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Abstract. Let ¥ be an irreducible nodal hyperelliptic curve of arithmetic genus ¢ such that
its nodes are also ramification points (char £2). To the curve Y, we associate a family of
quadratic forms which is dual to a singular pencil of quadrics in P29+ with Segre symbol
[2...21...1], where the number of 2’s is equal to the number of nodes. We show that the
compactified Jacobian of Y is isomorphic to the space R of (y—1) dimensional linear
subspaces of P27*! which are contained in thé intersection Q of quadrics of the pencil. We
also prove that (under this isomorphism) the generalized Jacobian of Y is isomorphic to the
open subset of R consisting of the (y — 1) dimensional subspaces not passing through any
singular point of Q.
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1. Introduction

The geometry of a nonsingular pencil of quadrics Q is intimately connected with
some moduli spaces of vector bundles on the nonsingular hyperelliptic curve associated
to Q([2], [3] etc). A few years back Newstead [5] studied the geometry of singular
pencils of quadrics in P°. As he has remarked, a very interesting problem will be to
extend the above connection between the geometry of a pencil and vector bundles
on the associated hyperelliptic curve to the singular case. We have taken here one
step in this direction.

Let A and B be matrices corresponding to two nonsingular members of a pencil
Q. If the equation det (4 — xB) =0 does not have all roots distinct, then Q is a singular
pencil. The simplest case is when this equation has at most double roots. Then one
can associate to Q a singular curve Y with the following properties: (i) Y has at the
most ordinary double points as singularities; (2) Y is a two sheeted covering over P!
with the set of singular points contained in the set of ramification points.

In this paper, we start with an irreducible curve Y with the above two properties
and construct a pencil of quadrics Q in P¥*!, g being the arithmetic genus of
Y(see §3). We denote by R the space of (g— 1)-dimensional subspaces of P24* ! which
are isotropic for all the members of the pencil Q. Then our main theorem is:

Theorem. The compactified Jacobian of Y is isomorphic to R.

We also describe explicitly the subvariety of R corresponding to the generalized
Jacobian of Y (Theorem 1, §4). The moduli of rank two bundies on Y will be studied
in a subsequent paper.
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2. Notations and Preliminaries

Let Y be an irreducible reduced curve with ordinary double points and F a torsion
free coherent sheaf of rank one on Y.

DEFINITION 2.1
The degree of F (deg F) is the integer x(F)— x(6y) (14.1, [4]).

2.2. Since Y is Gorenstein, the dualising sheaf wy is a locally free sheaf of rank one,
of degree 2g—2. (14.2, [4]).
2.3. (a) deg(F) <0 implies that H°(F) =0,

(b) deg(F) > 2g — 2 implies that H'(F) =0 (1.4.6[4]).
2.4. Let J denote the compactified Jacobian of Y. Tensorising by a line bundle of
degree d, J can be identified with the space of torsion free coherent sheaves of rank
one and degree d.

By Proposition 10.1, [6], J=1I Pic ¥; where Il denotes disjoint union over all
partial normalizations ¥; of Y. Thus,if Y has only one singular point, J=PicYIPic ¥,
Y being the normalization of Y.

Henceforth we make the following assumptions. (1) Y is hyperelliptic i.e. there exists
a finite degree two map p: Y —P* (2) The unique node w, of Y is a ramification point
of p. Let Wy = {wg,Wy,...,W,,} be the set of ramification points of Y. Let i denote
the hyperelliptic involution on Y. We define an i-action on a torsion free coherent
sheaf E on Y as a Z/2-action on E which lifts the involution i. We call E i-invariant
if E~i*E.

Lemma 2.5. (a) There is a one-one correspondence between i-invariant line bundles
of even degree (respectively odd degree) on Y and the set of partitions of Wy=
{Wog,Wys...,Wy,} into two subsets S, T such that S {(WiserooWyg) and Tv{wy, ..., Wy}
have even cardinality (respectively odd cardinality).

(b) There is a one-one correspondence between i-invariant nonlocally free torsion free
sheaves of rank 1 and even degree (respectively odd degree) and partitions of
{Wiy... o} = Wo—w, into two subsets §', T' of odd (respectively even) cardinality.

Proof. This lemma can be proved as in the case when Y is nonsingular, so we omit
the details.
(a) The correspondence is given by (zero degree case)

L= {@fey(w)® 9}'( “%ﬁ) if wo ¢S,

weS

L= ® 9,@)@6}.(1’#‘9 )@M if woeS, where 8y(d)=p*6p1(d)

weS\wg 2

and M is the unique squareroot of 6y which becomes trivial on pulling back to Y,
the normalization of Y. The set § is characterized as the set of points w in W, such
that i-action on the fibre of L at w is (-identity). The odd degree case can be dealt
with similarly.

(b} Let n:Y - Y be the normalization map. The map Pic(Y) - T(Y) = {nonlocally
free torsion free sheaves of rank 1 on Y} defined by L—m,L is an isomorphism;
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moreover L is i-invariant iff 7, L is so. Thus i-invariants in Pic Y are in bijective
correspondence with i-invariants in T(Y). Using this and the correspondence between

i-invariants in Pic Y and partitions of W, —w,, we get the result. In case degree =0,
one has

—1—#S
L= () 0y(w)®0y (———2#——) @ m,(07), for ' = {wy,...,w,,}, #S' odd.

weS’

s .is the set of points w in W, —w, such that i-action on the fibre of (r*L/torsion) at
w Is negative of the identity.

3. Quadratic form associated to a singular curve

3.1. Let Y be an irreducible curve with a single node at w,. Let p: Y — P! be a double
cover with wg, wy,...,w,, the ramification points. The image of w; in P! will again
be denoted by w;, for all i. Consider the divisor W = 2w, +w; + - +w,, in P, We

29 Y
have 0W=(9/mf,n)€—)(@9/mwi). The muitiplication in 6 induces quadratic maps
A; on 6/m,, and A, on 6/m? =~ G/mwG(-BmwO/mwO given by A(X))= X7, Ay(X,, Yo)=
(X2,2X,Y,). Identifying Oy, with k%, 4= E}—)A is a quadratic map from k? to k*

(d=2g+2). Now, given an element b= (bo, boos bys...,by,) of k% there exists a
polynomial f, of degree 2g+1 such that fy(w;)=b; for i>0, and the derivative
fi(wg) = bgg. In fact

Jux)= izo bt (x) + 4 (il;lo (x— W.‘))

where
K (X) = ,I;It (x—w j)/jI;Ii (w;—w j) and 4= (boo - ‘;0 biﬂiv,(Wo)/ il:IO (wo— Wi)-
Then .
Sox)= i;) b;A{x) +3bookoo(¥),
where

Z'I(WJ)=5U’

Ago(w)=0 for all i. Define ¢,:k?—k by ¢(b) =fy(x). Let 0, = ¢.°A. Then {0}y 18

a famlly of quadratic forms on k? parametrized by P* with values in 9,,. (2g+1) or
equivalently a quadratic form Q on the trivial bundle P! x k? with values in 051(2g +1).
Tracing the above maps, one gets

2g
(*) X0, Yo, Xy,..., X)) = '—Zo A(X)XF + Aoo(x)X o Yo

with A(w)) = Awo)=0, Ago(w;))=0 for all i.

IJ’

32. We make a few observations regarding Q. The space (0, Y5,0,...,0) is isotropic
for Q, for all x, this is the canonical one dimensional subspace correspondmg to
M,,,/m2,- Also, Q,, = X7, 2 i=0,1,...,2g; and these are precisely the singular members
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of the family. In fact (%) shows that Q is dual (adjoint) to a singular pencil of the form

29
Q= 1X?+2X0Y0

[

g
Q?_ = Z alez + X(z) + 2a0X0YO,
i=1
with {a;} distinct scalars. This is a pencil with Segre symbol [11 ....12]. We recall
that the adjoint of a quadratic form Q is given by the adjoint of the matrix of Q.

3.3. We now give an alternative way of defining Q. We will interpret the maps 4; to
have values in (1(d — 1)), i = 1,...,29, and A, to have values in (Bpi1(d — 1)) ® 6/m,.
The evaluation map ¥:H%(61(d —1))=8p(d— 1)@ Oy can easily be checked to be
an isomorphism. Let e, be the evaluation map Ho(Bp1(d— 1)) = (Op1(d — 1)), Then
b =e,cp ™ so that e o 1o A4 gives Q.

3.4. The general case. We have restricted ourselves to the case of a single node merely
for the simplicity of exposition. The construction in 3.3 works in the case of many
ordinary double points too. In that case, for W, we have to take the divisor
¥ 20;+3;w;, where v; varies over all ordinary double points of ¥ and {y; Wit i
the set of ramification points for the double cover Y = P The quadratic form Q is
then adjoint to the pencil of the form

Q,= _Zl X,.2+J_Z1 ZyY,

™=

Q0,=

aX + Y (Z2+2bZY)
j=1

i

1

where a;, b; are distinct scalars, m equals the number of ordinary double points;
2m+n=2g+2, g being the arithmetic genus of Y.

3.5, In this and the next article we want to study a subvariety of the variety of g
dimensional linear subspaces of k**? which are isotropic for the singular pencil
29
Q=) XI+2X.Y,
i=1

13

il

aX?+ X5+ 2a,X0Yo

S

Q.=

1

29
where a;'s are all distinct scalars. We have a splitting k***= @ Ci+ C, where X;
i=1

is the coordinate in C, for i=1,...,2g and X,, Y, are the coordinates in C,. The
subspace of C, defined by X, =0 will be denoted by C3. For simplicity of notation
29
we will often denote @ C; by k.
i=1
Let Grass( )denote the grassmannian of r-dimensional subspaces. Define P, P, by

P= { V,eGrass, (k%)

V, isotropic for the pencil
Vo=V, ®C3, V, ck*

-3

z
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: . b .
P, = {Vle Grass,_, () ¥, isotropic for the pencﬂ}l

restricted to k%9

and
Clearly, P~ P,.

Remark. Tt is well known that the pencil on k? induces a dual family on (k%)*, if a
quadratic form on k% is given by matrix B, the corresponding form on (k%)* is given
by the adjoint of B. Under the natural correspondence between Grass, (k% and
Grass, 4, (k)* which maps a subspace V, = k? to the subspace V of linear forms on
k¢ vanishing on V,, P corresponds to the subvariety P of Grass, ., (k%)* consisting
of subspaces of the form ¥ = V, @ CJ (C§ being the unique subspace of (Co)* isotropic
for the dual family) such that any generic member of the (dual) family restricted to
V has rank 2. Also, if we identify (k) with (k%)* using the isomorphism given by a
generic member of the pencil, say Q,, then V gets identified to the orthogonal
complement of V;, with respect to Q.

Lemma 3.6. If V,, is isotropic for the pencil but V,, does not belong to P, then
Viy+ k¥ =k

where V', denotes the orthogonal complement of V, with respect to a generic form
of the pencil.

Proof. Since V, is isotropic and the only subspace of C, isotropic for a generic form
is CY it follows that ¥, Cy = C or {0}. Hence ¥, is not in P iff ¥, C, = {0}. Taking
orthogonal complements with respect to a generic form, the latter is equivalent to
Vo+k* =Kk

Remark 3.7. Lemma 3.6 says that ¥ is not in P’ iff dimV nk*=g¢. For ¥ in P,
dimVnk¥=g+1.

4, The generalized Jacobian
With the notations of 3.1, and 3.5, the main result of the section is the following.

Theorem 1. The generalized Jacobian of Y is isomorphic to the complement of P in the
space R of g-dimensional vector subspaces isotropic for the pencil.

Since the proof is on similar lines as in §4, [3], we only sketch it briefly with
necessary modifications. We will actually show that the generalized Jacobian of Y is
isomorphic to the complement of P'(3.5) in the variety R’ of (g + 2)-dimensional spaces
on which Q has rank two generically. We take J as the variety of line bundles of
degree g on Y.

4.1. The map f:J—R'—P'. Let W be the ramification divisor in Y, 0y(1)=p*Bpx(1).
Fix a line bundle ¢ of degree 29+ 1 on Y. Take a in J. Define N = (12 ®E&)(—g). Using
23 and the Riemann—Roch theorem, one sees that h%N)=g+2 and H°(N) gets
embedded in H(N ® 8,,) under the restriction map. Now {® 0y = @ £, @RE®O/D)=
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é—q) C;®C,, length 6/1=2, support 0/1=w,. Using 4 ® i*o = 0,(g) and a,, =(i*a),,,

l.o=nle gets HON ®8y) = @C:@Co- Define f(@)=H°(N) embedded in ®C,BC, as
above. As in §4, [3] one can check that f(o) isin R" If L is the kernel of the map

2,

N-NQ®O/I, HO(N)n(é Ci> = H%L) and the latter is of dimension g, so that f(a)
i=1

isin R'—P'.

4.2. Definition of f~*. Define a map B Y x k¥*2 58, by h=0 outside W, h/w; is
given by mapping C; isomorphically onto 8/m,, and h/wg is given by mapping C,
isomorphically onto §/1. The kernel K of this map is a vector bundle (Lemma 2.2,
[1]). Since Q/K vanishes identically on W, it induces a form g on K with values in
By(2g+1)(-2W)=9y(—1) which is everywhere nondegenerate. Take V in R'—P".
Let V' be the fibre product of K and ¥ x V" over Y x k29%2, As the form restricted
to @ C;isdualtoa nondegenerate pencil, as in the case when Y is nonsingular, one
i>0

has V+<@Cj>+co=kzg+z for i>0. By Remark 3.7, V+ @Ci>=kzg+2.
iFj i>0

Therefore the composite of h with the inclusion of Y’ x Vin Y x k¥*?is onto, showing
that V' is locally free. As in the nonsingular case [31, ¢ restricted to V' has rank two
everywhere. Let V" be the kernel of g on V' Define F = (V'/V")(g+ 1). The quadratic
form on F gives an isomorphism ¢:F - F*(2g+1). There is also an isomorphism
y:F - F*(2g+1) induced by the canonical alternating form on F with values in det F.
Define N =Ker ((g~'oy)— Id). Then F = N@*N with i*N ~Im((g~ *ey)—id)) 3.7, [3])
Let L=(N®E™Y) (g). As in [3], to give the inverse of f, we have only to choose a
canonical square root of the even degree line bundle L which can be done using
Proposition 2.5.

Remark 4.3. The desingularization ¥ of Y is a ndnsingular hyperelliptic curve with
ramification points w,, Ws,...,Wz,. S0, by the theorem in the nonsingular case, the
Jacobian of Y is isomorpiic to Py (defined in 3.5) and hence to P'.

5. The compactified Jacobian

We shall first prove the following theorem in the case of a single node and then
indicate the general proof.

Theorem 2. Let Y be an irreducible curve of arithmetic genus g with only ordinary
double points as singularities. Let p:Y P! be a double cover such that the set of
ramification points contains all double points. Then the compactified Jacobian Jof Y
is isomorphic to the variety R of g-dimensional subspaces of k**2 which are isotropic
for the singular pencil of quadrics of the form

0, =Y X} +)2Y;Z,
-' ]
i ]

associated to the double cover. Here a;, b; are all distinct scalars, j varies over the

ordinary double points of Y and i varies over the remaining ramification points.

@
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Proof. We first show that the morphism f ~! defined on R’ — P’ (§4.2) can be extended
to whole of R'. Starting with a ¥ in R’ we get a rank two coherent sheaf F as in 4.2.
If Vis in.P’, Fis notlocally free, nor does it split. However, we do have a nondegenerate
quadjatnc form on F with values in 0y(2g + 1) ® m,,, in this case, giving an isomorphism
q:F - F¥2g+1)®@m,, . Also, one has det F modulo torsion=0,(2g+1)®m,,. So
the canonical alternating form on F gives a morphism (and not an isomorphis&x) ¥y
F - F*2g+1)® m,, . Define N =ker((q ™' °y)— Id). Notice that this definition of N
agrees with that in the case V isin R'— P/, in that case we in fact have F =Ker((g ™' ¥)—
Id)®Im(g~'o¥ —Id)=N @i*N. The rest of the procedure to define f~! works as
before, i.e. one can choose canonically a torsion free rank 1 sheaf L such that LQ L
modulo _torsion:(N@f")(g) and define f'(V)=L. Thus one gets a morphism
f:R'—»J extending f~1. One can check by similar methods that f” restricted to P’
is an isomorphism onto Pic Y embedded in J as the set J, of torsion free rank one
sheaves which are not locally free, the embedding being given by theé map L-n,L.
Thus we have a bijective birational morphism f':R'—J. Let R and J denote the
normalizations of R’ and J respectively. J is the disjoint union of Pic Y and two
copiesof PicY,s0 J #R'. The morphism f” induces an isomorphism of normalizations
R and J, let f be the composite of the inverse of this isomorphism with the natural
map from R’ to R'. Since f respects the identification of two copies of Pic ¥, it factors
through J giving f:J— R/, the inverse of f’. This finishes the proof of the theorem
in the one node case.

6. The general case

In the case of m nodes, we have a decomposition k**2 = @ C;® @ D;, dim C;=1,
i=1 j=1

dim D;=2, n4+ 2m=2g+2. It can be proved (in a similar way as in the one node

case) that the generalized Jacobian of Y is isomorphic to the open subset of R’

consisting of those subspaces which intersect @ C; @ D;, in subspaces of dimension
i Fk

g, for i< k< m. As before, we can also get a birational bijective morphism f’:g’ -J
inducing an isomorphism of normalizations. We identify the normalizations R’ and
7 via this isomorphism. Thus we are again in the situation J >R —1J. At a singular
point L of J, the complete local ring has the form T @ [ k[ X, Y ]/X;Y) i varying over

the p number of nodes at which L is not locally free, T being a regular ring. Thus,
the singularities of J being product singularities, we can prove R’ = J using induction
on p, ie. can assume the result for p<m. Let U be the complement in J of the closed
subset S corresponding to torsion free sheaves which are not locally free at all m
nodes. By induction, Og/U ~03/U. Since J is Cohen-Macaulay and J—U is not a
divisor (m = 2) we have H(V, 0;) ~ H(U YV, 0;), for any open set V. The commut-
ative diagram .

Ho(V, 05> HY(UNV,0;
l =
HO(V, R') = HY(UNV,Ox)

shows that HO(V, 05) = H%(V, Og) ie. Oy=O.. Thus J=R'. Thus we have proved
the general theorem. -
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