of the emulsion, then the intensity of the transmitted light is

I=1,exp [— bll=1, exp [— 4ma®NIC,], (10)
where I, is the intensity of the incident light.

The value of C,’ is given by (6). But, in the Christiansen experiment,
and in the case of chromatic emulsions, the refractive indices of the two
media are the same for some particular wave-length, say A, and differ at
other wave-lengths. The important colour effects, and other phenomena
in which we are interested occur in a small range of wave-lengths about
Ao, Where (u— o) has only a very small value. Hence, the range of values
of ¢ that would be required will be only small, comprising of small positive
and negative values. In order to be applicable for this range, C,’ can be
expanded in the form of a power series in ¢ as

C/ = £8 — /144 +- - - )

so that, for small values of ¢, C,"= £*/8. It larger values of ¢ occur in any
case, expression (6) can be used.

Hence, for small values of &,
I;/1,= exp [ — ma®N/¢2/2]. (12)

This equation gives the variation of the intensity of the transmitted light
with various factors.

Taking first the variation with ¢, it is easily seen that I;=1I, at £=0,
and decreases rapidly as £ increases, the graph connecting I; and ¢ having
the shape of the well-known probability curve. Now ¢ is a function of both
(w—po) and A. But, the variation of ¢ with A is only a steady one, so that
we shall at first neglect this variation, and consider only the effect of changes

in the value of (u—pg). The effect of the change in the wave-length will be
finally discussed.
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Substituting the value for ¢, (12) becomes

I/Tg=exp [— 8Nl (u— po)® a*/2%] (13)
=exp [— v (p—p0)?] (say),
where - y = 8m3NIa*/A2. (14)

It is now seen that the intensity of the transmitted light is a maximum,
being equal to that of the incident light for A= A,. For both smaller and
larger wave-lengths, (u— po)? increases, so that the intensity diminishes.
Thus, only a small range of wave-lengths on either side of A, is transmitted.

It is now interesting to examine how the spectral width of this region
of transmission is altered by other factors. As an approximate value of
the width, one may take it as equal to the range of wave-lengths, within
which the intensity falls to a definite fraction (say 1/e) of the maximum
intensity. Then, I;/I,= ¢, so that the width is given by the range of
wave-lengths for which

y (p—pe)?< 1, or [p—po|< | /Vy (15)
Hence, the region of transmission narrows with the increase of v, and vice
versa. The following results immediately follow from this:

(@) The region of transmission should sharpen with the increase of the
thickness, /, of the emulsion and vice versa.

(b) As the concentration of the dispersed phase is increased, the value
of N is increased, so that the spectrum of the transmitted light must
become narrower, and vice versa.

(¢) An emulsion containing fine particles must transmit a wider region
of the spectrum than one containing coarse droplets, since a is smaller.

(d) The more widely different are the relative dispersive powers of the
two media, the narrower is the spectral region transmitted. This is so,
since the range of values of A within which (u— ug)? becomes equal to 1/y
is small, if the dispersive powers of the two media are widely different.

All these deductions from the theory have been already verified by
Sogani.

In the above discussion, we have not taken the effect of the changes
produced in the wave-length. Actually v is inversely proportional to A2
so that it is larger for smaller wave-lengths and vice versa. This results in
a reduction of the range of wave-lengths transmitted on the shorter wave-
length side of Ay, and in an increase on the longer wave-length side.

From (13), the value of the attenuation factor is
exp [— 87N/ (u — pro)® a*/A%].
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Now, if one assumes a close-packing of the droplets of the dispersed phase,
then the total volume occupied by them is 74 per cent. of the total volume,
so that
N= -74/(4ma3|3) = 2-22[4na3.

If the packing is not so close, one can introduce a coefficient o, called the
“ coefficient of packing ™, which is equal to the ratio of the actual volume
occupied by the dispersed phase to the volume it would occupy in close
packing. Then, N= 2-220/4ra%, so that attenuation factor becomes

exp [— 44 nal (u— pg)® a/A?] = exp [ — zza-Q"——A-z-ﬂ)f d] (16)

where d is the diameter of the droplet.

Sogani has performed some experiments to determine the attenuation

coefficient, and found that
I;=Toexp [— B (1 —po)® ld/A7]

which is of the same form as the one derived by us. However, for a
close-packed emulsion, he found the value B=9, which is much less than
the theoretical value derived above. The discrepancy can partly be explained
as due to the scattered light also entering the photometer, as suspected
by Sogani himself, and also as due to the emulsion not being homogeneous
but containing smaller droplets, both of which tend to decrease the attenua-
tion coefficient. But it must also be noted that we have based our theory
on the assumption of a random distribution of the particles, with no parti-
cular phase correlation. Such a state of affairs cannot be expected to occur
"in a close-packed emulsion, where one should expect the radiation from the
next neighbours at least to be coherent.

~F(8)
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Fie. 1. Graph of f (¢) against ¢

As already remarked, the interesting phenomena cxhibited by chromatic
emulsions occur only for small values of £. An evaluation of y for particle
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sizes of about 0:003 cm., and a thickness 3 cm. of the emulsion shows that
the range of values of ¢ within which the light is transmitted is | £] < 0-1.
Within this range, C,” is evidently equal to £?/8, the other terms being
extremely small. However, it is interesting to examine what happens for
much larger values of & For these values, the full expression for C,’ can
be evaluated from (6) which gives a curve of the type shown in Fig. 1. This
curve is the same as Fig. 2 of (1943 a), and f(£) is the same as the present
C,/. From the figure, it is easily seen that the range of phenomena shown
by chromatic emulsions lies within the initial portion of the curve, where
C, increases with ¢ But, when & > 3, f(¢) must actually diminish with
increase of £, so that in this range, the attenuation coefficient must diminish,
and the transmission must increase with increase of & This phenomenon
would appear worth looking for.

Incidentally, it may be noted that, in the study of transmission of light
through water droplets, one is interested in the oscillating portion of the
curve, while in the present case it is the limiting portion of the curve near
£=0 that is important.

3. Refractive Index of the Emulsion

In the last section, we have shown that the refractive index, n, of the
emulsion is given by

n— Mo = NAazsl (9)
S’ can also be expanded in powers of ¢ as
S'=¢/3— £330+ -- 17

and for small values of & which only occur in the region of transmission,
B . 4 _ . a

S'=¢3= 5 (p—po) " 5

Hence, n— o= g—mﬁ - N (e — po)-

Now, 47a®N/3 is the total volume of the disperse phase, call it V,, contained
in unit volume of the emulsion, so that

n—po="V (p—py), Or

n=Vu+(1—V)pe= Vu+ Vypu, (18)
where V is the volume of the continuous phase. This shows that the refrac-
tive index of the emulsion is the same as that of an ordinary mixture of
the two liquids. This is not surprising since, when the difference in the
refractive indices of the two media is small, the actual nature of the boundary
is unimportant, and the optical behaviour of the emulsion is, as if the two
liquids were miscible,

W
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Differentiating (18) with respect to A one gets _
dnjdA = Vdu]du+ Vodpe/dA (19)

which gives the relation between the dispersion of the emulsion and those
of the two components.

4. Intensity of the Diffracted Light

The amplitude of the diffracted light is given by expressions (1) to (4),
where the integrals in the expression for X; have to be integrated. Denoting
the integrals by C and S, our aim is to integrate them for finite values of
7, s0 as to be applicable for the case when ¢ is small. The method adopted
in (1943 b) is not suitable in this case, and a new method is therefore used
for the purpose.

Expand cos (¢ cos 6) and sin (f cos 6) in powers of (f cos 6) as

cos (£ cos O) = l—év—)" cos%0+ —— (4)‘ costf) — - -+ + (——1)1’ (2 ), cos®f+ .-
. _ ¢ gs 3 — 1\? t 22.
sin (¢ cosﬁ)_ﬂm-! cos §— 31 cos3 +---+(—1) (2 T cos2?+l g4 - -
Then,

(2

=00 op
C=2 (- 1)? K T, (7 sin 0) sin 6 cos?+1 6 46.
=0 (2p)!

The integral in each one of the terms of the above series can be integrated,
since it is of the standard form of Sonine’s first integral, viz.,

/2
v .
f J, (z sin 6) sin#+1 6 cos® +1 § df = .2 "_I,;}%it__l) J,mu (2)
with p=0 and v=p. Hence,
p=o00 fzﬂ 27 !
C=ﬂ-§0 (— 1y op) ”7'7“,5(‘.‘*13)1“ I5 41 (). (20)
Similarly, on expanding sin (¢ cos ), S becomes
s= F (1 L0 ]r‘zJ in 6) sin 0 cos??+? 6 do
='=0(‘—.) QFWO 0("'] sSin )Sln Ccos .

Here also, each one of the integrals is of the form of Sonine’s integral with
p=0 and v=p+ 1/2, so that

54 g2+1 2+ U2 T (p43)2
Snpfo("‘ 1)? (2p+ 1) ! 7]? +(3€)2 / ) Jp 3 (77) (21)

B e A RO R s A
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On simplifying, and making the substitution F, (z)=17, (2)/z#, we get

c= F (12w B, (5) (22)
5= 0 (2 ) !
S J 1) 2p ( ) ' f FZ" + 3/2 (77)] (23)
The amplitude X is therefore
X=X sin x [C—F; (y)] — KS cos X. 249
oo ? !
But, C— F, (n) is easily seen to be = 2 (—1)? 2(2%)),' £ Fy,y (1) which

may be represented by — C;. Then,
X= — KC, sin X — XS cos X. (25)

We have thus developed X as a power seriesin €, which is convergent
for all values of £ and % (vide Appendix I). However, the expansion is useful
only for small values of & for which C, and S are rapidly convergent, so that
the first one or two terms alone need be taken into account. Incidentally,
it may be noted that on putting » =0, C; and S become

= £2/8 — §4/144 +. ...
S'=¢/3 — &30 +....
which are idsntical with the values obtained by direct integration.
The intensity of the light diffracted by a single droplet is, from (25),
I=XK?(C,*+ S2?).
Substituting for C; and S, and neglecting terms in £&* and highel: powers
of &, this becomes*

I= 321 K2 £2 Fgp52 (). (26)

The above expression relates to the intensity scattered by a single
droplet in the direction ¢. But the light reaching it, and the light diffracted
by it have both to travel through the emulsion, and the total path will not
differ from the thickness ! of the emulsion, if ¢ is not large. Hence,
the actual light coming out of the emulsion from one droplet is
I exp (—ma? NI£%/2). Also, if we take the droplets as distributed at random,
then, the intensity of light diffracted out of unit volume of the emulsion in
the direction ¢ is ' :

Ip= N’z-’ K2 £2F2, (1) exp [— ma? NI £2/2]. (27)

* This expression can also be derived by introducing the approxxmauons directly in equations
(1) to (3) as shown in Appendix II,
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This is the general expression for the intensity of the diffracted light. In
the next two sections, we shall discuss its nature in detail.

5. Light Diffracted by Uniform Emulsions

In a uniform emulsion, the droplets of the dispersed phase will all be
of the same size, so that a is a constant, and the only variable to be con-
sidered are the wavelength A and the angle of scattering ¢.

(a) Variation of intensity with angle of diffraction ¢

If we use monochromatic light, then A is a constant, so that ¢ is fixed.
Hence, Ig is proportional to F3u%(n). This quantity is plotted in Fig. 2,
from which it will be seen that the intensity is zero for n=4-5, 7-75,.

and is a maximum for g =0, 6-0, 9-1,.... Since n== 27 (a/X) sin ¢, altcr-
nate bright and dark rings must be visible in the . diffraction pattern

20p

—70-8

14

g N 1)

Fig.2.Groph of £y (g) againsty.
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e
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corresponding to the above values of 9. The relative intensities of the first
three bright rings are given by I;: I, 1 J;=5:1:0-25. For a =2 x 10-3
and X =6 x 1075, the angle of diffraction for the first bright ring comes out
to be ¢ =0-028. In fact, Sogani, using a homogenized emulsion, found
a value 0-025° for the angular radius of the first ring. The agreement of
this with the theoretical value is not to be stressed, for the type of pattern
observed by Sogani had a minimum of intensity at the centre, while our
theory requires a maximum. The effect observed by Sogani is similar to the
diffraction of X-rays by liquids; on account of the fact that the droplets in
a homogenized emulsion have a quasi-regularity in arrangement, interference
effects arise in addition to the diffraction by individual droplets.

(b) Variation of the Intensity with Wavelength

From the expression (27), it is seen that the intensity I oc £2eB42 F3 22 (1)
where B=ma? NIj2. Since Fy,2 (1) gives only a variation with angle, the
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intensity of the ring system as a whole can be said to be proportional to
£2 B2 This quantity is equal to zero at £=0, increases with & up
to 2= 1/B and then decreases again. Hence, no ring system must be visible
at A=Ay, for which £=0. On either side, the rings must appear, and at
first increase in intensity as the wavelength is removed more and morc
from A, until it reaches a maximum. Thereafter, the intensity must
diminish again until, when Ais far removed from A,, no rings must be visible.
All these have been experimentally verified by Sogani,

If now, white light is used, and the spectrum of the light diffracted at
an angle is observed, then the intensity will vary as &2 ¢~F4%, being zero for
A= A, and being a maximum for the values of A for which

§2=1/B or (n— p)*= 1/y. (28)

The function £%842 has been plotted in Fig. 3 against £ as ordinate, for
the value 2 of 8. This shows the nature of the intensity distribution in the
spectrum of the diffracted light.

5:9.';3 gz

Ny 2 =] Y] ¥z T

Fi9.3. Graph ofgze-(jﬁtayn(.h#é 5

(¢) Variation of the Size of the Rings with the Wavelength

Since 7 = 2ma sin ($)/A, it is evident that as A increascs, the size of the
rings must increase. Thus, the width of the ring system must continwowesly
increase with the wavelength, although its intensity is a minimum at X,, and
increases on either side. This fact has also been noted by Sogani.

Another interesting fact, also noted by Sogani, is that ** the size of the
rings. . ..1s, strangely enough, uninfluenced by the thickness of the emulsion™.
This, however, is a natural conclusion from our theory, for N and / occur
only in the exponential in (27), and do not occur in the function I ar22(),
so that, for the same reason as explained in Section (4) of (1943 b), the size
of the rings must be uninfluenced by the thickness (/) or the concentration
(N) of the emulsion.

6. Phenomena with Non- Uniform Emulsions

In a non-uniform emulsion, all the droplets are not of the same size,
so that the phenomena are a little complicated. In the preceding section
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it has been shown that the intensity diffracted in a direction ¢ is % K2£2F; 0% ().

Hence, the intensity is directly proportional to the sixth power of the radius
of the droplet. But the width of the bright central portion is determined
by the value of 5, which must be less than 4-5, i.e., the range of angles covered
by the central bright portion is given by sin ¢ < 45 A/2ma. Thus, the width
of this portion diminishes with increase of the size of the particle. = Hence,
it is clear that, for any angle of diffraction ¢,, the maximum intensity will be
due to particles of a certain radius a, (say), those having a larger or a smaller
radius, giving only a less intensity. This can be proved as follows:

If the angle of diffraction is ¢,, then % =2= sin (¢, a/d, and
¢ =4n (u —po) a/A, so that for a particular wavelength, £ is a constant
multiple of . Also, K is a constant multiple of ¢, so that

I oc 183552 () [1° o< 1° Jy;0° (1) (29)

Hence I¢ is a maximum for that value, 7, of 7 for which %2 J;,%(n) is a

maximum. The radius of the droplet corresponding to this is given by
2m sin () ay/A = 1n,, or

a; = A/ 27 sin ¢,. : (30)

Thus, for every angle ¢,, the predominant portion of the diffracted light is

due to particles of radius a; given by (30), which 1s smaller for larger angles.

In Section 5, we have shown that the spectrum of the diffraction light
always consists of a minimum at A = A;,, and two maxima on either side
corresponding to

(& — 1) ez, = 1/7- (28)
But y is a function of @;, so that it varies with the angle of diffraction in the
present case. Since y = 8#3NI-a*/A% for an angle of diffraction ¢,

& NIMayt  Niqta

=167 st ¢y X2~ 2 sint B, ‘ (1)
Thus, other quantities being the same,
(B = Hodmaz. o SIN* ;. | (32)

If, in the immediate neighbourhood of A,, we assume a direct proportionality

between (v —p) and (A — Ag), then it at once follows that the spectral
range between the two maxima, viz.,

2 (A - Ao)max. oc 2 (H - ."‘o)max. oc SIn® ¢1a (33)
Thus, as the angle of diffraction ¢ is increased, the central dark portion in
the spectrum of the diffracted light must widen, and correspondingly the

bright portions also must broaden. This result from the theory is remark-
ably confirmed by Sethi’s observations, where a progressive broadening of
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the spéctrum was found as the direction of observation was taken further
away from the incident direction.

In the discussion given above, we have neglected the effect of the varia-
tion of A. On introducing this also, v o< A?/sin* ¢;, so that

(p — P"O)mczx‘ o< sin% ¢y /A (34)
Thus, the quantity (u — po)mer. varies continuously with A, being greater for
smaller wavelengths. Hence, at large angles, where an appreciable portion
of the spectrum is transmitted, there must be a further broadening on the
shorter wavelength side, and an opposite effect on the longer wavelength
side. So also, the actual intensity is' proportional to A-%, which enormously
increases the intensity for smaller wavelengths. For both these reasons,
the spectrum must show an asymmetry, greater intensity being concentrated
on the shorter wavelength side of the transmission band.

Another assumption made in the above discussion is that droplets of
all sizes are present in the emulsion. Actually, there must be an upper and
a lower limit to the size of the droplets. This fact limits the minimum and
the maximum widths of the spectrum. Between these limits, however, the
width must regubarly increase with the angle of diffraction.

My sincerc thanks are due to Prof. Sir C. V. Raman, for suggesting
the problem and for the keen interest that he took in it.

Summary

A theory of the optical phenomena exhibited by chromatic emulsions
as also those observed in the Christiansen experiment has been worked out,
de novo, on the basis of the diffraction of light by a sphere immersed in a
medium of nearly the same refractive index. Expressions are derived both
for the intensity of the transmitted light, and of the light diffracted in other
directions. These are discussed in relation to the intensity and the spectral
nature of the light and it is shown that the theory can satisfactorily account
for the various phenomena observed by Sethi and Sogani.
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APPENDIX I
Note on the Convergency of the Series C; and S

oo v
Let Cy= Z‘up :p 51 (— l)z’ 2(2501)7)' 9P Jpq;,i(l’?)
Upsa|_ 2(p+ 1) .gz Jpw(’ﬂ
Cp+1D)(2p+2) 9 qu(ﬂ)
But, for large values of p, J4iy (1)/Jpur (1) =2/2(p+ 2), so that

P => 00 u[) p—)oo(2p+ 1) (2j7+ 2) (]7+ 2)

Hence 2 uy is absolutely convergent.
In the same way, putting

S=Zop= 3:° (-1

Then

whichis =0, if ¢ is finite.

é‘-‘?kl ]pl ¥/’(77)
77?+-3I2 ’

) 1
2 (p)!
Up+a1] . 1 fz Jzﬁfsz(’ﬂ
Up 2P U] Jp +312 (’7)
Substituting the value for T, .50 (M4 50 (n). for large values of D
namely 7/2p+ 3),
v £2
Lt |22 |= Lt which is also =0, if ¢ is finit
psco | U | paoo 20 2+ 5) ’ ¢ &
Thus, 2v, is also absolutely convergent.
~ Hence, both C, and S are convergent for all values of ¢ and 1.

APPENDIX 1I
A Simple Derivation of the Expression for the Intensity

As already remarked, one is interested only in small valucs of ¢ in the
study of chromatic emulsions, in which case cos (¢ cos 0) ~1 and
sin (£ cos ) ~ (¢ cos §). Substituting these in (1) to (3),

2
X=Ksin y [f J, (n sin 8) sin 0 cos 0 d0— T, (n)/n]
0

— K cos y /JO (7 sin ) (¢ cos 0) sin 0 cos & dO
0

The quantity within the square brackets vanishes, and using Sonine’s
integral with p=0 and »=1/2, the second term becomes

~ \/g K & Jopa ()%

Hence, the intensity is
I=% K2 ¢2 Jsl:z2 (77)/773:
which is identical with expression (26).
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