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Abstract. Let G be a connected semisimple affine algebraic group defined over
C. We study the relation between stable, semist@bleundles on a nodal curvé

and representations of the fundamental group .of his study is done by extending
the notion of (generalized) parabolic vector bundles to prinoipdlundles on the
desingularizatiorC of Y and using the correspondence between them and principal
G-bundles onY. We give an isomorphism of the stack of generalized parabolic
bundles onC with a quotient stack associated to loop groups. We show th@tisf
simple and simply connected then the Picard group of the stack of priripahdles

onY is isomorphic tod,,Z, m being the number of componentsof
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0. Introduction

Let G be a connected semisimple affine algebraic group definedbveet Y be a reduced
curve with only singularities ordinary nodeg, j =1, ..., J. LetY;,i =1,...,I bethe
irreducible components df andC; the desingularization df;. Let C denote the disjoint
union of allC;. We introduce the notions of stability and semistability for princi@al
bundles or¥ (82). If Y is reducible these notions depend on parametetSas, .. ., ay).
The study ofG-bundles ort is done by extending the notion of (generalized) parabolic
vector bundles [U1] to generalized parabolic princi@abundles (called GPGs in short) on
the curveC and using the correspondence between them and prirgipahdles ort (2.4,
2.11). We study the relation between stable, semistgbeindles and representations of
the fundamental group df . Letp : 71(Y) — G be a representation of the fundamental
groupmi(Y)of Yin G. Fori =1,...,1, let f; : m1(Y;) — m1(Y) be the natural maps,
pi =po fi.

Theorem 1. (I) If Y isirreducible ando | 71(C) is unitary(resp. irreducible unitarythen

the principal G-bundle onY associated te is semistabléresp. stabl® The converse is
not true

(I If Y is reducible then there exist infinitely many I-tuples of positive rational numbers
a1, ...,ar with Y " a; = 1, depending only on the graph &f and g(C;) such that for

a = (a1, ..., ay) the following statements are true

(1) If pc; = pi | m1(C;) are unitary representations for all then the principalG-bundle
F onY associated t@ is a-semistable
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(2) If pc, are irreducible unitary representations for dllthen the principalG-bundleF
associated te is a-stable

Let Aff/k be the flat affine site over the base fidld= C, i.e. the category of
k-algebras equipped witfippf topology. LetR denote &-algebraC; r := C; x SpecR
andCy = C*x specR. For each, fix a pointp; € C; such thatp; maps to a smooth
point of Y. Letg; be a local parameter at the poipt,i = 1,..., 1. Let Ls,; denote
the k-group defined by associating ® the groupG(R(g;)). Let LJr (resp. Lg") be
the k-group defined by assomatmg tothe groupG (R[[¢:]]) (resp. G(F(Cl R OC?.R)))'

DefineLg =[1;LG.i. LG =TTiLG ;. LG = [LLS . Let
Qc.c =Lo/LE =[]Lei/LG; Q8¢ = Qa.c x HG<C>.
l .

par gpar

The indgroupL§, acts onQ . Let LS\ QE be the quotient stack. Let B@#f denote
the stack of GPGs o€ (this i |s isomorphic to the stack of princip&tbundles onr'.)

Theorem 2. There exists a canonical isomorphism of stacks

Tpar: LS\ OF S BundPs..

g par

Moreover the projection map{c: — Bung ¢ is locally trivial for etale topology

Theorem 3. If G is a simple, connected and simply connected affine algebraic group then
)
Pic(Bunl ¢) ~ ®; Z
(2) If Y is irreducible andC has genus> 2, then
Pic(Bunl )%~ Z,
where®® denotes semistable points.

The moduli spaces of principél-bundles on singular curves are not complete. In case
G = GL(n) (resp. G = 0O(n), Sp(2n)) the compactifications of these moduli spaces
were constructed as moduli spaces of torsionfree sheaves (resp. orthogonal or symplectic
sheaves) oiif. For a general reductive grodpneither the moduli spaces nor the compacti-
fications have been constructedloget. One way to construct (hormal) compactifications
of these moduli spaces is to use GPGgifior this one needs a good compactification of
G. IncaseG isGL(n), SL(n), O(n) or Sp(2n) we use a compactificatiof of G obtained
by using the natural representation and construct the normal compactifications of moduli
spaces ([U1, U2, U4]). In casg is of adjoint type we use the good compactificatioof

G defined by Deconcini and Procesi. We define ‘a compactificaBBami - of Bung, ¢

using F and show that it is isomorphic to the quotient stalzg<\ 0G.c X ]_[j F. We prove

that if further G is simple and simply connected then Ban® ¢ ~ @;Z & &,Pic F
(Theorem 4).

1. Quasiparabolic bundles

1.1. Notations Let the base field b€ (or an algebraically closed field of characteristic
0). Letl, J be natural numbers. Lét be a connected reduced (projective) curve with
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ordinary nodes as singularities. D&ti = 1, ..., I betheirreducible componentsiafLet

Y’ =Y — {singular set ofr}, Y/ = Y’ N Y; for alli. Let C be the partial desingularization

of Y obtained by blowing up nodes, j = 1,..., J. Assume that = ]_[{C,» (a disjoint
union). LetC; = C; — sing(C;). Fix an orientation of the (dual) graph Bt In the graph

of Y, y; corresponds to an edge. The initial and terminal points of the edge correspond to
curvesy;(;y andY; ;) respectively, one hagj) = ¢(;) ifthe edge is aloop. Let; € C;(;)

andz; e Cy(;) be the two points of mappingtoy; € Y andD; =x;+z;,j=1,...,J.

For eachy, D; is an effective Cartier divisor o@ supported outside the singular setf

We remark that the parabolic structure we shall define in 1.2, 1.4 depends only on these
divisors and not on the choice of orientation. Ietlenote an affine connected semisimple
algebraic group ovet (or an algebraically closed field of characteristic zero).d @¢note

the Lie algebra o6, n = dimg. A principal G-bundleE onC is an/-tuple(E;), E; being

a principalG-bundle onC;.

DEFINITION 1.2

A quasiparabolic structure; on E over the divisorD; consists of aG-isomorphism
0j  Eix; = Ei(j).z; whereE; , denotes the fibre of; atx. Leto be the/-tuple(s;);,
then(E, o) is called a quasiparaboli@-bundle, called a QPG in short.

Remarkl.3. Afamily (€, (o;)) of QPGs consists of a family of principal-bundlest —
C x T together with an isomorphism @¥-bundleso; : £ lxjx7—> & lz;xT for each
j=1...,J. Given a family of QPGS¢, (¢;)) — C x T and a representation :
G — GL(V) one can associate to it a familg(V), F;(V)) — C x T of generalized
parabolic vector bundles [U1] as follows(V) = £ x, V is a family of vector bundles.
For eachj, o; inducesoy; : E(V) | xj; x T — E(V) | z; x T. Let F;(V) = graph
of oy ;INEWV) | x; x T®EWV) | z; x T. ThenFj(V)andQ;(V) = (E(V) | x; x T
@®E(V) | zj x T)/F;(V) are vector bundles ofi of rank = dimV.

1.4. Leta be a real number, & « < 1. Takingp the adjoint representation @of we
get the associated vector bundi¢g). ThenE(g) is the adjoint bundle of’ and we often
denote itby Adz. The isomorphism; gives anisomorphismi(g),; — E(9g);; and hence
determines an-dimensional subspace éf(g).; ® E(9);; = g ® g again denoted by; .
Letr; € Endc(g @ g) such thatr; acts ono; by a./d andz; restricted to a complement
al, O

0 O
matrix of rankn. We fix a conjugacy class ef. (This is an analogue of weights in case of
(generalized) parabolic vector bundles, the weights in this case t&ing for the vector
bundleE (g) with induced (generalized) parabolic structure).

We want to define the notions of stability and semistability for QPGs. Since the def-
initions are rather complicated in the general case, we first define these notions on an
irreducible smooth curv€ (1.5, 1.6) and later extend these notions to the general case
(1.7,1.8,1.9).

Assume thatC is a nonsingular irreducible curve. L&t be a maximum parabolic
subgroup ofG andp its Lie algebra. LetE/P = E(G/P) be the associated fibre bundle
with fibres isomorphic toaG/P. Lets : C — E/P be a section i.e. a reduction of
the structure group to the maximum parabolic subgrdupLet Q; be the stabilizer in

of o; in g@® gis zero. With respect to a suitable basis= , I, being the unit
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GL(g® g) of the subspac&(p),; ® E(P);; =pdP C g® 9= E(Q.; ® E(Q);. Let
w; denote the determinant of the action@f ong/p & g/p. Lety; be the form on the
Lie algebraL(Q ;) of Q; corresponding tg.;. LetT; be a conjugate of; in L(Q ;).

DEFINITION 1.5

A QPG (E, (0))) is a-stable (respa-semistable) if for every maximum parabolcof G
and every reduction: C — E/P, one has

degrees*T(G/P) + Zﬁj(?j) > (resp >)aJ.ranks*T(G/P). (x1)
J

HereT (G/P) is the tangent bundle along the fibresiofP — C.
Lemmal.6. With the above notations, the conditi¢fl) is equivalent to the following
par degE(p) < (resp <)aJ.rank E(p), (x2)

wherepar degk (p) denotes the parabolic degree of the subbuiitle) of the(generalized
parabolic vector bundléE (), (o)) withweightg0, ), each weight being of multiplicity.

Proof. One hass*T(G/P) = E(g/p), Zj ;(T;) = parabolic weight of the quotient
bundle E(g/p) of (E(9), (¢;)). Thus(x1) can be restated as par de@/p) > (resp.
>)aJ rankE(g/p). SinceG is semisimple, def(g) = 0 ([R1], Remark 2.2) and hence par
degk(g) = aJ rank E(g). The result now follows from the exact sequence-0E (p) —
E(9) — E(g/p) — 0 using the additivity of parabolic degrees for exact sequences.

1.7. Semistable QPGs on reducible curvést the notation be as in 1.1. We consider
QPGs(E, (¢;)) on C with parabolic structure oveb; = x; +z;,j = 1,...,J. Let
{oj},{rj},a,a beasin 1.4. Fof = 1,...,1 let P; denote either a maximum parabolic
subgroup ofG or the trivial groupe or the groupG itself. We need to consider the
casesP = {e} or G also, because a sub-obje€t = (N;) of E = (E;) may have the
property that for somé N; = E; or N; is trivial. For an/-tuple P = (P1,..., Py), let

r; = dim p;,n; = dim g/p; for alli. For j = 1, ..., J denote byQ; the stabilizer in
GL(g@9) of the subspace; ;) ® p:(j) € 9P 9. Let u; be the determinant of the action of
Q; ong/pi(j) ®9/p:(j) andw ; the form on the Lie algebra(Q ) of Q ; corresponding to
w;.LetT; be aconjugate of; in L(Q;). LetC! = C;-sing(C;), s; : C; — E(G/P;) | C]
any sections = (s1,...,s7). Let S;, = the largest subsheaf of AH | C; such that
Sy | Cf = sF(EPi)) | Cj. Let Sy = (Sy;, ..., S5;), x(Ss) = ZiX(Ss,-),X(Ad E) =

Z.X(Ad E | ;). Let Qy, be the (smallest) torsion free quotient sheaf of &gl C; with
Qs | Cf = sF(E@/P)) | Cf. Let Oy = (Qu)iv x(Q5) = ) x(Qy)-

DEFINITION 1.8.

A QPG (E, (0})) is (a, a)-semistable (resp(a, )-stable) if for every reductiom of the
structure group t@ such thatP; £ G for all i and P; # {e} for all i one has
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[X(Qs) + Y E) — ) (i + n,m)} / Y aini = (>)x(AdE)/n—al. (x1)
J j i

Lemmal.9. (a)The conditionx1") above is equivalent to the following condition

{x(&;) - an,‘(S‘g)} / Y airi < (<)x(Ad E)/n —al, (+2))
J i

whereq; (Sy) = ri¢j) + r1¢jy — dim (0 0 ((SDij)x; & (S)r(h.z;)) -
(b) If C is irreducible and smooth, thei2') is same ag*2).

Proof. (a) The quotienQ; of E(g) has induced parabolic structure ovy, j =1,...,J
given by(QS)xj ® (Qs);; D Fj(Qs) DO with weights(0, «), where F;(Q;) is the
image of ther-dimensional subspaeg of (E(9)x; @ E(9);;) In ((Qs)x; & (Qs):;). Let

£i(Qs) = dim F;(Qy). By definition, the parabolic weight @, = az _£;(Qy). Define
J
q;(Qy5) = ni;) +n:) — fj(Qy), itis additive for exact sequences. Then one has

parabolic weight 0fQ, = &) (ni(j) + nu(j) — 4;(Q))

J
@Y (nijy + ni(jy — 5 (Ad E) + q;(55))

J
= “Z(”i(.n + 1y —n+q;(Ss)).
j

Note that sinced; ~ E(g/p) outside singC) and allD; avoid singC), one has parabolic
weight of 9, = the parabolic weight of (g/p) = Zjﬁj(?j). Hence,zjﬁj T)) —

Z amigy+n)) = OtZ q;(Ss) —altn. Using this equality anQ: ajri =n— Zaini
J ’ J

the first part of the Lemma follows.

(b) If C isasmoothirrreducible curvethenonelias 1, S, = E(p), Qs = E(Q/p), Ta;r;

=1, X(S,) =deg E()) +r1(1=g), } | @q;(S) =} | a(2r1—dimF;(S;) = 2aJr1—
parabolic weightS;). Hence the left hand side 6£2') becomes equal to par d&gp) /rank

E() — 2aJ + (1 — g). The right hand side of«2") = (1 — g) — «J. Hence the result
follows.

2. Principal G-bundles on a singular curveY

2.1. We want to introduce the notions of stability and semistability for prinégphundles

on singular curves. On a smooth curve there are different definitions of stability and
semistability of a principalG-bundle, but they all coincide [R1]. The problem is that

this is not true on a singular curve. The choice of a representatigh uded to define
semistability does not matter on a smooth curve essentially because the associated bundles
(tensor products etc.) of semistable vector bundles (in characteristic 0) are semistable.
This fails if the curve has singularities. For exampleFifis the semistable vector bundle

of rank 2, degree 0 (on an irreducible nodal cuit)econstructed in Proposition 2.7 of



276 Usha N Bhosle

[U3] then F1 ® F; and S?F; are not semistable [U5]. This is seen by checking that the
corresponding generalized parabolic vector bundles are not semistable. Similarly one
can show that ifF is the stable vector bundle of rank:Zonstructed in Proposition 2.9,
[U3] then F; ® F> is not semistable for alh > 2 [U5].

We give here a notion of semistability for princip@tbundles on singular curves (see
Definitions 2.2, 2.3, 2.9, 2.10) which is intrinsic and seems most useful. We first assume
thatY is irreducible (the case of a reducible curve will be dealt with later). et Y —
{singular set oft'},i : Y’ — Y inclusion map. LetG be a connected reductive algebraic
group. LetP be a maximum parabolic subgroup Gfandp the Lie algebra ofP. Let
F be a principalG-bundle onY andF¥/P = F(G/P) the associated fibre bundle with
fibres isomorphic taG/P. Lets’ = Y’ — (F/P) | Y’ be a reduction of the structure
group to P (i.e. a section ofF /P restricted toY’). Let T(G/P) denote the tangent
bundle along the fibres oF /P — Y. Let O, be a torsion free quotient ¢f(g) such that
Oy | Y = (s")*(T(G/P)) | Y’ and no further quotient af+ has this property. Lef,: be
the maximum subsheaf ¢f(g) containing(s’)* F(p).

DEFINITION 2.2

F is stable(resp.semistablejf for every reductiorns’ of the structure group to a maximum
parabolicP (overY’), one has degre@, > 0 (resp.> 0).

Lemma2.3. The above definition is equivalent to the following:is stable(resp. semi-
stablg if for everys’ as abovedegree $ < 0 (resp. < 0).

Proof. The exact sequence & p — g — g/p — 0 gives an exact sequence-8
s*F(p) - AdF | Y — s*T(G/P) — 0 and hence 0> Sy — AdF — Qy — 0.
Noting that AdF has degree zero, the lemma follows.

We now assume th&thas only ordinary nodes, . .., yy assingularitiesand : C — Y
is the normalization mag@); = p_l(yj) =x;+zj,j=1,...,J. Thengiving a principal
G-bundleF onY is equivalent to giving the princip&@-bundlep*F = E on C together
with a G-isomorphisny; of the fibresE,; andE.; of E for eachj. The isomorphisms;
induce isomorphismg&(g).; — E(9);;. We denote the graph of these isomorphisms also
by oj.

PROPOSITION 2.4

(E, (0})) is 1-stable(resp. 1-semistablgif and only if the corresponding -bundleF on
Y is stable(resp. semistab)e

Proof. Suppose thaf is stable (resp. semistable). Let C — E/P be a reduction
to a maximum parabolic subgroup. SinceC — U;D; ~ Y — U;y;, underp and
E ~ p*F, the sectiory gives areduction’ : Y’ =Y —U;y; — (F/P) |y. One has the
exact sequences8 F(g) — p«s*E(Q) — ®;0;EQ — 0,0 Sy — pus*E(p) —
®,;0,E(p) — OwhereQ; (E(Q)) = (s*E(Q)x, ®s*E(9):))/0j, Q;E(P) = (s*E(P)x, ®
s*E(P)z;)/(0;N(s*E(Pp)x; ®s*E(P),;)). Note thatthe quotient oF (g) by Sy is the torsion
free sheaf obtained frost E(g/p) with induced parabolic structure (viz. the imagesgf
in E£(9/p)x; ® E(9/p):;, ¥j). The second sequence implies that par.deg(p) — J rank
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s*E(p) = deg(Sy). SinceF is stable, de¢S,) < 0. The result follows from Lemma 1.6.
The converse follows similarly working backwards in the above argument. One has only
to note thatifs’ : Y’ — (F/P) |} is areduction to a maximum parabok thens’ gives a
reductions : C — E/P (asG/P is complete). In case of semistability one has to replace
strict inequalities in the above proof by inequalities.

2.5 Bundles associated to representations

The fundamental group; (Y) of Y isisomorphictad = w1(C)*Z*...xZ, afree product
of r1(C) andJ copies oZ (3.5, [U3]). To arepresentatign: H — G we associate a QPG
(E,, (o)) as follows. E,, is the principalG-bundle onC associated to the representation
pc = p | m(C). If C is the universal covering of, thenE, = C x, G. Fixing
suitably points»c}, z/j of C lying overx;, z; respectively, the fibregz,),; and(E,).; can
beidentifiedtds. Letg; = p(1;), 1; denoting the generator of thi¢h factorZ in H. Then

gj gives an isomorphism’j S (Ep)y; = (Ep)y and hencé:; : (Ep(@)x; = (Ep(@);-
Defines; = graph ofh;. If F is the principalG-bundle onY obtained by identifying
fiores ofE, atx; andz; by g;V;, then one has” = F,, the G-bundle associated to the
representatiop of 71(Y) andE, = p*F,,.

PROPOSITION 2.6

If poc is irreducible unitary(resp. unitary thenF, is stable(resp. semistable

Proof. If pc is unitary, so is Adpc and henceFaq., = F,(g) is semistable ([U3],
Proposition 2.5). Therefor&, is semistable.

If pc is irreducible unitary, then by Theorem 7.1 of [R1] (in our c&%@, c) = E,, c =
Id)E, is astablegs-bundle. We check belowthéE,, (o)) is 1-stable, therf), is stable by
Proposition 2.4. Let be a reduction of the structure group®f to a maximum parabolic
subgroupP. The stability of £, implies that degs*E,(p)) < 0. Note thato; maps
isomorphicallyontdE,)x;, j = 1,..., J. Hencer; (E,(p)) = o;N(E,(P)x; DE,(P)z))
maps injectively intok,(p).,;. Therefore dimo;(E,(p)) < rank (E,(p)) for all j. It
follows that par degs*E, (p)) = deg(s*E, (p)) + Zj dimo;(E,(p)) < J rank(E,(p)).
Thus(E,, (¢;)) is 1-stable.

Remark2.7. There may exist stable princigatbundles or¥ which are not associated to
any representations afi(Y). For examplesin casge = G L (n) see [U3], similar examples
can be constructed in caée= O(n), Sp(2n) also.

Principal G-bundles on a reducible curvé

Notations2.8. Let the notation be as in 1.1. Assume further thdias nodes;, j =
1,...,J asonly singularities. Lef be the graph obtained from the (dual) graptydby

omitting loops. Letyy, ..., yx be the nodes of such that eacly; lies on two different
components of . ThenK = the number of edges @f, I = the number of vertices df.
Fori =1,..., 1, let P; denote either a maximum parabolic subgrouasr the trivial

group {e} or the groupG itself. Let F denote a principaG-bundle onY. For eachi,
lets; : Y/ — F(G/P;) |y be asection. LeP = (P;);,s' = (s/); be I-tuples. We
call s" areduction of the structure group t8 overY’. Let T(G/P;) denote the tangent
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bundle along the fibres oF (G/P;) |y,. If Pi = {e} thenslf*(T(G/P,-)) ~ Ad F |Y{‘ If
P; = G, thenF(G/P;) |y,~ Y; and the Euler characterist}p(s;*(T(G/Pl-))) = 0. Let
0O, be the smallest torsionfree quotient of Adsuch thatQ, |Y{ ~ s;*(T(G/P)) |Y{
for all i. Letp; denote the Lie algebra df; andF(p;), F(g), F(g/p;) the fibre bundles
(with fibresp;, g, 9/p; respegtively) associated tg th}e-bundle]-‘/ — F(G/P;) via the
adjoint representation. Thus'7(g) = Ad F |y, s,* F(9/pi) = 5;"T(G/P;). Let Sy be
the maximum subsheaf of Ad such thatS, |Y;I% s*F(p). Leta = (ax, ..., a;), where
{a;} are positive rational numbers with a; = ll Recall that for a vector bundlg onY,
a-rankV = Zai rank(V |y,).

DEFINITION 2.9

The principalG-bundleF on Y is a-semistable (respa-stable) if for every reductios’
of the structure group t@ with P; # {e} for all i and P; # G for all i one has (in the
notations of 2.8)

x(Qy)/a —rank Qy > (resp >)x(Ad F)/a — rank Ad F.

Lemma2.10. F is a-semistableresp. a-stable if for every reductions’ as above

x(Sy)/a —rank Sy < (resp <)x(Ad F)/a —rank Ad F.

Proof. As in Lemma 2.3, we have the exact sequences G;*}"(p) - AdF|Y —

s7*T(G/P) — Oforalli and so 0— Sy — Ad F — Qy — 0. The lemma follows using
the fact that both the Euler characteristic andank are additive for an exact sequence.

PROPOSITION 2.11

Fori = 1,...,1, let C; be a partial desingularization of; andC = [][C;. Suppose
that C is obtained by blowing up nodes, ..., y,, J' < J of Y. Let(E, (0;)) denote a
QPG with quasi-parabolic structure; overD;,1 < j < J'. Then a QPGE, (¢})) is

(a, 1)-stable(resp. (a, 1)-semistablgif and only if the corresponding princip&F-bundle
onY (obtained by identifying fibres & by o) is a-stable(resp. a-semistabli

Proof. The proof is exactly on same lines as that of Proposition 2.4. StartingAvith
a-stable (resp. semistable) and a reducticie P, one gets an exact sequencex0Sy —
p«Ss — @;0;(Ss) — 0, with ¢;(S;) = dim Q;(Sy). Then Lemma 1.9 gives
(a, 1)-stability (resp. semistability) ofE, (o;)). The converse is proved by reversing the
argument.

2.12. G-bundles associated to representations

Let o : m1(Y) — G be a representation of the fundamental graupy) of Y in G. For
i=1...,1,let f; : m(Y;) - m1(Y) be the natural mapg; = p o f;. Let F be the
G-bundle onY associated t@. Let p*F = E = (E;);. ThenE; is the G-bundle on
Y; associated t@;. The principalG-bundleF corresponds to a QP@&, (o;)) on]]; ¥;

where{o;}, j = 1,..., K areG-isomorphisms of fibres of. Finally let C; denote the
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desingularization o¥;, g; = arithmetic genus ot;, g(C;) = genus ofC;, g(C;) > 1.
Our aim is to prove the following Theorem.

Theorem 1. There exist positive rational numbers, . . ., a; with Y a; = 1, depending
only onT" andg;, such that fora = (ay, ..., ay) the following statements are true

(1) If pc; = pi | w1(C;) are unitary representations for all then the principalG-bundle
JF onY associated te is a-semistable

(2) If pc; are irreducible unitary representations for dll then the principalG-bundleF
associated te is a-stable

For the proof of the theorem, we need the following combinatorial result.

PROPOSITION 2.13

LetI" be a connected graph without loops. Lebe the number of vertices ar the
number of edges df, K = I +m, m > —1. Fixintegersr > 1, ¢; >1,i=1,..., I and
g = Y _ gi. Then there exist positive rational numbersi = 1, ..., I with)_a; = 1such
that for everyl-tupler = (r1, ..., ry) of integers; withO < r; < r and for everyK -tuple
of integersg = (qa, - . ., gx) With max(ri(j), r1(j)) < gq; <r,j=1,..., K, one has

1

K 1
Yori@—-D+Y qj =(g+m) (Zmn)- (S9
j=1 i=1

i=1
If in additionr; = Ofor somei, 0 = ), r, then the inequalityS$ is a strict inequality.
Proof. We prove the result by induction am.

Casem = —1: I'is atree in this case. Let = g;/g.i = 1,...,1. Letr;, = min; r;.
SinceK =1 — 1 andg; > max(ri(j. r«(j)), one hagy_; q; > Zi#io ri =Y ;i — Fig.
L.H.S. of (89 Zirigi—ziri+zjqj

DoiTi8 —Tig=2_;rig& — 2_;(&iri))/8
DT — D &iTi/8

(g—D > rigi/g

(g—D > air.

vl

If0 # > r; andr; = O for somei, thenr;, = 0 and

L.H.S. of (89 = Zrig,- = gZairi > (g — 1)Zairi~

Casemn > 0: If m > 0, thenl” contains a cycle. By removing a suitable edge,sajrom
this cycle inT", we get a connected subgraphof I' such thatk (I'") — I (I'’) = m — 1.
By induction, there exist positive rational numbefsi = 1,..., I with }"a; = 1, such
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that for allr andg = (g1, ..., qe, .. ., ¢;) satisfying the given conditions, one has
Yiriei—D+Y g = (g+m—D(;ajr)
J#
= Y ,;bir, bi=a(g+m—1),
J
LHS of (S9 = Yiri(ei—-D+) q;
j=1
Yoibiri + (riey +1i0) /2

v

> biri,

whereb; = bl if i #i(¢), 1(¢) andb; = b;+% ifi =i(¢)orz(¢). Takea; = b; /(g+m) for
all i, then (SS) holds. The assertion about strict inequality follows by induction similarly.

Remark2.14. (1) Note thatif both, a’ satisfy (SS)thenfor@ ¢ <1,a’ = ta+(1—1)d’
also satisfies (SS). Thus the set of solutiertd (SS) is a convex set.

(2)Giveniy, ip, , 1 < i1, ip < I,takea) = (g;—3)/(g—1)fori = i1, i;anda) = g;/(g—1)
fori #£i1,i #i2. Thenin casé is atree (i.em = —1) the inequality (SS) holds (though
the strict inequality may not be true eg. fof = r;, = 0). ForK — I > 0, the inductive
proof of Proposition 2.13 then gives new= (a}, . .., a}) satisfying the inequality (SS).
It follows that the inequality holds far’, 0 < ¢ < 1.

PROPOSITION 2.15

Theoreml is true forG = GL(r).

(1) If p; | m1(C;) are unitary representations for all then the vector bundl¢ on Y
associated te is a-semistable

(2) If p; | m1(C;) are irreducible unitary for alli, thenF is a-stable

Proof.

(1) As in Propositions 3.9 and 3.7(3) of [U2], it can be seen that the vector burhdte
Y corresponds to a QP& = (E, F;(E)) on] [ Y; andF is a-semistable (respz-stable)
if and only if E is (a, 1)-semistable (resp(a, 1)-stable). Note thaE = [] E; is the
pull-back of F to | | ¥;. By Theorem 2, [U3], the vector bundlé3 on Y; associated tp;

are semistable for all Hence, for any subsheaf of E;, one hag((N;) < ri(1—g;),ri =

rank N; (note that degre€k;) = 0). Thus

Sy = {Zx(Ni)—qu(N)} /Zam <> ra-g) =Y W)Y an,
i j i i j i

where the summation overis taken for 1< j < K. For the choice ofaq;} made in
Proposition 2.13, we get

Sv<I—K—) g= (Zx(Ei)—rK>/r.

Thus(E, F;(E)) is (a, 1)-semistable and hendgis a-semistable.
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(2) We need to consider two cases. With the notations in the proof of{1Hf0 for some
i then by Proposition 2.13, we ha¥g < I — K —)_ g;. If r; # Oforalli, then there exists
anig such that 0 r;, # r. SincekE;, is stable by Theorem 2 [U3], we haygN;,) <
rio(1 — gi). ThereforeSy <> ri(L—g) = > ; ¢/ (N)/ Y airi <1 — K =Y gi (by
Proposition 2.13). ThugE, F;(E)) is (a, 1)-stable and s& is a-stable.

Remark2.16. The proof of Proposition 2.13 shows that there exist cuiesn =
0,...,n+1suchthat (15° = v, (2) Y"*+1is a curve with ordinary nodes such that the dual
graph ofy"*1is a tree after omitting loops (3)"+1 is obtained fron¥” by blowing up a
node which lies on two different components. Foe= 0, ..., n, letg, = Y"1 — ym

be the natural surjective maps. LEtdenote a unitary (resp. irreducible unitary) vector
bundle onY. The proofs of Propositions 2.13 and 2.15 together show how the ‘polariza-
tion’ a = (a1, ..., ay) for which the vector bundleg;, F area-semistable (resp:-stable)
varies as we go down the tower of cures"}.

Proof of Theoreni.

(1) If pc, is unitary, so is At pc; = (Ad o p)c,. Therefore there exist positive rational
numbersiy, . .., a; with Y a; = 1 (depending only o andg;) such that the vector
bundleFad., ~ Ad F associated to Ad p is a-semistable (Proposition 2.15). Hence
F is a-semistable.

(2) By Proposition 2.6, the principa¥-bundlesk; on Y; associated t@; are stable for
all i. We claim that for the choices @#&;}; as in the proof of (1), the QPG, (¢;))
corresponding taF is (a, 1)-stable. The result follows from the claim in view of
Proposition 2.11. To prove the claim we check that the conditi@) of Lemma 1.9
is satisfied for any reduction of the structure group t®. Let r; be the rank ofS;,.
Sinces; is a proper subsheaf &(g), > r; # nl. SinceE; are stable, by Lemma 2.3,
x(Ss;) <ri(1— g;) and the inequality is strict if & r; < n. By Proposition 2.13, for
the choices ofq;} as in (1), one has

X(S9) =D a;(55) / Y airi <1 —K =Y gi(=x(Ad E)/n — K)
J J i

if r;, = O for someip and 0 Y _r;. If r; # O for alli, since)_r; # nl, there exists
anig such that O< r;, < n. Theny (S;) < Z,r,»(l — g;) and so

X(S) =D q;j(S) < > rl—g)—> q;(5)
J i J

IA

I—K—-Yg) (Z“”") , by Proposition 213,

(X(Ad E)/n — K)) air;.

This proves the claim.
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3. The Picard group of the stack of QPGs

In this sectiorn¥’ denotes a reduced connected projective curve with ordinary rjegesi
=1,...,J asonly singularities. Ley;},i =1, ..., I be the irreducible components of
Y andC; the desingularization of;. Let C = [[; C; be the desingularization af. For
convenience of notation, we fix an orientation of the dual graph.dfor 1< j < J, let
i(j), t(j) denote the initial and terminal points gpin the dual graph. They correspond to
curvesC;(jy, Cy(;) intersecting at;. Letx; e C;(;) andz; € Cy(;) be the two points of
C mapping toy; € Y andD; = x; +z;,j = 1,...,J. Let G denote an affine simply
connected simple algebraic group o@(or an algebraically closed field of characteristic
zero). Fori =1, ..., I, fix points p; € C;, p; not mapping to a singular point of. Let
Ci=Ci—{pi},C*=C—Ujp;.

The results of this section were inspired by [LS]dfis semisimple, then a principal
G-bundle on a smooth cun@is trivial on the complement of a point ifi. This no longer
holds ifC is replaced by a nodal cunte The results of [LS] cannot be generalized directly
to G-bundles or¥. Hence we work with QPGs ofi. Though we closely follow the ideas
in [LS], the generalization to QPGs is not straightforward. All the functors involved have to
be defined carefully to take care of the additional structure (generalized parabolic structure).
Unlike the usual parabolic structure which is supported on isolated points, the generalized
parabolic structure is supported on divisors, so one has the act@naf; rather tharG.

3.1 The stack)'¢ and the staclBungy ¢

Let Aff/k be the flat affine site over the base fiéle= C, i.e. the category of-algebras
equipped withfppf topology. LetR denote ak-algebra,C; p := C;x specR and
Cy = C*x specR. Letg; be a local parameter at the poipt,i = 1,...,1. LetLg;
denote th&-group defined by associatingRthe groupG (R(g;)). LetLJr (resp.Lg”) be
the k-group defined by assomatlng tothe groupG (R[[¢:]]) (resp. G(F(Cl R OC,-*_R)))'

DefineLg =[1;LG.i. LG =TI;LE ;. LG = [,LS. Let

Qc,c = Lg/L§ = HLG z/LG i Q%F?{ér= 0g.c x HG-
: .

The indgroupLG acts onQg.c. For eacly, the evaluation a:t andz; gives an evaluation
mape; LC — GxG.GxGactsonG by (g1, g2)g = g1 gg2 Thus we have a natural
action ofLC on ¢, Let LE\ QP be the quotient stack.

To an objectR € Aff/k, associate the groupoid whose objects are families of QPGs
(E, (o)) onC parametrized by speR and whose arrows are isomorphisms of the families
of QPGs i.e. isomorphisms & which preserve the parabolic structuiesg). For any
morphismR — R’ we have a natural functor between the associated groupoids. Thus we

get ak-stack of (generalized) quasiparaboficbundles onC. We denote this stack by

gpar
BunG c

Theorem 2. There exists a canonical isomorphism of stacks
ﬁpar: L \Q

The projectionrpar : Q¢ ¢ — Bungr ¢ is locally trivial in etale topology

par ~ gpar
— BunG c
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Proof. Q¢ ¢ represents the functor which associates to ekxeajgebrar the set of iso-
morphism classes of pait#, p) whereE is aG-bundle overCg andp is a trivialization
of E over C ([LS], Proposition 3.10). Henc@'¢ represents the functaP; which
associates taR the isomorphism classes of tnplcéE p,S) with (E, p) as above and
Se Hj G(R),s= (s1,...,5;),5; € G(R) = Mor (SpecR, G), G being thejth factor
in Hj G. Such a triple gives a family of QPG (¢;)) parametrized by§ = SpecR as
follows. Lets; : S x x; x G — S x z; x G be given bys; (s, x;, g) = (s, 2, gs5;(5))
fors € S,g € G. DefiHEUj : E|S><x.,~ ad E|S><z.,' bij = 'Olgiz o5 O P|Sxx;- Thus
we get a universal QPG oveg ¢ x C, giving a mapmpar : O par — Bunye.. Being
L&-invariant, this map induces a morphism of sta@igs; : Lg\Qgpar - Bun%pacr

To define a morphism B@R: — LE\QFE, for eachR and(E, (o)) € Bun) ¢ (R)
we have to give a.§-bundleT (R) on Burf; - (R) together with an.§-equivariant map
T(R) —> QX ¢(R). Take(E, (o)) € Bungl «(R). ForanyR- aIgebraR/ let Specr’ = §’
andT (R)) = the set of isomorphism classes of pdivg’, o) wherepp is a trivialization
of Eg overCy, ando’ = (a/)j, iU Ejsxx; ® E|sxz; istheG-isomorphism which is the
pull back ofo; to R". This deflnes amR-spacel’ with the action of the groqu (acting on
pr)- Itis anLS-bundle ([DS]; also [LS], Theorem 3.11). A3'¢ represents the functor
Pg, toevery elemeniog:, og') of T (R’) corresponds an eIementQ%p (R") givingaL&-
equivariant mag’ — Q. Hence we get a morphism of stacks Bt — L \Qgpar
which is clearly the inverse of par.

To check the local triviality ofrpar in etale topology, we have to show that for any
morphismf from a schemes to Burpr .- the pull back of the fibratiomrpa to S is etale
locally trivial i.e. admits local sections for the etale topology. Such a morphism corresponds
to a QPG(E, (o)) overS x C. Fors € S, we can find an etale neighbourhobtdof s
and a trivializatiorp of E |y« c+ ([DS]). Usingp, the G-isomorphisny; gives a morphism
sj © U — G. The triple(E, p, (s;)) defines a morphisnf’ : U — Q¢ such that
mparo f' = f; i.e. the section ovet/ of the fibrationmps,. This completes the proof of
Theorem 2.

PROPOSITION 3.2

One has
@) Pm(Qgpa’ ~ ®iZOg; ., (D).

Proof. (1) It is known that eaclQ¢, ¢, is an ind-scheme which is an inductive limit of
reduced projective Schubert varieti®s,,, this ind-scheme structure coincides with the
one by Kumar and Mathieu ([LS], Proposition 4.7). One Hd$X; ,,, O) = 0 (KN, M]).

It follows that PicQ¢.c =~ @; Pic Qg,¢;. Itis known that Pid Q¢ ;) = ZOQc,c,- (1) for

all i ([LS], 4.10; [M]; [NRS], 2.3) The first assertion follows.

(2) SinceH .G isasimply connected affine algebraic group(FIiT{ .G)istrivial. Theind-
schemeQg ¢, is the inductive limit of integral projective reducejd (generalized) Schubert
varietiesX; ,,, with Hl(Xi’w,., O) = 0. By lll, Exer. 12.6 [H] it follows that Pig X1 ,,, X
HjG) ~ Pic(X1,w,) ([H], I, Exer. 12.6) and therefore by induction érone sees that



284 Usha N Bhosle

Pic| [ [Xiw x[]G | » ®PicXiuw) ~ ©:20x,,, (D).
i j

Since(Q ) istheinductivelimitoﬂ |'X,-,wl. x | | ‘G andtherestrictio®g,, . (1) |x;
l J (e W
~ Ox,,, (1) it follows that Pic(Q% ¢) ~ @,Z0g, . (1).

[,w

The following result must be well-known, we are including a proof since we could not find
a reference.

LemmaB.3. LetG be a connected semisimple algebraic group. Then any invertible regular
function onG is constant

Proof. We remark first that the only regular invertible functionsSiy and the additive
groupG, are constant functions. Let: G — G,, be a regular function.

Claim. For anyx in a 1-parameter unipotent subgrolipf G, one hasf (gx) = f(g) for
allg € G.

Proof of the claim Consider the functio/ — G,, defined byx — f(gx). Since
U ~ G, this function is constant i.ef (¢x) = f(g) forall g € G.

SinceG is semisimpleG is generated by, o varying over roots of; ([Sp], 9.4.1). There-
fore, in view of the claim, one hag(g) = f(hq; ... ha,) With by, € IMSLo. The function
SLy — G, defined byx — f(hq, ...hs _,x) is constant. Hence (hy, ...hy ) =
f(hey ... hg,_,). Repeating this process the result follows.

3.4. For eachi, there are morphisms of stacks : Q¢,c; — Bung, ¢, inducing isomor-
phismsz* : Pic(Bung,c;) — Pic(Qg, ;). If L] denotes the generator of RBBung ;) as
well as its pull back to Bug,c, thenr L} = OQc,c,- (1) (JLS, So T]). Hence if we denote
the pull back ofOg,; .. (1) to Qg,c by Og;; . (1) again, we haver*(L)) = Og, . (D).
Since PicQg.c = @iZOQc,q (2) it follows thatz* is surjective. Similar argument using
Proposition 3.2 shows thaty,, is surjective. One hag,,(Li) = Og; , (1), whereL;

denotes the pull back df! under the forgetful morphism Bgffr — Bung c. Note that
we have a commutative diagram

Pic(Bung.c) N Pic(Qc.c)
d* | I~

Pic(Bunr e ™ pigo oo,

We now check thair *

par IS injective, the injectivity otr* follows similarly. Denote by

PictG (0PT) the group ofL§ -linearized line bundles 0@ ¢ Sincemparis locally trivial
(Theorem 2), for any line bundlé on Bur% ¢+ Tpar iNduces an isomorphism between
the sections of. and L§-invariant sections ofrj L. Therefore we have an injection

Pic(Bung’¢) — PchG(Qgpar) induced by, The kernel of the forgetful morphism
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Pich(Qgpa) — Pic(QF%) is the set of.&-linearizations of the trivial line bundle. Any
such linearization is given by an invertible (regular) functioan LS x Q¢ satisfying

a cocycle condition.Q¢. ¢ being an inductive limit of integral projective schemes ([LS],
4.6) has no non constant regular functions. Si6ces simple,]_[j G has no invertible
nonconstant regular functions (Lemma 3.3). Henhces the pull back of an invertible
function on Lg. Since it satisfies a cocycle condition, it is in fact a characteLén
By [LS], Lemma 5.2,k is trivial. Thus the forgetful morphism is injective. Hence the
compositergy, : Plc(Bungpa — Pchc(Qpar ) — Plc(Qgpar) is injective. Thusrgyis

an isomorphism. Slmllarlyr is an |som0rph|sm and hengg* is also an isomorphism.
We have proved the following theorem.

Theorem 3. Let G be a simple simply connected affine algebraic group &.efhen we
have the following isomorphisms

(1) Pic(Bung,c) ~ @®/_,ZL},

ar.
(2) Pic(Buny®) ~ ®/_1ZL;.

whereL, andL; are the pullbacks of the generator Bfc (Bung, ;) to Bung, ¢ andBung: &

respectively

Remark3.5. ForG = GL(n), SL(n), Sp(2n), the moduli stack (resp. moduli space) of
bundles ort is isomorphic to the moduli stack (resp. moduli space) of QPGS ¢U1,
U2, U4]). Hence we have

Pic(Bung.y) ~ &;Z
for G = GL(n), SL(n) or Sp(2n).

PROPOSITION 3.6

par.
c)

Assume tha€ is irreducible andG as in Theoren3. Let(Bun@J SSdenote the substack

corresponding ta-semistable QPGs. Then

Pic(Bung ¢)*~ Z.

Proof. We claim that a QPGE, o) is a-semistable (resp. stable) forany0 <« <1
if the underlying bundl€ is semistable (resp. stable). The semistability (resp. stability)
of E implies that ded@ (p) < (resp. <)0. Sinceo; is an isomorphism, the subspacg
of E(9)x; ® E(9);; maps isomorphically onté'(g).; under the projection map. Hence
oj N (E(P)x; ® E(p);;) maps injectively intoE (p),; and hence has dim.rank E(p).
It follows that pardegE(p) < (resp. <)aJ rankE(p). The claim now follows from
Lemma 1.6.

The morphismp : Bunl¢ — Bung ¢ (forgetting the quasiparabolic structure) is a
surjective morphism with |somorphic fibres. It follows from the claim that(Bung.c
— Bun ) 2 BunPy — (Bunr¢e)sS Hence codirrp3un<_ép%r(Bun%pgr (BUNF DS >
codimgun, - (Bung,c — Bung; ). Since the latter is- 2 for g > 2 ([L-S], 9.3) the same
is true for the former. The result now follows from Theorem 3.
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3.7. Resultsincas& = GL(n), SL(n)

In case of vector bundles we have the following results on Picard groups of moduli spaces
([U5, U6]). LetY denote an irreducible reduced curve o@awith at most ordinary nodes

as singularities. LeL be a line bundle orY. Let Uy (n,d) (resp. U’E(n,d)) denote

the moduli space of semistable vector bundles of ramnd degreel (resp. with fixed
determinantC) onY. Let Uy’ (n, d) (resp.U 2 (n, d)) denote the open subset©, (n, d)

(resp.U . (n, d)) consisting of stable vector bundles. kgt(resp.gy) denote the geometric
(resp. arithmetic) genus of.

I. Assume thagc > 2. Then, except possibly fage = 2, n = 2, d even, one has
1. PicUS(n,d) ~ PicUL(n,d) ~ Z .
2. PicU’s (n,d) ~ PicU’(n,d) ~ PicJ ® Z, whereJ denotes the Jacobian Bf
II. Assume thagy = 2,n = 2. Then

Pic U,(2,d) ~ Z.

4. Compactifications

In general, the moduli spacéd; of principal G-bundles on a nodal curvgE are not
complete. In cas& = GL(n) a compactification oM is given by the moduli space of
torsionfree sheaves of ranKand fixed degree) on, this compactification is notnormal. A
normal compactification af/ is obtained as the moduli space of (generalized) parabolic
bundles on the desingularizatighof Y ([U1, U2]). This can be done for other classical
groupsG = 0O(n), SO (n), Sp(2n) also, we briefly describe the main result (Theorem 5).
The details will appear elsewhere [U4]. To construct a normal compactificatiof;of

one needs a good compactification@fand hence a good representationtf In case

of classical groups we use their natural representations. For a general@raupatural
choice is the adjoint representation. Unfortunately it gives a compactificatiGroofly if

G is of adjoint type ([DP], 86; [S]; [D]). Using this compactification we give a more general
definition of QPGs in cas€ hastrivial centre For classical groups and adjoint groups we
‘compactify’ the stack Buff¢: and also compute the Picard group of the compactification.
In case of classical groups, the compactifications of moduli spaces obtained are complete
normal varieties (see Theorem 5). We do not prove that the ‘compactification’ is a proper
stack in case of adjoint groups. It will be useful to know a natural (canonically defined)
compactification ofz in the general case.

4.1. Let the notations be as in 83. We further assume@hit a semisimple algebraic
group with trivial centre. Legdenote the Lie algebra of, n = dimg. G x G actsorgdg
(via adjoint representation) and hence on the Grassmannian §® g) of n-dimensional
subspaces @@ g. Let AG denoteG embedded irG x G diagonally. Since& has trivial
centre the adjoint representation is faithful. Heiter G x G/AG gets embedded in
Gr(n,g e g) asG x G-orbit of Ag € Gr(n,g @ g). Let F be the closure of th& x G
orbit of Agin Gr(n, g ® Q).

Given a principalG-bundleE and disjoint divisordD; = x; + z; onC, define

E/ =E, xE;; =G x G, E/(F) = E/ x(gx¢) (F),j=1,...,J.
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A QPG (quasiparaboliG-bundle) is a paitE, (¢;)) whereE is a principalG-bundle and
oj € EI(F),j=1,...,J.

DEFINITION 4.2

QPGSs(E, (o)) and(E’, (aj’.)) are isomorphic if there is an isomorphisf. E — E’ of
principalG-bundles which maps; to(a]’.) i.e. forthe isomorphisnﬁ . EJ(F) — EV(F)

one hasf(o;) = a}.

4.3. Afamily of QPGSE, (o)) — C x T is afamily ofG-bundles€ — C x T together
with a sectiors; : T — &/ (F).

Remarkd.4. (1) The following diagram commutes
GxG M F—GxGJ/AG
2] I n

GL(g) x GL(9) <h—2> Gr(n,g® 9.

Heret; is inclusion,t, = product of adjoint representations 6f in g, h2(f1, f2) =
subspace off @ g generated by(f1v, f2v), v € g} and#; o k1 is the map inducing the
Demazure embedding @f (by identifying G with G x G/AG).

(2) Recallthata (generalized) quasiparabolic structure (pyes x;+z;, j =1,...,J)
on a vector bundl&/ of rankn is given by am-dimensional subspace 8f; ® N, j € J
i.e. by an element dfl ;Gr(n, Ny; ® N;;) [U1]. Given a family of QPGE — C x T, let
£(g) be the family of vector bundles of rankassociated t6 via the adjoint representation
of G in g. It follows from the above commutative diagram tlatcomposed with the
injection H,EJ(F) — (ngf(Gr(n, g g))) gives a quasi parabolic structure 6().

4.5 The stackD{ ¢ and the stacBun’e:

Let the notations be as in 3.1. L Ff? = Qg.c X ]_[jF. The ind-schem& ¢ is ind-

proper, so is@%‘?acr. The indgroupLg acts onQg,c. For eachj, the evaluation at; and
zj gives an evaluation mag : LS — G x G. G x G acts onF naturally. Thus we have

a natural action oL.S on Qg ¢ Let LS\ 0g ¢ be the quotient stack.
As in 3.1, we define thé-stack of (generalized) quasiparabatiebundles onC (with

. . - =, ~gpar
extended definition of the parabolic structure usitlg We denote this stack byung .

It contains Buflf~ as an open substack.

Theorem 4. (1) There exists a canonical isomorphism of stacks
= . rC\ %P ~ & ar
]Tpar . LG\QG,C_) BungG’?C
. . —gpar =, .gpar .. P
Moreover the projection map; - — Bung - is locally trivial for étale topology

(2) Let G be a simple, simply connected affine algebraic group @efhen there exists
an isomorphism
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Pic(Bun%p%r) ~ @;ZL; ® ®;PicF,

whereL; are line bundles coming frofung, ;.

Proof. The proof is on similar lines as that of Theorem 2 and Theorem 3, we omit some
details to avoid repetition.

Q) QG C represents the functaP; which associates to evewralgebraR the set of
isomorphism classes of triplé%, p, s) whereE is a principalG-bundle onCg, p is a
trivialization of E over Cy ands € Mor (SpecRr, ]_[j F). Thens = (s1,...,5y),s; €
Mor (SpecR, F) for all j. We can associate to such a triple a QB (o;)) on Cg.

We only need to define for each morphismo; : S — E/(F),S = SpecR. The
restriction ofp 1 gives isomorphisms x x; x G ~ Ejsxx;s S X 2j X G = E|sxg; and
hence an isomorphism @ x G-bundlesS x G x G = (S x x; x G) x5 (§ x z; %

G) ~ E|sxx; Xs Ejsxz; = EJ. Therefore we have an isomorphism of associated fibre

bundlesp;(F) : S x F > EJ(F). Defines; by oj(s) = p;(F)(s,s;(s)). It follows
that Qlear x C has a universal QPG and we havela@-equivariant morphism of stacks
Tpar : Qsz — Bun?. This induces the morphisfyar on the quotient stack.

To define the inverse Gfpay, let (E, (o)) € Bunl ¢(R). Let R’ be ank- aIgebraS’
SpecR’. Let T (R’) be the set of pairéog/, o) where,oR/ is a trivialization ofEg/, o’ =

(01, ... 0)) wherea]/. is a pull back ofo;Vj. This defines & -space with an action of

LS (via pp), itis anLE-bundle [DS]. We now define &S -equivariant maf” — @%"2’

Given (o, o) € T(R'), we defines’; : ' — F bys; = prr o ((or);(F)~ looj. Then
(Er', pris (5))) € Ps(R). Since@%‘?ﬁr represents the functaPs, this defines a map

o: T — QGpaCr, itis L& -equivariant. TheL&-bundleT together withx give a morphism

of stacks fronBun%pec"to the quotient stack$\ O ¢ which is easily seen to be the inverse

The assertions about local triviality @iy, follow similarly as in Theorem 2.

(2) Using the facts that eadfig,¢; is an inductive limit of reduced projective varieties
X, With HY(X;,,, ©) = 0 andF is a projective variety wittH(F, ©) = 0, it can be
proved that PI@%pC ~ ©iZ0gg . (1) ® &;PicF (similarly as Proposition 3.2). The
injectivity of 7, follows exactly as in Theorem 3. Note th&itbeing a projective variety

EQG?? is an inductive limit of integral projective schemes and hence has no nonconstant
regular functions.
We now check the surjectivity ofp&1r We have a commutative diagram

PicBung.c) = Pic(Qg.c) = ®Z0g;. (1)

¢l "

PicBurd®™) ' @;PicF & Z0g,., (1)
with ¢ the forgetful morphism and the right vertical arrow is the inclusion as direct sum-
mand. Hence one ha%a,@p*L’) = OQGC (1), L; being the pull back of the generator
of Pic (Bung,¢,) to Pic(Bung, ¢). Thus for the surjectlwty ofrpar it suffices to show that

there exist line bundle§; ;} on Bung'¢ which pullback to the generators af; Pic F.
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From the construction and results in [S], it follows that Pits a lattice of rank generated
by L’ i =1...,r,r =rank of G. For eachi, there exists &G x G moduleW; and
aG xG equwanant embedding’ — P(W;) such thatOp ;) (1) restricts toL; on F.
Given a family of QPGSE, (¢j)) onC x SpecR one hast/ (F) C E/(P(W))). LetL;j
denote the line bundle oB/ (P (W;)) (and also its restriction t&/ (F)) which restricts to
Opw;) (1) on each fibre. The pull-back a[f’ by o;: SpecR — EJ(F) is aline bundle

L;; g on SpecR. This construction can be done for aRy Hence{L}; .} define a line

bundleL}; on the stackBun¢.. By construction7y,(L;;) is the generator of thgth

factor PICF in Plc(Q%peC“)

Case of classical groups

For the simple and simply connected classical gratip&:) and Sp(2n) the compactifi-
cationsF of G are defined using natural representations (described below). We claim that
Theorem 4 holds in these cases also. The existence of the isomofpfisamd injectivity

of 55 can be seen exactly as in the proof of the Theorem 4. We only need to check the
surjectivity ofr g, this is done below.

4.6. CaseG = SL(n). ForG = SL(n), the compactificationF of G using natural
representation off (U1, U4]) can be described as followSL(n) x SL(n) is embedded
diagonally inSL(2n) ¢ GL(2n). LetG — GL(V) be the natural representation. Let
P C SL(2n) be the stabilizer of the diagonal Wi & V; P is a maximum parabolic

subgroup. The Grassmannian &rSL(2n)/P is embedded irP(;l\ (V & V)) by Plucker
embedding. LetP;,, ... ;,} denote the Ricker coordinates. L&t be the hyperplane sec-
tion of Gr defined byPy, ..., = Pu+1,...,2.. ThenF can be regarded as a compacti-
fication of SL(n) with SL(n) identified with the subset of defined byPy, ... , # O.
The generator of Pic G Z is the line bundle associated to the charagtgeon P and its
restriction toF is the generatat’ of PicF ~ Z. F —SL(n) is adivisorD’ in F to whichL’

is associated. Given afamily of QP@S, (o)) onC x SpecR, one has/(F) c E/(Gr).
Let L’; be the line bundle ot/ (Gr) associated to th@-bundleE/ (SL(2n)) — E/(Gr)
via the charactew,. The pull back ofL’; by o; : SpecR — EJ(F) Cc E/(Gr)is aline

bundleL’, , on Sper, L', , define a ine bundlé’; on the staIIBungpar By construction,

Tpar(L)) is the generator of th¢th factor PicF in Pic QG c Hence the morphism in
Theorem 4(2) is a surjection and thus an isomorphisnGfes SL(n) andF as above.

4.7. CaseG = Sp(2n). IncaseG = Sp(2n) also one can use the natural representation of
G todefineF (85, [U4]). LetG — GL(V)bethe natural representation. We reggpdn)
asthe groupp(g, V) of automorphisms of preserving a symplectic form (nondegenerate
alternating form)g on V. Then F is the variety of maximum isotropic subspaces for
gD (—g)onV @ V. The groupSp(2n) x Sp(2n) = Sp(q, V) x Sp(—q, V) is embedded
iNnSp(g®(—q), VOV) =Sp(4n) diagonally. TherF ~ Sp(4n)/ P, P beingthe maximum
parabolic subgroup dfp (4n) which is the stabilizer of the maximum isotropic subspage

of Ve V,PicF = ZL’, L’ being the line bundle associated to the fundamental waight
Given afamily of QPGS$E, (o;)) onC parametrized by = SpecR, o : S — EJ(F),one
hase/(F) = E/(Sp(4n)/P) andE’ (Sp(4n)) — EJ(F)isaP-bundle. Let’; denote the
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line bundle onE/ (F) associated to thi®-bundle via the charactes,,. Let L/].’R denote
the line bundle ors which is the pullback of this line bundle by;. This construction
being valid for anyR, it defines a line bundi&’; on the staclBuny: ¢.. Clearly, (L))
is the generator of Pig’, the jth factor. It follows that the injectioh in Theorem 4(2) is an
isomorphism foiG = Sp(2n) with F defined as above.

The following definitions and results are stated ogz)-bundles, they hold fosp (2n)-

bundles also with orthogonal replaced by symplecticrangplaced by 2.

DEFINITION 4.8

An orthogonal bundI€E, ¢) onC is ani-tuple of vector bundleg = (E1, ..., E;), E; =
a vector bundle ory; with a nondegenerate quadratic foggnandg = (41, ..., qr). We
assume that rank; = n for all i, we calln the rank ofE. For a closed point € C, letg,
denote the induced quadratic form on the filake

DEFINITION 4.9

A generalized quasiparabolic orthogonal bundaig{ogonal QPBin short) onC is an
orthogonal bundl€E, ¢) of rankn together withz-dimensional vector subspacgsg (E)
of Ex; & E;; which are totally isotropic fog,; ® (—¢;;).

Theorem 5. Assume further thak is irreducible. Then there is a coarse moduli spad¢e
for a-semistable orthogonal QPBs of ranka € (0, 1) being rational. M is normal and
complete

LetU be the moduli space of orthogonal sheaves of rank Y. Assume that 0< o <
1, o is close to 1. Then
(1) there exists a morphisti: M — U.
(2) Letf; be the subset off corresponding to stable orthogonal bundles. Then the
restriction of f to £ ~1(U) is an isomorphism onttys.
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