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Abstract. After establishing a correspondence between a smooth moduli space of vec

tor bundles on a curve and a self-product of the Jacobian, the nontriviality of the Griffiths 

group of the moduli space for a general curve is proved.

1. Introduction. Let N denote the moduli space of isomorphism classes of stable 

vector bundles, over a compact Riemann surface X, of rank r and of a fixed determinant of 

degree d, with r and d being mutually coprime. Let P(ƒÃ) be the universal projective bundle 

over the Cartesian product X •~ N. The characteristic classes ak•¸H2k(X•~N, Q), where 

k=2,3,..., r, of P(ƒÃ), give rise to homomorphisms, from H1 (X, Q) to H2k-1 (N Q), 

by the "slant product" operation. Since the homology algebra, H* (J (X), Q), of the Jacobian 

J(X) of X is the exterior algebra •ÈH1(X, Q), combining all these homomorphisms given by 

the characteristic classes of P(ƒÃ), we get an algebra homomorphism from H*(Jr-t, Q) (the 

homology algebra of the (r -1)-fold self-product of J) to the cohomology algebra H* (N, Q). 

The details of this construction are given in Section 2.

We show that the above formally constructed homomorphism has a geometric origin. 

More precisely, there is a correspondence cycle on the product N•~Jr-1, which is canonical 

as an element of the Chow ring (cycles modulo rational equivalence) of N•~Jr-1, such 

that the above homomorphism is induced by this cycle (Theorem 2.5). As an application of 

this result, we construct nonzero elements of the Griffiths group of the moduli space N for 

a general Riemann surface (Theorem 4.8). These elements are constructed from the nonzero 

elements of the Jacobian of a general curve discovered by Ceresa [C].

The above results extend to the more general context of smooth moduli spaces of para

bolic bundles.
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2. Map between Hodge cycles. Let X be a compact Riemann surface, or equiva

lently, a connected smooth projective curve over C. Assume that the genus g:=genus(X)•¬
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2. Choose and fix a point x0•¸X. Fix a pair of mutually coprime integers r and d with r>1 . 

Let N denote the moduli space of isomorphism classes of stable vector bundles E on X of 

rankr and with the top exterior product •Èr E isomorphic to •¬X(dx0) . The space N has a 

structure of a connected smooth projective e\variety over C of dimension (r2-1)(g-1) .

Let ƒÃ•¨ X•~N be a universal vector bundle; which means that for any z•¸N
, the 

vector bundle on X, given by the restriction ƒÃ|X•~
z, is in the isomorphism class represented b

y the point z. If ƒÃ' is another universal bundles on X•~N, then from the projection formula 

we have the equality ƒÃ'=ƒÃ•¬p*2L, where L is a line bundle on N and P2 : X•~N•¨N is 

the obvious projection. Thus the projective bundle P(ƒÃ) is independent of the choice of the 

universal bundle.

Let ak•¸H2k(X•~N, Q), 2•¬k•¬r, be the characteristic classes of the principal 

PGL(r) bundle P(ƒÃ)•¨X•~N given by the space of lines in ƒÃ . We will recall a description 

of ak in terms of the Chern classes of ƒÃ. Consider the k-th degree polynomial
, Pk, of r 

variables (x1, ... , xr ), defined by the identity

•¬

where Dx is the r•~r diagonal matrix with x1, x2
, ... ,xr as the diagonal entries. So the i-th 

Chern class ci(ƒÃ)=Pi(ƒ¿1,..., ƒ¿r), where {ƒ¿1
, ...., ƒ¿r} are the Chern roots of ƒÃ. Define

•¬

With this notation we have

(2.1)

 ƒ¿

i:=Pi,(ƒÀ1,ƒÀ2, ..., ƒÀr)

Note that a1=0.

For a cohomology class c•¸Hj (X•~N, Q), using the Kfnneth decomposition of the Q

vector space Hj (X•~N, Q), as well as the obvious duality between Hk(X
, Q) and Hk(X, Q), 

we have a homomorphism

(2.2) S(c, k):Hk(X, Q)•¨Hj-k(N, Q),

which is usually called the "slant product" . Taking c to be the class ai, we get

S(ai, k):Hk(X, Q)•¨H2i-k(N, Q).

Let the direct sum H1 (X, Q)•¬(r-1) be denoted by W . Taking the direct sum of the above 

maps, we have a Q-vector space homomorphism

•¬

which, in turn, induces an algebra homomorphism

(2.3)

 •¬
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where •È W is the exterior algebra for W. Consider the complex vector space WC:=W•¬QC. 

Tensoring (2.3) with C, we get a C-algebra homomorphism

FC:•ÈWC•¨H*(N,C).

Let J := Pic0(X) be the Jacobian of X. The homology algebra H*(J, Q) (the alge

bra structure is given by the cap product) is canonically isomorphic to the exterior algebra 

•È H1(X, Q). Indeed, consider the map X•¨J, defined by x•¬X (x-x0). The in

duced map of the first homology is extended as an algebra homomorphism from the exterior 

algebra •È H1(X, Q) to H*(J, Q). It is easy to see that this homomorphism is actually an 

isomorphism, and that it does not depend upon the choice of the base point x0. The canon

ical isomorphism between H*(J, Q) and •ÈH1(X, Q) induces an isomorphism between the 

homology algebra

H*(Jr-1,Q)=•ÈH1(Jr-1,Q)=•ÈW.

Let J denote the (r-1)-fold self-product, namely Jr-1, of j with itself. Let

ƒÁ:H*(J,Q)•¨•ÈW

be the isomorphism obtained above. Combining this with the homomorphism F in (2.3), we 

have

(2.4) F:H*(J, Q)•¨H* (N, Q)

defined by c•¬F(ƒÁ(c)). On account of the obvious duality, namely Hi(J, Q)*=Hi(J, Q), 

the homomorphism F gives an element in H*(N, Q)•¬H*(J, Q). The cohomology algebra 

H*(N•~J, Q) of N•~J is canonically isomorphic to the graded tensor product H*(N, Q)•¬

H*(J, Q). Thus, F gives an element in H*(N•~J, Q); this element will be denoted by ƒ³.

For a smooth projective variety Y over C, an element. of the Q-vector space

•¬

will be called, following [D], a Hodge cycle on Y. There is a natural homomorphism, known 

as the cycle class map, from the space of cycles on X to the space of Hodge cycles Y. The 

cycle class of a cycle of codimension p on Y is in Hp.p(Y)•¿H2p(Y, Q). Let CH*(Y) denote 

the Chow group of cycles on Y modulo rational equivalence. The image of CH*(Y)•¬Z Q in 

the space of Hodge cycles (by the cycle class map) is called the space of algebraic cohomology 

classes on Y.

From the definition of the cohomology class ƒ³ it is clear that ƒ³ is actually an element 

of the image of H*(N•~J, Z) in H*(N•~J, Q) by the obvious map. Indeed, this is a 

consquence of the fact that the homomorphism F in (2.4) maps H*(J, Z) into H*(N, Z).

THEOREM 2.5. The cohomology class ƒ³ is algebraic, i.e., it is the cycle class of an 

algebraic cycle on N•~J.

PROOF. Let GZ denote the group of all automorphisms of H1(X, Z) preserving the 

cap product. Choosing a symplectic basis of H1(X, Z), this group Gz can be identified with 

Sp(g, Z), the group of 2g•~2g symplectic matrices with entries in Z. The proof of Theorem 2.5
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consists of three steps. First, the group GZ acts on the cohomology algebra H*(N•~J, Q). 

Second, any invariant class in H*(N•~J, Q), for the action of GZ, is algebraic. Third, the 

class ƒ³ is an invariant for the action of GZ on H*(N•~J, Q).

We will first describe the action of GZ on H*(N•~J, Q). Let W denote the direct sum 

H0(X, Q)•¬H2(X, Q). Setting the class c to be ai in (2.2), we have

(2.6) •¬

These homomorphisms combine together to induce a homomorphism from the symmetric 

algebra

•¬

Consider the tensor product of the homomorphism S above with F defined in (2.3):

(2.7) •¬

The group GZ acts on the direct sum W by the diagonal action corresponding to the natural 

action on H1(X, Q). Let GZ act on W as the trivial action. In [BR] and [B1] it is proved that 

the homomorphism S•¬F in (2.7) is surjective and the kernel is left invariant by the induced 

action of GZ on S(W•¬(r-1))•¬•ÈW. Thus we have an action of GZ on H* (N, Q) induced 

by the action of GZ on S(W•¬(r-1))•¬•ÈW.

We will recall a theorem proved in [B1]. Take a smooth family of one pointed curves 

parametrized by T. Consider the corresponding family of moduli spaces of vector bundles 

parametrized by T. The holonomy of the Gauss-Manin connection for this family gives rise 

to a representation of the fundamental group ƒÎ1(T) into the cohomology algebra of the typical 

fiber. This representation factors through the homomorphism of ƒÎ1(T) into GZ, given by the 

holonomy of the Gauss-Manin connection for the first homology of the family of curves. The 

action of GZ on the cohomology of the typical fiber of the family of moduli spaces is precisely 

the action of GZ on H*(N, Q) obtained above.

Since H*(J, Q)=•ÈH1(X, Q)=•ÈH1(X, Q)* (Poincar6 duality on X), we have the 

equality H*(J, Q)=•ÈW*. Thus the cohomology algebra H*(N•~J, Q) is the graded 

tensor product H*(N, Q)•¬•ÈW*. The group GZ acts on H1(X, Z)* by the adjoint action 

and on W* by the diagonal action. Consider the induced action of GZ on •ÈW*. The actions 

of GZ on H*(N, Q) (obtained above) and on •ÈW* combine together to induce an action of 

Gz on H*(N•~J, Q).

As the next step we want to show that any invariant class in H*(N•~J, Q) for the action 

of GZ is an algebraic class.

The action of GZ on H1(X, Z) extends naturally to an action of its complexification GC 

on H1(X, C). The Borel density theorem asserts that the subgroup GZ is Zariski dense in GC. 

This implies that the space of invariants in H*(N•~J, Q) for the action of GZ is precisely the 

image of •¬ by the map S•¬F•¬Id, where 

(•ÈW•¬•ÈW*)GZ denotes the space of all GZ invariants in •ÈW•¬•ÈW*=End(•ÈW). 

(Note that the action of GZ on S(W•¬(r-1)) is the trivial action.) From Theorem 2 of [H0] 

we know that the space of GC invariants in End(•ÈWC) is generated by a subclass of degree
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two elements (when considered as elements of •È(W•¬W) using the symplectic form). The 

subclass in question is described as follows: identify H1(X, Q) with H1(X, Q) using the 

Poincare duality on X. Thus

•¬

For 1•¬i•¬j•¬2(r-1), let fi,j denote the diagonal inclusion of H1(X, Q) in H1(X, Q)•¬2(r-1) 

along the (i, j)-th coordinates, and let •È2 fi,j denote the induced homomorphism of the sec

ond exterior products. Let

•¬

be the element corresponding to the Poincare duality pairing, namely

•¬

where ƒÖ1, ƒÖ2•¸H1(X, Q). Now define

ƒÑi,j:

(•È2 fi,j)(ƒÑ).

The space of all GZ invariants in •ÈW•¬•ÈW is generated, as an algebra, by the collection 

of elements {ƒÑi,j }.

Since the class ak•¸H2k(N•~J, Q) is algebraic (any Chern class of an algebraic vector 

bundle is algebraic), the image of the homomorphism S is contained in the algebraic classes 

in H*(N, Q). Indeed, S(ak, 0)(1) is the restriction of ak to N (1 is the canonical generator 

of H0(X,Q)); and, S(ak, 2)([X]) is the image of ak by the Gysin map for the projection of 

X•~N onto N ([X] is the oriented generator of H2(X, Z)). We note that the proof of the 

assertion that any GZ invariant class in H*(N•~J, Q) is algebraic will be completed once 

we are able to show that any F•¬Id(ƒÑi,j) in H*(N•~J, Q) is actually algebraic.

For notational simplicity we will also use ƒÑi,j to denote F•¬Id(ƒÑi,j). From the context 

it will be clear which one is being used.

If 1•¬i, j•¬r-1, then ƒÑi,j is the pullback of a cohomology class on N (by the 

projection of N•~J onto N); we will denote this class in N by t. Moreover, t is an invariant 

for the action of GZ (since ƒÑi,j is, by definition, an invariant). Hence from Proposition 2.4 of 

[BN] it follows that t is algebraic. Thus ƒÑi,j is algebraic.

If r•¬i•¬j•¬2(r-1), then ƒÑi,j is the pullback of a cohomology class in J•~J, 

denoted by t, using the projection of N•~J along the i-th and j-th factors in J. If i=j, 

then it is the pullback of a cohomology class on J, denoted by t, using the projection onto 

the i-th factor of J. Since ƒÑi,j is invariant under the action of GZ, the cohomology class t, in 

either case, is also invariant under the action of GZ. If i=j, then t is the cycle class of the 

theta divisor in J. (The theta divisor on J is the pullback of the theta divisor on Pic9-1 (X) 

using the map defined by L•¬L•¬ZX ((g-1)x0).) Let ƒ¦ denote this theta divisor on J. Let

A:J•~J•¨J
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be the addition map defined by (L, L')•¬L•¬L'. If i•‚j, then t is the cycle class of the 

divisor

•¬

on J•~J, where p1 (respectively, p2) is the projection of J•~J to the first (respectively, 

second) factor. It is a straightforward calculation to check the above statement. Thus the 

cohomology class ƒÑi,j is algebraic for r•¬i•¬j•¬2(r-1).

Finally, consider a cohomology class ƒÑi,j with i•¬r-1 and j•¬r. Let f denote the 

projection of N•~J onto N•~J which maps any

(n,L1,...,Lr-1)•¸‚m•~Jr-1=N•~J

to (n, Lj)•¸•~J. There is a unique cohomology class on N•~J, say t, such that f*t=ƒÑi,j.

Consider the characteristic class ak•¸H2k (X•~N, Q) defined above. Let

(2.8) ai+1=a•¬1+b+c•¬[X]

be the Kunneth decomposition of the cohomology class ai+1, where the cohomology class [X] 

is the oriented generator of H2(X, Z). The classes a, c•¸H*(N, Q) are algebraic. Indeed, 

a is the restriction of ai+1, to x0•~N, and c is the push-forward of ai+1 by the projection of 

X•~N onto N. Thus the cohomology class b in (2.8) is also algebraic.

Let G be a Poincard line bundle over X•~J. Let ƒÆ be the component of c1 (L) in 

H1(X, Q)•¬H1(J, Q) for the Kunneth decomposition of H2(X•~J, Q). Note that, since 

any two choices of the Poincard line bundle differ only by the pullback of a line bundle on 

J, this Kunneth component of c1 (L) does not depend upon the choice of the Poincard bun

dle. Let q1 and q2 denote the obvious projections of X•~N•~J onto X•~N and X•~J, 

respectively. The class ƒÆ is algebraic for the same reason as for b. Consider

ƒÖ:=q1*b•¾q2*ƒÆ•¸H2i+4(X•~N•~J, Q).

Now, since both b and ƒÆ are algebraic, so is the class ƒÖ. Let

p:X•~N•~J•¨N•~J

be the obvious projection, and p* the corresponding Gysin map of cohomologies. It is a 

straightforward calculation (the details are in the proof of the Proposition 2.4 of [BN]) to 

check that t=p*ƒÖ. In other words, t is the cycle class of the push-forward of a cycle whose 

cycle class is ƒÖ. Thus the cohomology class ƒÑi,j must be algebraic. This completes the proof 

of the assertion that any invariant class is algebraic.

To show that ƒ³ is an invariant for the action of GZ, first note that, since the classes ai 

are canonical in the sense that they do not depend upon the choice of the universal bundle, 

these classes are invariant under the monodromy action on H*(X•~N, Q) for a family of 

curves. This, in turn, implies that the class ƒ³ is an invariant for the monodromy action on 

H*(N•~J, Q). The monodromy action factors through GZ [B1]. Now, since the mapping 

class group projects onto GZ, the class ƒ³ must be an invariant for the action of GZ. This 

completes the proof of the theorem.



169 CORRESPONDENCE BETWEEN MODULI SPACES

Theorem 2.5 implies the following: by virtue of the natural identification of H*(J, Q) 
with H*(J, Q) using the Poincare duality on X, the homomorphism F in (2.4) maps any 

algebraic class in H*(J, Q) into an algebraic class in H*(N, Q). In the case where r=2, 

this is in fact a consequence of Proposition 6.1 of [BKN].

Fix, once and for all, a polynomial P({ƒÑi,j}) of (2r-2 2) variables (same as the number of 

ƒÑi,j) and with coefficients in Q such that

P({ƒÑi,j})=ƒ³.

We will show that there is a natural element in the Chow group of N•~J whose cycle class 

is ƒ³. Before proceeding, we note that the Chem classes of an algebraic vector bundle can be 

defined in the Chow group [F]. Let ai•¸CHi(X•~N) be the element of the Chow group given 

by (2.1), with any ƒÀj being considered as an element of CHj(X•~N). So the cycle class of 

ai is ai.

There is a natural choice of an element in the Chow group of N•~J, namely

Ei,j•¸CH*(N•~J)

such that the cycle class of Ei,j is the cohomology class ƒÑi,j. Indeed, for the two cases 

r•¬i, j •¬ 2(r - 1) and i•¬r-1<j, in the proof of Theorem 2.5, we have produced 

an explicit element of the Chow group of N•~J (depending only upon the point x0) whose 

cycle class is ƒÑi,j. We consider the remaining case, namely 1•¬i•¬j•¬r-1. As in the 

proof of Theorem 2.5, let t denote the cohomology class on N which pulls back to ƒÑi,j by the 

projection of N•~J onto N. Let a' denote the cycle on N obtained by taking the intersection 

of the cycle aj+1 with x0•~N, and let c' be the cycle on N given by the push-forward of aj+1 

using the projection of X•~N onto N. Imitating the Kunneth decomposition (2.8), define the 

cycle bj on N by

bj:=aj+1-a'•¬1-c'•¬[X].

Similarly, construct bi from ai+1. Now consider the image of the intersection cycle bi•¿

bi(•¸CH*(X•~N)) in CH*(N) by the push-forward map for the projection of X•~N onto 

N. The cycle class of this cycle on N is the cohomology class t. This is a straightforward 

computation, which is already done in the proof of Proposition 2.4 of [BN]. Thus the cycle 

class of the pullback of this cycle to N•~J, which we will denote by Ei,j, is actually ƒÑi,j.

Define

(2.9)  ƒ¡:= P({Ei ,j})•¸CH*(N•~J),

where Ei,j and the polynomial P are defined as above. Thus we have that the cycle class of 

ƒ¡isƒ³.

3. Map between cycles. Using the cycle F defined in Section 2, we get a map (corre

spondence) from the Chow group CH*(J) of J to CH*(N) [F, Definition 16.1.2], which we 

will now describe. Let q1 (respectively, q2) be the projection of N•~J onto N (respectively,

J ). For a cycle con J consider the intersection cycle, q*2c•¿ƒ¡, on N•~J. Let q1*(q2*c•¿ƒ¡)
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be the cycle on N obtained by taking the push-forward of q*2c•¿ƒ¡ by the projection q1[F, 

•˜1.4]. Now let

(3.1) ƒ®:CH*(J)•¨CH*(N)

be the homomorphism defined by c•¬q1*(q*2c•¿ƒ¡).

With a slight abuse of notation, the Gysin map H*(N•~J, C)•¨H*(N, C), for the 

projection q1, will also be denoted by q1*. Consider the homomorphism

(3.2) [ƒ³]:H*(J, C)•¨H*(N, C)

defined by a•¬qi*((q2*a)•¾ƒ³). Note that [ƒ³] maps H*(J, Q) into H*(N, Q). Moreover, 

[ƒ³] maps the space of Hodge cycles on J into that on N. The cycle class [ƒ®(c)]•¸H*(N, Q) 

is actually [ƒ³]([c]).

Using the Poincare duality on J, we have an isomorphism

(3.3) ƒÏ:H*(J, Q)•¨H*(J, Q)

It is a routine calculation to check that for any ƒÖ•¸H*(J, Q), the equality

(3.4) [ƒ³](ƒÖ)=F(ƒÏ(ƒÖ))

holds. (The homomorphism F was defined in (2.4).) From (3.4) it follows that for a cycle c 

on J,

[ƒ®(c)]=(F•¬ƒÏ)([c]).

We give an application of the correspondence using ƒ¡.

It is easy to construct a curve X of genus g such that the rank of the Neron-Severi group 

of its Jacobian, J, is greater than one. (Take a curve X with a nontrivial automorphism , f, 

such that the genus of the quotient curve X/f is at least one. Then pullback the theta line 

bundle on the Jacobian J(X/f) to J using the map defined by L•¬det(ƒÎ*L), where ƒÎ 

is the quotient map. The first Chem class of this pullback bundle and that of the theta line 

bundle on J are linearly indpendent in NS(X)•¬ZQ.) Let a•¸H2(J, Q) be an element of 

the Neron-Severi group of J which is linearly independent with the theta bundle on J . Since 

H1(X, Q)=H1(X, Q) by the Poincare duality on X, we get that

H2(J,Q)=•È2H1(X,Q)=•È2H1(X,Q)=H2(J,Q).

Let a•¸H2(J, Q) be the element corresponding to a. Define

bk:=1•¬•c•¬a•¬1•¬•c•¬1•¸H2(J,Q)

to be the element of the Kenneth decomposition of H2(J, Q), where a is at the k-th position.
It is easy to check that ƒÏ-1(bk) is a Hodge cycle on J. Since any Hodge cycle of degree 

2d-2 on a projective manifold of complex dimension d is actually algebraic, the cohomology 

class ƒÏ-1(bk) must be algebraic.

Consider F(bk)•¸H4k+2(N,Q) which is a Hodge cycle on N. The class F(bk) is not 

zero, for example, when r=2 and k=1([N], [KN]. Let C be a cycle on J whose cycle 

class is ƒÏ-1 (bk). The equality (3.4) implies that the cohomology class F(bk) is the cycle class 

of ƒ®(C). Thus the Hodge cycle F(bk) must be algebraic.
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The cohomology class ƒÏ-1(bk)•¸H*(J, Q) is not an invariant for the action of GZ. 

Indeed, the invariants in H2(J, Q) are spanned by the class of the theta line bundle. Thus the 

cohomology class a, and hence bk, is not an invariant for the action of GZ. If F(bk) is not 

zero, then it is not an invariant for the action of GZ, since the homomorphism F is equivariant 

for the action of GZ. In [BN] it was proved that the space of Hodge cycles on N for a 

general Riemann surface is exactly the space of invariants for the action of GZ. The above 

construction shows that the "generality" is essential. In other words, for special N there are 

more Hodge cycles (and also algebraic classes) than those simply being the invariants.

4. Map between Deligne-Beilinson cohomologies. Let Y be a connected smooth 

projective variety over C. For p•¬0, let Z(p) denote the constant sheaf Z(2ƒÎ•ã-1)p on Y. 

The following complex

•¬

where the sheaf Z(p) is at the 0-th position, is called the p-th Deligne complex. Since we 

are working over the field of complex numbers, the distinction between Z(p) and Z is not 

important for us. The j-th hypercohomology group of D(p)Y is called the j-th Deligne-

Beilinson cohomology group, and it is denoted by HDj(Y, p) [EV, 1.1].

Consider the following complex, C(p), of •¬y-modules

•¬

The following exact sequences of complexes, that is,

0•¨C(p)[1]•¨D(p)•¨Z(p)•¨0,

where C(p)[1] denotes the one step right translation of C(p) (i.e., •¬ is in the first position), 

induces the following exact sequence [EV, 7.9]

(4.1)0•¨Jp(Y)•¨HD2p(Y, p)Y•¨Hgp(Y)•¨0,

where Jp(Y) is the p-th Griffiths intermediate Jacobian, and Hgp(Y) is the subgroup of 

H2p(Y, Z(p)) consisting of those elements in H2p(Y, Z(p)) which are of type (p, p).

Let HD*(Y) denote the direct sum •¬p•¬0 HDp2 (Y, p). The cycle map in the Deligne

- Beilinson cohomology

(4.2) •¬

is a ring homomorphism [EV, Corollary 7.7]. For c•¸CHP(Y), the class•¬

(y is defined in (4.1)) is (2ƒÎ•ã-1)p times the integral class corresponding to c. If c is homo

logically equivalent to zero, then •¬(c), as an element of Jp(Y), coincides with the image of 

c in Jp(Y) under the Abel-Jacobi map [EV, Theorem 7.11].

The direct sum •¬p HD2p (Y, p) will be denoted by HD*(Y).
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There is the pullback homomorphism q2*:HD*(J)•¨H*D(N•~J) such that for any 

cycle c on J

•¬

where •¬ is the homomorphism defined in (4.2) [EV, Proposition 7.5] .

We know that for a cycle d on N•~J the following equality holds:

•¬

The push-forward map, which corresponds to the Gysin map of cohomology,

q1*:HD*(N•~J)•¨H*(N)

satisfies the condition that for any cycle d on N•~J the following equality holds:

•¬

where q1*(d) is the push-forward of d.

The map ƒ®, defined in (3.1), is the composite of a pullback, the intersection with ƒ¡ , and 

a push-forward. Thus, from the above observations it follows that for any cycle c on J ,

•¬

([ƒ³] was defined in (3.2)).

We want to describe how one can construct, using the map ƒ® , nonzero elements of 

Griffiths group of N. But before that we need to set up some notation .

For any integer l•¬0, let

(4.3) ƒ¡l•¼ƒ¡

be the union of components of ƒ¡ of codimension l. In other words , ƒ¡l•¸CHl(J•~N). Let

(4.4) [ƒ³l]:H*(J, C)•¨H*(N, C)

be the induced map of cohomologies obtained by taking ƒ¡l as the correspondence cycle . Note 

that [ƒ³l] maps H*(J, Q) to H*(N, Q).

Let pi, where 1•¬i•¬r-1, denote the projection of J onto the i-th factor . It is easy 

to check that for any ƒÖ•¸Hk(J, C), the cohomology class [ƒ³](pi*ƒÖ)•¸H*(N
, C) is actually 

of degree

•¬

On the other hand, we have that

(4.5) •¬

Since ƒ¡l is the union of components of codimension l of ƒ¡, when l=g(r2+r-2)-k(i+1)
, 

the equality

(4.6) [ƒ³] (pi*ƒÖ)=[ƒ³l](pi*ƒÖ)

is valid for any ƒÖ•¸Hk(J, C).
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For any k•¸N, let f:Xk•¨J be the morphism defined by (x1, ... , xk)•¬‡”j (xj-

x0), where x0 is the base point of the pointed curve. Let Wk denote the cycle on J given by 

the image of f. Define Ck:=Wg-k-W-g-k to be the cycle of codimension k, where W-g -k 

denotes the image of Wg-k under the involution j•¬-j of J. Clearly, Ck is homologically 

equivalent to zero. Ceresa in [C] proved that if g•¬3 and 1•¬k•¬g-1, then for a generic 

curve X the cycle Ck is not algebraically equivalent to zero, i.e., it represents a nonzero 

element of the Griffiths group of J.

Define Ck,i to be the following pullback cycle on J:

Ck,i:=pi*Ck,

where pi is the projection of J onto the i-th factor. The cycle Ck,i is homologically equivalent 
to zero, since Ck is homologically equivalent to zero.

Let ƒ®l denote the correspondence map between Chow groups obtained by taking ƒ¡l as 

the correspondence cycle (as in (3.1)). In other words, for any c•¸CH*(J), we have

ƒ®l(c):=q1*(q2*c•¿ƒ¡l)•¸CH*(N).

Since Ck ,i is homologically equivalent to zero, so is the cycle ƒ®l(Ck,i).

Let L•¸H2(J, Z) be the polarization on the Jacobian J given by the Poincare dual of 

the theta divisor (which is an ample divisor on J). Let Pk•¼Hk(J, C) denote the space of 

primitive cohomology classes. Consider the Lefschetz decomposition

(4.7)

 •¬

where PQj is the space of all rational primitive cohomology classes of degree j, i.e., PjQ

= Pj•¿Hj(J, Q). Recall that GZ denotes the group of all automorphisms of H1(X, Z) pre

serving the cap product. The subspaces PQj are all irreducible GZ modules, and (4.7) is the 
decomposition into irreducible GZ modules. Indeed, this is a consequence of the fact that 

the complexification of the decomposition (4.7) is the irreducible decomposition of the GC 

module H2P-1 (J, C), where GC is the complexification of GZ, i.e., the group of all automor

phisms of H1 (X, C) preserving the cap product. As a GZ module, the irreducibility of any 

P2k-1Q is a consequence of the Borel density theorem which asserts that GZ is Zariski dense 
in GC.

Let Mg1 denote the moduli space of one pointed Riemann surfaces of genus g. In other 

words, it is the moduli space of pairs of the form (X, p), where p is a point of a Riemann 

surface X of genus g.

THEOREM 4.8. Let g and p be integers such that g-1•¬p•¬1. Assume that the 

image [ƒ³](pi* (LP-2P3Q)) is a nontrivial subspace of H*(N, Q). Then there is a countable 

union of proper subvarieties, say•¾kSk, of the moduli space Mg1 with the following property: 

For any (X, x0)•¸Mg1-•¾k Sk, the cycle ƒ®l(Cp ,i) on N is not algebraically equivalent to 

zero, and it is of infinite order as an element of the Griffiths group of N.

Before proving the theorem we remark some observations.



174

I

. BISWAS

REMARK 4.9. (1) The condition that [ƒ³l](pi*(Lp-2P3Q)) is a nontrivial subspace 

is independent of the choice of the curve X. For a smooth family of pointed curves, the 

subspace pi* (Lp-2P3Q)•¼H2p-1(J, Q) gives rise to a sub-local system of the local system 

on the parameters space given by H2p-1(J, Q). The homomorphism ƒ³l actually gives a 

homomorphism of local systems. Thus, for a smooth family of curves parametrized by a 

connected space, if [ƒ³l](pi*(Lp-2PQ3)) is zero for one curve, then it is zero for all curves in 

the family.

(2) Set r=2 and l=6. So the equality (4.6) is valid with k=2g-3. Now using 

the equality (3.4), the image [ƒ³l](Lp-2P3Q) is identified with F on •È3 H1(X, C). If g•¬4, 

then F maps •È3 H1(X, C) injectively into H9(N, Q) ([N], [KN, Proposition 2.1]). So in 

this situation Theorem 4.8 implies that, for a general one pointed curve (X, x0), the cycle 

ƒ®l (Cg-1) is not algebraically equivalent to zero.

(3) The cycle ƒ®(Cp,i) is not algebraically equivalent to zero if the component ƒ®l(Cp,i) 

is so. However we consider ƒ®l(Cp,i) to get a cycle of pure dimension.

PROOF OF THEOREM 4.8. The image [ƒ³l](pi*(H2p-1(J, C))) is contained in 

Hm (N, Q), where m is some odd integer which depends on l, i, p and r. Consider the Grif

fiths intermediate Jacobian

J(m+1)/2(N):=Hm(N, C)/F(m+1)/2+Hm(N
, Z((m+1)/2))

of N, where F(m+1)/2=•¬j•¬0H(m+1)/2+j,(m-1)/2-j(N). (Note that m is odd.) Since both 

[ƒ³l] and the pullback operation on cohomology, namely pi*, are given by correspondence 

cycles, we have a homomorphism

v:Jp(J):= H2p-1(J, C)/

Fp+H2p-1(J, Z(P))•¨(m+1)/2(N)

where FP=•¬j•¬0 HP+i,P-l-j (J).

Since the Abel-Jacobi map •¬, defined in (4.2), is compatible with correspondence, the 

following equality is valid:

(4.10) v•¬(CP,i))=•¬(ƒ®l(CP,i)).

If ƒ®l(Cp ,i) is algebraically equivalent to zero, then there is a closed algebraic subgroup 

of the complex torus J(m+l)/2(N) which contains •¬(ƒ®l(Cp,i)) [H1, Proposition 10.1]. As

suming that ƒ®l(Cp,i) is algebraically equivalent to zero, denote this algebraic subgroup of 

J(m+1)/2(N) by A.

Consider the following complex torus:

(4.11) J3:=Lp-2p3/
(Fp+H2p-1(J, Z(p)))•¿Lp-2P3,

where Lp-2P3 is a factor of the Lefschetz decomposition in (4.7). Using the decomposition 

(4.7), a finite (unramified) covering of the torus Jp(J), say J, is identified with the Certesian 

product J3•~B, where B is a complex torus. Since the decomposition (4.7) is not necessarily
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over Z, we need to go to a finite covering of Jp(J). Let v be the homomorphism from J to 
J(m+1)/2(N) given by v. Let f (respectively g) denote the projection (respectively inclusion) 
homomorphism between J and J3.

In the statement of Theorem 4.8 it is assumed that the image [ƒ³l](pi* (Lp-2P3Q)) is a 

nonzero subspace of Hm(N, Q). Now, the homomorphism [ƒ³l] in (4.4) is equivariant for 

the action of GZ described in Section 2. Indeed, this is a consequence of the fact that the 

homomorphism F in (2.4) is equivariant for the action of GZ ([B1], [BN]). Since PQ3 is an 

irreducible GZ module, [ƒ³l](pi* (Lp-2P3Q)) must be isomorphic to P3Q as a GZ module. This 

implies that v•¬g is an embedding of J3 in J(m+1)/2(N). (The homomorphism v•¬g coincides 

with the restriction of v to the image of J3 in Jp(J) by the obvious inclusion.) Moreover, 

since (4.7) is an isotypical decomposition, i.e., all the P2k-1Q are distinct GZ modules, we 

conclude that for any k•‚2, the two subspaces of Hm(N, Q), namely [ƒ³l](pi* (Lp-2P3Q)) 

and [ƒ³l](pi*(Lp-k P2k-1Q)), belong to two distinct components of the isotypical decomposition 

of the GZ module Hm (N, Q).

Consider the natural projection of Gz module Hm(N, Q) onto its isotypical component 
corresponding to the GZ module P3Q. This projection induces a projection, denoted by h, of 

the torus J(m+1)/2(N) to another complex torus, say T. Evidently, h•¬v•¬g is a homomorphism 

from J3 with finite kernel (recall that v•¬g is an embedding). Given this, since f (•¬(Cp ,i)) in 

J3 is of infinite order (a consequence of Proposition 8.8 of [H2]), the equality (4.10) implies 

that the element h(•¬(ƒ®l(Cp ,i))) is of infinite order in T. Since A is an abelian variety, so is 

h(A). Since h(A) contains an element of infinite order, namely h(•¬(ƒ®l(Cp ,i))), it must be of 

strictly positive dimension.

Thus (h•¬v•¬g)-1 (h(A)) is an algebraic subgroup of J3 of strictly positive dimension. 

That the dimension of (h•¬v•¬g)-1(h(A)) is strictly positive is a consequence of the fact that 

the order of the element f (•¬(Cp,i)) of (h•¬v•¬g)-1(h(A)) is infinite.

We will now complete the proof of Theorem 4.8 imitating the argument given in the 

proof of Theorem 10.3 of [H1]. The Lemma 10.2 in [H1, page 125] asserts the following: let 
S be the set of all curves, X, such that the complex torus J3 (defined in 4.11) corresponding to 
X contains a closed algebraic subgroup (abelian variety) of strictly positive dimension. Then 

the subset of Mg1 defined by S is actually contained in a countable union of proper closed 

subvarieties of Mg1. In view of this lemma, the proof of Theorem 4.8 is completed.
REMARK 4.12. The product N•~J is an stale cover of M(r, d), where M(r, d) is the 

moduli of stable bundle of rank r and degree d. The covering map is given by (E, L)•¨E•~

L. Thus the image in M(r, d), of any cycle on N (or J), that represents a nontrivial element 

of the Griffiths group of N (or J), would represent a nontrivial element of the Griffiths group 

of M(r, d).

REMARK 4.13. Deligne proved that any Hodge cycle on an abelian variety is an ab

solute Hodge cycle [D, Main Theorem 2.11]. So, in particular, any Hodge cycle on any 

self-product (arbitrary number of times) of a Jacobian is an absolute Hodge cycle. Using this
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and the existence of the correspondence cycle ƒ¡, it is easy to check that any Hodge cycle on 

N is an absolute Hodge cycle. In the case of rank two, this was proved in [B2].

Both Theorem 2.5 and Theorem 4.8 generalize to any (smooth) moduli space of parabolic 

bundles. Indeed, the results of [BR] and [BN] used here are actually proved in that generality. 

If N denotes a smooth moduli space of parabolic bundles of rank r and fixed determinant, then 

the homomorphism F in (2.4) remains valid. The monodromy action of the mapping class 

group, for Riemann surfaces with marked points, on the cohomology of a smooth moduli 
space of parabolic bundles factors through the symplectic group. Since invariant rational 

cohomology classes continue to be algebraic, the argument for Theorems 2.4 and 4.8 remains 
valid.
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