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7. Introduction

THE problem of the probability distribution of a-particles emitted during
radioactive decay has for long attracted the attention of workers in the field
of nuclear physics. An experimental verification of the distribution law
to be expected from complete time-randomness had an importance not only
for the light it would throw on-the basic decay mechanism at work, but also
for introducing suitable correction for the finite resolving time of counting
devices of nuclear particles. Most of the early experiments were done on the
a-particles from polonium; the technique consisted in observing the parti-
cles by the scintillations produced on a suitable screen, and recording the
instants of observation on a chronograph tape. The results were then
analysed by either one of two methods.” In that due to Bateman,' the fluc-
tuations of the number °»n’ of particles observed in small equal intervals
of time were determined; whereas in that due to Marsden and Barratt,®
the probabilities for the occurrence between successive arrivals of time
intervals of duration greater than any particular ¢ ¢’ were calculated.

The earliest investigations made by Rutherford and Geiger,® by Marsden
and Barratt,? and by Curie* all went to show that the a-particles from polo-
nium obeyed the probability law to be expected from a complete time-random-
ness of the disintegrations. However, certain experiments of Kutzner® and
later of Pokrowski® seemed to indicate that the concentration of the source
investigated might have some effect on the statistics of the measured counts.
These effects were later found to have no significance as far as the funda-
mental process of decay was concerned. Indeed Feather? who repeated
some of the experiments of these two workers found *“ no evidence to show
that the Marsden-Barratt distribution formula was not completely valid
under the conditions obtaining ™.

While therefore the position with respect to ordinary nuclear pheno-
menon seems now to be firmly established, a direct experimental test of the
time distribution of cosmic rays does not appear to have been made. It
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has of course been assumed, perhaps reasonably, that the arrivals of cosmic
rays follow a perfectly random law; and indeed all counter experiments on
cosmic rays have been corrected for the finite resolving time of the apparatus
by using this assumption. But the fact that most of the cosmic ray parti-
cles at low levels are secondaries, and that often two or more particles from
the same primary are present and capable of detection by the recording
apparatus, makes it at least conceivable that the complete time-randomness
of the arrivals of the particles may be disturbed. With this in view the present
experiment was undertaken ; and the question whether or not it was possible

with the arrangement used to detect such an effgct will be discussed in detail
at a later stage.

2. Theory of Random Fluctuations

A very general treatment of the subject has been given by Ruark and
Devol®; and several other authors have considered the various aspects of the
problem. It can easily be shown that for perfectly random arrivals, the
chance that ‘n’ particles arrive in a time ‘¢’ is given by the well-known
formula of Bateman, viz.,

xﬁ -~

Wy (0, £) = al € (1
where ‘ x=ft’ is the mean number of particles that arrive in the interval
t. fdt, the probability that one particle would arrive in time dt, is naturally
independent of ‘¢’ in the case considered. When we have a distribution
of this kind, the standard deviation is x¥; and therefore the Lexian ratio
Q32, or the ratio of the (standard deviation)? and the mean is unity. The
value of QZ gives us a quantitative measure of how far any given distribution
agrees with t¢he Bateman law. The dispersion is called supernormal or sub-
normal according to whether Q2 is greater or less than unity. A subnormal
dispersion indicates that we have in the distribution a larger number of
small intervals than would be expected from the normal law. The value
of making a Bateman analysis, i.e. to study how the number of particles
in any given small time interval fluctuates about the mean number expected,

is that we thereby get a quantitative measure of the goodness of fit between
experimental results and the theory.

For the Marsden-Barratt analysis we have to know the theoretical
probability for the occurrence between successive particles of time intervals
of duration greater than any ¢. This can easily be derived from the Bateman
formula (1) by considering the case where n= 0. The required probability
is then: »

pr=e (2)
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We have here only made the arbitrary instant, at which we start the
Bateman interval, coincide with the occurrence of each successive arrival.
Thereby no fallacy is introduced into the argument as the probability f (dt)
is independent of time. If N, be the total number of intervals between the
random arrivals, then the number of intervals N, of duration greater than
t, 1s given by

N.s‘ = N.Q e b} (3)

where T is the mean time interval and is equal to 1/f. By taking logarithms
we therefore get the linear relation

log N, = log No_fl—;t log e. 4)

This is of a very suitable form for comparison with experimental data,
because all the measured values of log N, when plotted against 7, should fall
on a straight line.

-

3. Experimental

In the present series of experi.ments{, cosmic rays were detected by means
of Geiger-Miiller counters. All the counters used were of the Trdst fast self-
quenching type; and the treatment of the counter copper cylinders was done
according to the method described by Neher.® The counters were filled with
a mixture of argon and petrol-ether; and when operated at a potential of
about 1200 volts, they possessed plateaux of 150-200 volts. The efficiency
of the counters, as experimentally found from a comparison of double and
triple coincidences according to the usual method, came to greater than 959%,.

Recently Driscoll et al.l® have studied Geiger counter statistics by means
of a completely electrical arrangement for discriminating between time
intervals of varying durations. On using y-rays from a sealed radium source
to operate their counter tubes, they found that argon filled counters gave
a time disttibution of pulses in excellent agreement with fluctuation theory;
a hydrogen filled counter however showed marked deviation. The use of
argon filled counters in the present case was therefore expected to bring out
faithfully the true statistics of cosmic ray arrivals. For, though Driscoll has
not used alcohol vapour counters, the presence of the vapour should have
no effect on the experiment so long as spurious discharges are not present to
any appreciable extent. The existence of a fairly good plateaux in the
counters used goes to show that this mechanism can be neglected.

The high voltage for the counter was obtained from an electronic voltage
regulator!! fed by a 2000 volt transformer. The central wire of the Geiger-
Miiller tube was directly connected to the grid of the first amplifier valve
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field produced by a permanent magnet. Each coil bears an arm at the lower
end, and special capillary pens are attached by wax to these arms. The
pens dip at one end in a small trough filled with ink and rest on a moving
paper tape drawn at a uniform rate past them by an electric motor. The
pressure of the pens on the paper could be adjusted by the moving coil
suspension screws. The motor was operated from a battery set, and during
the experiment the speed remained constant to within 2%. The speed of the
moving tape could be easily changed by sh1ftmg the gears attached to the
motor. The speed was adjusted after taking into consideration the counting
rate and the likely duration of each particular experiment. One of the pens
was made to register the arrival of cosmic rays as already described before.
The other pen simultaneously marked uniform pulses arriving at intervals of
1 second. These pulses were obtained from a synchronous clock operated
by a 1000 cycle standard valve maintained tuning fork. The time scale given

by this arrangement was of an accuracy for surpassing that achieved in the
rest of the experiment.

Fig. 3 shows a portion of a typical record. The resolving time of the
pen as estimated from a record of uniform: pulses fed from a pulse generator
came to about 1/60th of a second. This value only forms a rough estimation,
and hence it has not been used in the comparison of experimental data with
theory. The length of the tape corresponding to one second in time was
determined separately for each experiment by measuring accurately the

lengths of a known interval of time at a number of places along the tape
record, and taking a mean.

4.  Marsden-Barratt Analysis

For making a Marsden-Barratt analysis of the tape record, a scale was
made as shown in Fig. 3; having vertical lines ruled at distances from a
fixed index line corresponding to certain fractions 1, #, < - - - of a second.
The lines were ruled on the emulsion side of a transparent photographic plate
with a fine needle fixed in a microtome; and the scratches were made more
visible by rubbing rouge ‘into them. After ruling, the distances between
the various lines and the index line were again accurately measured to better
than 19 accuracy. Thus the scale was marked out into different regions
-1, 2, - - - etc., corresponding to various time intervals t;, 1. - - - etc. from
the index line 7,. The procedure then consisted in placing the tape under the
scale so that one particular cosmic ray pulse coincided with line ¢, If the
next pulse was in the region between, say, lines 7, and t,, it was noted down
as having belonged to group 4, i.e. of duration from between #; and ¢,
seconds. The penultimate pulse was then made to coincide with 7,, and the
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time interval between the two pulses was similarly noted into the appropriate
group. In this way the intervals between the arrivals of the cosmic ray
particles were classified into one or other of nine groups, the last group
containing intervals larger than f,.

There are however two difficulties in this method of analysis. One is
the inaccuracy of making a pulse on the tape exactly coincide with the
vertical index line on the scale. Then again the second pulse may not lie
in between the lines bordering any range but might fall just on one particular
line. A decision has then to be made whether the interval lies in the range
to the right or to the left of the line in question. Though perhaps this might
be expected to introduce considerable inaccuracies in tabulation, specially
when the sizes of some of the small ranges are only about a millimetre in
length ; it is possible with the help of a reading lens, and a suitable conven-
tion for deciding ambiguous cases to arrive at surprisingly consistent results.

- An estimate can be formed of the extent of inaccuracy that can thus be

introduced by considering the thickness of the lines on the scale; and it would
be safe to put a value of 59 as the upper limit for the error in the
smallest ranges. The second difficulty arises when two cosmic.ray arrivals
come so close to each other that the pen mark no longer shows two distinct
deflections. It was found however, that the shape of the deflection showed
a ‘'marked change even when two arrivals followed so closely that the pen
had not been fully deflected after the first arrival. But such an estimation,
though possible, would introduce considerable errors. It was therefore
decided to draw the #; line of the scale at just such a distance from ¢,
that all particles that would lie in group 2 (between ¢z, and ?,) would be
unambiguously resolved ; which amounted to the condition that the distance
between f, and ¢, should be just larger than the distance between the start
of a deflection and the position of its peak.* All particles that lay in
group 1 were noted but not taken into consideration for the final comparison
of experimental data with theory. In the particular experiment where double
coincidences due to cosmic rays were measured, a further complication
was introduced by the fact that though a majority of the deflections were
similar and of equal magnitude, there were in between a not inconsiderable
number of deflections of varying sizes. These latter were attributed to false
coincidences, and it was legitimate to assume that their occurrence was due
to two independent arrivals striking individually the separate counter trays

. within the resolving time of the coincidence discriminating circuit. Hence

in the analysis of this record a further convention had to be made; namely

* In Expt. 1, this practice was not carried out and ¢, was taken as equal to half ¢,.
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that we should neglect all deflections smaller than an arbitrary fixed magni-

tude, which was taken as just less than the height of the majority of deflec-
tions attributed to true coincidences.

The data so obtained directly gives us the total number of intervals
which lie in the groups 1, 2 - + -9, j.e. which had a duration between
t, to 1, t; to fp - - - and t; to o (¢, being the resolving time of the pen,
naturally forms the lower limit for the measurement of time intervals). From
this we can immediately calculate the number N, of intervals larger than any
particular 7. This data collected for the several experiments is shown in
Tables I and II. The first column-indicates the groups that were excluded -
in order to arrive at N,; and under the column ¢, seconds’ is given the
value of the corresponding “z,’. The logarithm of N, is also given and is
plotted against 7, in Fig. 4. As explained earlier the curves should be linear.
But to make a proper comparison with the theoretical expression (4),
we need to know the value of the total number of intervals N, that would

- have been recorded had the resolving time of the apparatus been not 7,,

but infinitely smaller. It is of course possible to extrapolate N, from any
set of values N, f, by assuming that the theoretical law (4) is valid. As how-

- ever the resolving time ?#, is not accurately known, the extrapolation from
‘the 1st group would not be accurate. This group was therefore excluded

and the mean N, was calculated from the extrapolated values obtained from
all the other sets of N, and ¢,, as explained below."

TABLE [
Expt. 1 Expt. 2
Group
f¢ sec. N, log N, * I, sec. N; i log N
I
r¥ -0166 3688 3-938% -0166 9653 3-9847
1 <0510 8013 3-9038 -0208 8908 3-9498
2 -1021 7122 3-8526 -1022 6168 3-7902
-3 -2042 5747 3-75%4 -2044 3922 3.5935
4 <3063 © 4688 3-6710 -3070 2463 3-3915
5 -4084 3754 3-5745 -40935 1564 3-1942
6 -5105 3008 3-4783 5113 982 2-9921
7 -7147 1944 3-2887 -7161 401 2-6031
8 1-021 1018 3-0077 1-023 125 2-0899
fs sec. log N (theo.) 1 sec. log N; (theo.)
i .
Theoretical |

Values 0 3-9533 0 ; 3-9929

from eq. K 3-6747 -3 ; 3-4152

4 -6 3-3961 -6 2-8374
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TABLE 1I
Expt. 3 Expt. 4
Group
ty sec. N, log N ts Sec. N; log N
¥ -0166 ! 9234 3-9654 -0166 9028 3-9556
1 -0211 8677 3-9384 -0244 8516 3-9302
2 -1037 . 6270 3-7973 -1014 6955 3-8423
3 -2074 4216 3-6249 2030 5394 3-7319
4 <3113 2781 3-4442 -3062 4153 3-6184
5 -4153 1856 3-2686 -4073 3263 3-5136
6 5186 1253 3-0979 -5094 2517 3-4009
7 - 7263 '559 2-7474 -7137 1517 3-1810
. 8 1:0371 163 2-2122 1-0244 685 2-8357
t; secs. log N; (theo.) ‘ 1y SEC. log N; (theo.)
Theoretical
Values 0 3-9812 0 3-9519
From eq. 3, 3-4703 -3 3-6279
' “) 6 2-9594 6 3-3040
TABLE III
Expt. 1 Expt. 2 ’ Expt. 3 Expt. 4
Is
R; R.() R; Ro R_r Ro RJ‘ R.
4 114-5 | 127-5 | 241-0 | 264-0 | 213-2 | 231-2 | 141-9 | 150-8
1s 101-7 126-2 166-9 259-2 154-1 -{ 229-0 115-9 149-4
s 82-4 126-9 106-1 242-0 103-6 228°5 89-9 148-6
4 67-0 129-9 66:6 281-5 68-3 249-0 69-2 145-6
1; 536 129-0 42-3 273-2 45-6 239-5 54-4 148-0
1g 43-0 130-4 26-6 273-8 30-8 235-5 41-9 150-2
t 27-8 128-7 10-8 269-0 137 234-5 25-3 149-3
it 14-5 | 1279 . . . . 11-4 | 151-6
Mean R, 128-3 266-1 235-3 149-2
Total Time
Minutes 70 36-97 40-70 60
Ng 8981 9838 9577 8951
T. secs. -4676 -2255 -2550 -4022

By dividing in any particular experiment the values of N, by the total
time T, of the experiment, we arrive at the corresponding values for R,
the rate per minute of intervals larger than .. Values for R, are tabulated
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in Table III for each experiment. Now, eq. (4) can be written in terms of .
R, as

log R, = log Ro——,—tri log e
But as T= —%9 seconds, we have the identity
]

log Ry— log R,= %8 t, log e. )]

The solution for R, for any particular set Ry, ¢, is easily found graph-
ically by plotting separately the two sides of this equation against R,. The
extrapolated value in each case is given in Table III under column R,.
From the mean of R,, we can immediately get N, and the true value of the °
mean interval T. Both these quantities should to a large extent be free
from errors of finite sampling. These values of N, and T have bean used in
eq. (4) to get the theoretical log. N, as tabulated in Tables I and II; and
these theoretical values for each experiment have been drawn as continuous
lines in Fig. 4 for direct comparison with the experimental points. The
consistency of the value of R, obtained from the different values of R; is
itself a good indication as to how far the distribution obeys the random
law expressed by eq. (4). Fig. 5 shows the variation of both R, and R,

against ;.. While theoretically R, should remain constant, the value of R,
should diminish exponentially.

5. Experimental Results

The investigation of the time distribution of cosmic rays was carried
out in three different experiments; while a fourth experiment was under-
taken to verify whether it was possible to confirm with the same apparatus
and under almost similar conditions the distribution of time intervals for
a radioactive source. The various experiments were:—

(1) Experiment 1.—Cosmic ray investigation with a small Geiger counter
having a cylinder 4 inches long, operating singly. The counting rate per

minute was 128:3. The speed of the chronograph tape was 2-496 cm.
sec.”t '

(2) Experiment 2.—Cosmic ray investigation with a large counter having
a cylinder 8 inches long, operating singly. The counting rate per minute
was 266-1. The speed of the chronograph tape was 4-858 cm. sec.™!

(3) Experiment 3.—y-Ray investigation with a midget Geiger counter
having a cylinder 1 inch long. The background count of the counter was
23-7 and this was increased by a radioactive thorium source to 235-3
counts per minute. The speed of the chronograph tape was 4-779 cm. sec.~*
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(4) Experiment 4.—Cosmic ray investigation with a double coincidence
Geiger-counter arrangement. Four counters having cylinders 12 inches
long, were stacked two over two; and coincidences between the upper and
the lower pairs were registered. With the very wide solid angle subtended
by this arrangement, and a sensitive area of about 25 sq. inches for each pair,
it was possible to get a counting rate of 149-2 counts per minute. The speed
of the chronograph tape was 2:994 cm. sec.-

The proper functioning of the apparatus in each experiment was check-
ed by noting during the Marsden-Barratt analysis, the number of cosmic
ray intervals that successively occurred in a certain fixed time period, say
10 minutes. The fluctuations of the number of these intervals about the
mean number expected in the same time period, give us an indication as
to whether the experimental conditions remained constant during the run.
If there is no variation in the efficiency of the apparatus, then the probable
error calculated from the residuals should be smaller than the probable
error taken from the total number of counts. This condition was well
satisfied in each of the four experiments; showing that there was consistency
not only in the functioning of the apparatus but also in the system of
analysis with the scale.

A glance at Figs. 4 and 5 immediately makes it obvious that judged
from all the criteria discussed before, the time distribution of cosmic rays
as investigated in Experiments 1 and 4 agrees remarkably well with what
we should expect from the random law. The very good fit with theory for
the double coincidence experiment is specially significant, as we
have here a detecting device sensitive only to cosmic rays as against terres-
trial radioactive sources. For both expzriments, what little variation there
is in the value of the extrapolated R, (this amounts to 2% for the largest
deviation from the mean) can be explained entirely by the estimated experi-
mental error. In Experiment 2 however the fit between experimental points
and the theory is not so good. Whether or not this deviation has any
physical significance can be judged by considering the results in relation to
those obtained in Experiment 3. The experimental conditions in these two
experiments correspond closely to each other as far as the counting rate and
the speed of the chronograph tape are concerned; and the same scale was
used for making the Marsden-Barratt analysis in both cases. But while in
Experiment 2 the counting rate was predominantly due to cosmic rays,
in Experiment 3 the conditions were reversed so that cosmic rays only played
a negligible role and the measured rate was mostly due to radioactivity. A
comparison of the results of these two experiments therefore directly indi-
cates the position in cosmic rays vis-g-vis radioactivity. It is important



v

100 Vikram Sarabhai

35

log Nt

25

0 1 2 g 1 5 3 T g 9 10
£ Seconds
Fic. 4
A Expt. points for cosmic rays with small counter.
o) vs -cosmic rays with large counter.
1 »s radio-activity with Midget counter.
X . . cosmic rays. Double coincidences.
300
£xFé.2"
h
W_—__qfxpé.d'
AY
\
200} \ \
3N ‘\
COlnf-S \\\“
per "
minute :;Tﬁ{\_ x % —x Expl.4
A\ " .
\\;\\A \\\\\\ é = e ‘Ex}é. J
1004

Fic. 5
Curves showing variation of R, (dashed curves) and of the extrapolated values of Rg
(continuous lines). :

to notice that for these two experiments the curves showing the variations
in'R, follow the same general trend; and indeed the maximum deviation
from the mean R, occurs in both cases at ¢z, and amounts to 6%. Though
the magnitude of the error is slightly larger than what would be estimated
from experimental inaccuracy, it is highly probable that it is due to some
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peculiarity of the scale, possibly the ruling of the particular line 7,. Besides,
the all round poorer fit with theory for these experiments is very probably
due to the higher counting rates used. But in so far as this is present for
both these experiments, it is justifiable to say that the lack of agreement
is not due to any departure in the cosmic rays from the random law.

6. Bateman Analysis

A confirmatory check of the results obtained above was made by
means of Bateman analysis of the chronograph tape records of all the four
experiments The number *f’ of intervals of some fixed duration ‘t’_ :
having ¢ n’ particles in each of them, was found for various values of °
This onIy requlred the counting of the number of cosmic ray pulses in succes-
sive intervals of “ 7’ seconds as indicated by the one second pulses on the
tape. No attempt was made to artificially eliminate the very small intervals
where only a change in the shape of the deflection had occurred. The results
of the analysis therefore cannot be taken as very accurate for the smull
ranges. In the case of Experiment 4 however, the same convention regard-

TABLE IV
P
n
Expt. 1 Expt. 2 Expt. 3 Expt. 4

1 1 0 0 5

2 9 0 0 27

3 17 0 7 59

4 48 3 i1 110

5 79 3 6 152

6 139 5 33 205

7 177 22 59 221

8 172 39 64 179

9 122 46 73 143

10 124 72 92 105

11 95 78 86 75

12 74 82 94 36

13 41 102 72 32

14 31 91 44 1)

15 18 74 44 4

16 15 62 36 |

17 7- 45 . 21 3

18 3 28 14 0

19 1 19 6 0

20 4 13 4 0

21 0 3 2 0

22 0 3 1 0

23 0 1 0 0
! 4 secs. 3 secs. 3 secs. 3 secs.
2f 1177 791 769 1367
nf 10236 10243 8524 9922
2n*f 98502 141025 103264 81602
QY 0-928 1-03 0-817 0-966
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ing the elimination of small deflections (due to false coincidences) was
adopted as in the Marsden-Barratt analysis.

The results of the analysis are presented in Table IV for all the four
experiments. The mean number of particles n that arrive in the interval
“t’ is obtained by dividing the total number of particles Znf by the total
number of intervals Zf. But the square of the standard deviation is:—

2 (=n:_Zfn®
D D S

g - 2fn
Hence dividing by n= 5y we get

g Tt T
2fn 2f
The values of Q2 are tabulated for each experiment. Experiments
2 and 4 show a normal distribution as the deviation of the value of Q2 from
unity is small and may easily be due to errors of random sampling. Experi-
ments 1 and 3 show slightly sub-normal distributions ; and this is very prob-
ably due to the errors in the marking of small intervals as already explained
before. The number of small time intervals must obviously have been
overestimated; and in any case, as this has happened to the largest
degree in the experiment on radioactivity, no importance neced be attached
to this subnormality for the purpose of our investigation.

7. Discussion

The time distribution of any radiation depends basically on the mechan-
ism by which the emission takes place. The random law as we observe it
in the case of nuclear phenomenon is only an expression of the fact that
every atom in a radioactive material has the same chance to disintegrate.
However it is well known that when a chain of radioactive elements has
a member with a short life time, comparable to the time intervals experi-
mentally measured, a departure from the time randomness is in fact observed.
Indeed a good way of detecting the existence of a short life product is by
studying the time distribution of the emitted radiation. But such departures
from time-randomness can only be studied by observing the total emitted
radiation, so that the space randomness does not mask the effect.

While the origin and the mechanism of the production of cosmic rays
is still a matter of conjecture, it is not possible to anticipate what would
be the time distribution in a primary beam of radiation. Even if there were
any departures from time randomness in this beam, it is very likely that
in any terrestrial measurement of the distribution, the effect would be com-
pletely masked by space randomness. However we do know that there are
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numerous processes by which secondary particles are produced in our
atmosphere by the primary beam of cosmic rays. Whenever such a produc-
tion takes place at high energy, the product or products have a great
tendency to keep the original direction of the primary particle without
suffering much angular divergence. In such a case we would be able to
register not only one, but several related particles in the same detecting
device, provided the exposed sensitive area of the latter is large enough. The
time difference in the arrivals of these related particles (and we need not
assume that the primary particle must be absent from the group) depends
on the distance from the detector at which the particles are produced, and
the individual velocities of the particles. Considering the high velocities of
the majority of cosmic ray particles (electrons, positrons and mesons), it is
not likely that the time difference would be large if the production of
secondary radiation can take place only in our own atmosphere. The interval
would be probably of the order of microseconds, and hence quite outside
the range of the present investigation. For heavier particles like the neutron,
a larger time interval might be expected because of the much lower velocities
compared with those of electrons and mesons. To detect such an effect,
it would be necessary to use not the ordinary Geiger counter but an
apparatus sensitive to both slow neutrons and the high energy ionising
component of the cosmic radiation.

The very good agreement between the experimental and theoretical
time distribution of cosmic rays as investigated here, certainly goes to show
that upto intervals as small as one-fiftieth of a second, there is no appreciable
lack of time randomness of the radiation. The size of the detecting area
also seems to have no effect on the extent of agreement. It might never-
theless be worthwhile to investigate the time distribution for much smaller
intervals using an electrical time interval meter like the one developed by
Roberts. The use of a much larger sensitive area, having a bias for the
vertical direction of incidence would also help in detecting any deviation,
if indeed it does exist.

In conclusion itis a pleasure to acknowledge the unfailing support and
guidance that Prof. Sir C. V. Raman has given throughout this investigation.
I am deeply grateful to Prof. K. Aston for having whole-heartedly placed
at my disposal the chronograph recording device without which the investi-
gation would have been impossible.

(!

8. Summary

An experimental test of the time distribution of cosmic rays has been
made using different Geiger counter arrangements. The distribution given
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by cosmic rays has been compared with that due to radioactivity. It is
found that at least upto the small time intervals (& sec.) reached in the
experiment, the arrivals of cosmic rays follow a law to be expected from
complete time randomness; and their behaviour is therefore similar to that
shown by radiations from radioactive sources. The possibility of detecting
deviations from time randomness in the case of cosmic rays has been dis-
cussed.
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