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Abstract. Let G be a connected semisimple affine algebraic group defined over
C. We study the relation between stable, semistableG-bundles on a nodal curveY
and representations of the fundamental group ofY . This study is done by extending
the notion of (generalized) parabolic vector bundles to principalG-bundles on the
desingularizationC of Y and using the correspondence between them and principal
G-bundles onY . We give an isomorphism of the stack of generalized parabolic
bundles onC with a quotient stack associated to loop groups. We show that ifG is
simple and simply connected then the Picard group of the stack of principalG-bundles
onY is isomorphic to⊕mZ, m being the number of components ofY .
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0. Introduction

LetG be a connected semisimple affine algebraic group defined overC. LetY be a reduced
curve with only singularities ordinary nodesyj , j = 1, . . . , J . LetYi, i = 1, . . . , I be the
irreducible components ofY andCi the desingularization ofYi . Let C denote the disjoint
union of allCi . We introduce the notions of stability and semistability for principalG-
bundles onY (§2). If Y is reducible these notions depend on parametersa = (a1, . . . , aI ).

The study ofG-bundles onY is done by extending the notion of (generalized) parabolic
vector bundles [U1] to generalized parabolic principalG-bundles (called GPGs in short) on
the curveC and using the correspondence between them and principalG-bundles onY (2.4,
2.11). We study the relation between stable, semistableG-bundles and representations of
the fundamental group ofY . Let ρ : π1(Y ) → G be a representation of the fundamental
groupπ1(Y ) of Y in G. For i = 1, . . . , I, let fi : π1(Yi) → π1(Y ) be the natural maps,
ρi = ρ ◦ fi.

Theorem 1. (I) If Y is irreducible andρ | π1(C) is unitary(resp. irreducible unitary) then
the principalG-bundle onY associated toρ is semistable(resp. stable). The converse is
not true.
(II) If Y is reducible then there exist infinitely many I-tuples of positive rational numbers
a1, . . . , aI with

∑
ai = 1, depending only on the graph ofY and g(Ci) such that for

a = (a1, . . . , aI ) the following statements are true.

(1) If ρCi
= ρi | π1(Ci) are unitary representations for alli, then the principalG-bundle

F onY associated toρ is a-semistable.
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(2) If ρCi
are irreducible unitary representations for alli, then the principalG-bundleF

associated toρ is a-stable.
Let Aff/k be the flat affine site over the base fieldk = C, i.e. the category of

k-algebras equipped withfppf topology. LetR denote ak-algebra,Ci,R := Ci× specR
andC∗

R = C∗× specR. For eachi, fix a pointpi ∈ Ci such thatpi maps to a smooth
point of Y . Let qi be a local parameter at the pointpi, i = 1, . . . , I . Let LG,i denote
the k-group defined by associating toR the groupG(R(qi)). Let L+

G,i (resp. L
Ci

G ) be
thek-group defined by associating toR the groupG(R[[qi ]]) (resp.G(0(C∗

i,R, OC∗
i,R

))).

DefineLG =
∏

iLG,i, L
+
G =

∏
iL

+
G,i, L

C
G =

∏
iL

Ci

G . Let

QG,C = LG/L+
G =

∏
i

LG,i/L
+
G,i, Q

gpar
G,C = QG,C ×

∏
j

G(C).

The indgroupLC
G acts onQgpar

G,C . Let LC
G\Q

gpar
G,C be the quotient stack. Let Bungpar

G,C denote
the stack of GPGs onC (this is isomorphic to the stack of principalG-bundles onY .)

Theorem 2. There exists a canonical isomorphism of stacks

πpar : LC
G\Q

gpar
G,C→̃Bungpar

G,C.

Moreover the projection mapQgpar
G,C → Bungpar

G,C is locally trivial for etale topology.

Theorem 3. If G is a simple, connected and simply connected affine algebraic group then
(1)

Pic(Bungpar
G,C) ≈ ⊕i Z.

(2) If Y is irreducible andC has genus≥ 2, then

Pic(Bungpar
G,C)ss ≈ Z,

wheress denotes semistable points.
The moduli spaces of principalG-bundles on singular curves are not complete. In case

G = GL(n) (resp. G = O(n), Sp(2n)) the compactifications of these moduli spaces
were constructed as moduli spaces of torsionfree sheaves (resp. orthogonal or symplectic
sheaves) onY . For a general reductive groupG neither the moduli spaces nor the compacti-
fications have been constructed onY yet. One way to construct (normal) compactifications
of these moduli spaces is to use GPGs onC, for this one needs a good compactification of
G. In caseG isGL(n), SL(n), O(n) orSp(2n) we use a compactificationF of G obtained
by using the natural representation and construct the normal compactifications of moduli
spaces ([U1, U2, U4]). In caseG is of adjoint type we use the good compactificationF of
G defined by Deconcini and Procesi. We define ‘a compactification’Bungpar

G,C of Bungpar
G,C

usingF and show that it is isomorphic to the quotient stackLC
G\QG,C ×

∏
j F. We prove

that if furtherG is simple and simply connected then PicBungpar
G,C ≈ ⊕iZ ⊕ ⊕j Pic F

(Theorem 4).

1. Quasiparabolic bundles

1.1. Notations. Let the base field beC (or an algebraically closed field of characteristic
0). Let I, J be natural numbers. LetY be a connected reduced (projective) curve with
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ordinary nodes as singularities. LetYi, i = 1, . . . , I be the irreducible components ofY. Let
Y ′ = Y − {singular set ofY }, Y ′

i = Y ′ ∩ Yi for all i. Let C be the partial desingularization

of Y obtained by blowing up nodesyj , j = 1, . . . , J . Assume thatC =
∐I

1Ci (a disjoint
union). LetC′

i = Ci − sing(Ci). Fix an orientation of the (dual) graph ofY . In the graph
of Y, yj corresponds to an edge. The initial and terminal points of the edge correspond to
curvesYi(j) andYt(j) respectively, one hasi(j) = t (j) if the edge is a loop. Letxj ∈ Ci(j)

andzj ∈ Ct(j) be the two points ofC mapping toyj ∈ Y andDj = xj +zj , j = 1, . . . , J .
For eachj , Dj is an effective Cartier divisor onC supported outside the singular set ofC.
We remark that the parabolic structure we shall define in 1.2, 1.4 depends only on these
divisors and not on the choice of orientation. LetG denote an affine connected semisimple
algebraic group overC (or an algebraically closed field of characteristic zero). Letg denote
the Lie algebra ofG, n = dim g. A principalG-bundleE onC is anI -tuple(Ei), Ei being
a principalG-bundle onCi .

DEFINITION 1.2

A quasiparabolic structureσj on E over the divisorDj consists of aG-isomorphism
σj : Ei(j),xj

→ Et(j),zj
whereEi,x denotes the fibre ofEi atx. Letσ be theJ -tuple(σj )j ,

then(E, σ ) is called a quasiparabolicG-bundle, called a QPG in short.

Remark1.3. A family (E, (σj )) of QPGs consists of a family of principalG-bundlesE →

C × T together with an isomorphism ofG-bundlesσj : E |xj ×T → E |zj ×T for each
j = 1, . . . , J . Given a family of QPGs(E, (σj )) → C × T and a representationρ :
G → GL(V ) one can associate to it a family (E(V ), Fj (V )) → C × T of generalized
parabolic vector bundles [U1] as follows.E(V ) = E ×ρ V is a family of vector bundles.
For eachj, σj inducesσV,j : E(V ) | xj × T → E(V ) | zj × T . Let Fj (V ) = graph
of σV,j in E(V ) | xj × T ⊕ E(V ) | zj × T . ThenFj (V ) andQj(V ) = (E(V ) | xj × T

⊕E(V ) | zj × T )/Fj (V ) are vector bundles onT of rank = dimV .

1.4. Letα be a real number, 0≤ α ≤ 1. Takingρ the adjoint representation ofG we
get the associated vector bundleE(g). ThenE(g) is the adjoint bundle ofE and we often
denote it by AdE. The isomorphismσj gives an isomorphismE(g)xj

→ E(g)zj
and hence

determines ann-dimensional subspace ofE(g)xj
⊕ E(g)zj

= g ⊕ g again denoted byσj .
Let τj ∈ EndC(g ⊕ g) such thatτj acts onσj by α.Id andτj restricted to a complement

of σj in g⊕ g is zero. With respect to a suitable basis,τj =

(
αIn 0
0 0

)
, In being the unit

matrix of rankn. We fix a conjugacy class ofτj . (This is an analogue of weights in case of
(generalized) parabolic vector bundles, the weights in this case being(0, α) for the vector
bundleE(g) with induced (generalized) parabolic structure).

We want to define the notions of stability and semistability for QPGs. Since the def-
initions are rather complicated in the general case, we first define these notions on an
irreducible smooth curveC (1.5, 1.6) and later extend these notions to the general case
(1.7, 1.8, 1.9).

Assume thatC is a nonsingular irreducible curve. LetP be a maximum parabolic
subgroup ofG andp its Lie algebra. LetE/P = E(G/P ) be the associated fibre bundle
with fibres isomorphic toG/P . Let s : C → E/P be a section i.e. a reduction of
the structure group to the maximum parabolic subgroupP . Let Qj be the stabilizer in
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GL(g ⊕ g) of the subspaceE(p)xj
⊕ E(p)zj

= p ⊕ p ⊂ g ⊕ g = E(g)xj
⊕ E(g)zj

. Let
µj denote the determinant of the action ofQj on g/p ⊕ g/p. Let µj be the form on the
Lie algebraL(Qj ) of Qj corresponding toµj . Let τ j be a conjugate ofτj in L(Qj ).

DEFINITION 1.5

A QPG(E, (σj )) is α-stable (resp.α-semistable) if for every maximum parabolicP of G

and every reductions : C → E/P , one has

degrees∗T (G/P ) +
∑
j

µj (τ j ) > (resp. ≥) αJ. ranks∗T (G/P ). (∗1)

HereT (G/P ) is the tangent bundle along the fibres ofE/P → C.

Lemma1.6. With the above notations, the condition(∗1) is equivalent to the following

par degE(p) < (resp. ≤) αJ. rankE(p), (∗2)

wherepar degE(p) denotes the parabolic degree of the subbundleE(p) of the(generalized)
parabolic vector bundle(E(g), (σ ))with weights(0, α), each weight being of multiplicityn.

Proof. One hass∗T (G/P ) = E(g/p),
∑

j µj (τ j ) = parabolic weight of the quotient
bundleE(g/p) of (E(g), (σj )). Thus (∗1) can be restated as par degE(g/p) > (resp.
≥) αJ rankE(g/p). SinceG is semisimple, degE(g) = 0 ([R1], Remark 2.2) and hence par
degE(g) = αJ rankE(g). The result now follows from the exact sequence 0→ E(p) →

E(g) → E(g/p) → 0 using the additivity of parabolic degrees for exact sequences.

1.7. Semistable QPGs on reducible curves. Let the notation be as in 1.1. We consider
QPGs(E, (σj )) on C with parabolic structure overDj = xj + zj , j = 1, . . . , J. Let
{σj }, {τj }, a, α be as in 1.4. Fori = 1, . . . , I let Pi denote either a maximum parabolic
subgroup ofG or the trivial groupe or the groupG itself. We need to consider the
casesP = {e} or G also, because a sub-objectN = (Ni) of E = (Ei) may have the
property that for somei, Ni = Ei or Ni is trivial. For anI -tupleP = (P1, . . . , PI ), let
ri = dim pi , ni = dim g/pi for all i. For j = 1, . . . , J denote byQj the stabilizer in
GL(g⊕g) of the subspacepi(j) ⊕pt (j) ⊆ g⊕g. Letµj be the determinant of the action of
Qj ong/pi(j) ⊕g/pt (j) andµj the form on the Lie algebraL(Qj ) of Qj corresponding to
µj . Let τ j be a conjugate ofτj in L(Qj ). Let C′

i = Ci-sing(Ci), si : C′
i → E(G/Pi) | C′

i

any section,s = (s1, . . . , sI ). Let Ssi = the largest subsheaf of AdE | Ci such that

Ssi | C′
i = s∗

i (E(pi )) | C′
i . Let Ss = (Ss1, . . . , SsI ), χ(Ss) =

∑
i
χ(Ssi ), χ(Ad E) =∑

i
χ(Ad E | Ci). Let Qsi be the (smallest) torsion free quotient sheaf of AdE | Ci with

Qsi | C′
i = s∗

i (E(g/pi )) | C′
i . Let Qs = (Qsi )i , χ(Qs) =

∑
i
χ(Qsi ).

DEFINITION 1.8.

A QPG (E, (σj )) is (a, α)-semistable (resp.(a, α)-stable) if for every reductions of the
structure group toP such thatPi 6= G for all i andPi 6= {e} for all i one has
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
χ(Qs) +

∑
j

µj (τ j ) − α
∑
j

(ni(j) + nt(j))



/∑

i

aini ≥ (>)χ(Ad E)/n−αJ. (∗1′)

Lemma1.9. (a)The condition(∗1′) above is equivalent to the following condition

χ(Ss) − α

∑
j

qj (Ss)



/∑

i

airi ≤ (<)χ(Ad E)/n − αJ, (∗2′)

whereqj (Ss) = ri(j) + rt (j) − dim
(
σj ∩

(
(Ss)i(j),xj

⊕ (Ss)t (j),zj

))
.

(b) If C is irreducible and smooth, then(∗2′) is same as(∗2).

Proof. (a) The quotientQs of E(g) has induced parabolic structure overDj, j = 1, . . . , J

given by (Qs)xj
⊕ (Qs)zj

⊃ Fj (Qs) ⊃ 0 with weights(0, α), whereFj (Qs) is the
image of then-dimensional subspaceσj of (E(g)xj

⊕ E(g)zj
) in ((Qs)xj

⊕ (Qs)zj
). Let

fj (Qs) = dimFj (Qs). By definition, the parabolic weight ofQs = α
∑

j
fj (Qs). Define

qj (Qs) = ni(j) + nt(j) − fj (Qs), it is additive for exact sequences. Then one has

parabolic weight ofQs = α
∑
j

(ni(j) + nt(j) − qj (Qs))

= α
∑
j

(ni(j) + nt(j) − qj (Ad E) + qj (Ss))

= α
∑
j

(ni(j) + nt(j) − n + qj (Ss)).

Note that sinceQs ≈ E(g/p) outside sing(C) and allDj avoid sing(C), one has parabolic

weight of Qs = the parabolic weight ofE(g/p) =
∑

j
µj (τ j ). Hence,

∑
j
µj (τ j ) −∑

j
α(ni(j) +nt(j)) = α

∑
j
qj (Ss)−αJn. Using this equality and

∑
airi = n−

∑
aini

the first part of the Lemma follows.
(b) If C is a smooth irrreducible curve then one hasI = 1, Ss = E(p), Qs = E(g/p), 6airi

= r1, χ(Ss) =deg(E(p))+ r1(1−g),
∑

j
αqj (Ss) =

∑
j
α(2r1− dimFj (Ss) = 2αJr1−

parabolic weight(Ss). Hence the left hand side of(∗2′) becomes equal to par degE(p)/rank
E(p) − 2αJ + (1 − g). The right hand side of(∗2′) = (1 − g) − αJ . Hence the result
follows.

2. Principal G-bundles on a singular curveY

2.1. We want to introduce the notions of stability and semistability for principalG-bundles
on singular curves. On a smooth curve there are different definitions of stability and
semistability of a principalG-bundle, but they all coincide [R1]. The problem is that
this is not true on a singular curve. The choice of a representation ofG used to define
semistability does not matter on a smooth curve essentially because the associated bundles
(tensor products etc.) of semistable vector bundles (in characteristic 0) are semistable.
This fails if the curve has singularities. For example, ifF1 is the semistable vector bundle
of rank 2, degree 0 (on an irreducible nodal curveY ) constructed in Proposition 2.7 of
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[U3] thenF1 ⊗ F1 andS2F1 are not semistable [U5]. This is seen by checking that the
corresponding generalized parabolic vector bundles onC are not semistable. Similarly one
can show that ifF2 is the stable vector bundle of rank 2m constructed in Proposition 2.9,
[U3] thenF1 ⊗ F2 is not semistable for allm ≥ 2 [U5].

We give here a notion of semistability for principalG-bundles on singular curves (see
Definitions 2.2, 2.3, 2.9, 2.10) which is intrinsic and seems most useful. We first assume
thatY is irreducible (the case of a reducible curve will be dealt with later). LetY ′ = Y −

{singular set ofY }, i : Y ′ → Y inclusion map. LetG be a connected reductive algebraic
group. LetP be a maximum parabolic subgroup ofG andp the Lie algebra ofP . Let
F be a principalG-bundle onY andF/P = F(G/P ) the associated fibre bundle with
fibres isomorphic toG/P . Let s′ = Y ′ → (F/P ) | Y ′ be a reduction of the structure
group toP (i.e. a section ofF/P restricted toY ′). Let T (G/P ) denote the tangent
bundle along the fibres ofF/P → Y . Let Qs′ be a torsion free quotient ofF(g) such that
Qs′ | Y ′ ∼= (s′)∗(T (G/P )) | Y ′ and no further quotient ofQs′ has this property. LetSs′ be
the maximum subsheaf ofF(g) containing(s′)∗F(p).

DEFINITION 2.2

F is stable(resp.semistable)if for every reductions′ of the structure group to a maximum
parabolicP (overY ′), one has degreeQs′ > 0 (resp.≥ 0).

Lemma2.3. The above definition is equivalent to the following:F is stable(resp. semi-
stable) if for everys′ as above,degree Ss′ < 0 (resp.≤ 0).

Proof. The exact sequence 0→ p → g → g/p → 0 gives an exact sequence 0→
s

′∗F(p) → AdF | Y ′ → s
′∗T (G/P ) → 0 and hence 0→ Ss′ → AdF → Qs′ → 0.

Noting that AdF has degree zero, the lemma follows.
We now assume thatY has only ordinary nodesy1, . . . , yJ as singularities andp : C → Y

is the normalization map,Dj = p−1(yj ) = xj +zj , j = 1, . . . , J . Then giving a principal
G-bundleF onY is equivalent to giving the principalG-bundlep∗F = E onC together
with aG-isomorphismσj of the fibresExj

andEzj
of E for eachj . The isomorphismsσj

induce isomorphismsE(g)xj
→ E(g)zj

. We denote the graph of these isomorphisms also
by σj .

PROPOSITION 2.4

(E, (σj )) is 1-stable(resp. 1-semistable) if and only if the correspondingG-bundleF on
Y is stable(resp. semistable).

Proof. Suppose thatF is stable (resp. semistable). Lets : C → E/P be a reduction
to a maximum parabolic subgroupP . SinceC − ∪jDj ≈ Y − ∪j yj , underp and
E ≈ p∗F , the sections gives a reductions′ : Y ′ = Y − ∪j yj → (F/P ) |Y ′ . One has the
exact sequences 0→ F(g) → p∗s

∗E(g) → ⊕jQjE(g) → 0, 0→ Ss′ → p∗s
∗E(p) →

⊕jQjE(p) → 0 whereQj(E(g)) = (s∗E(g)xj
⊕s∗E(g)zj

)/σj , QjE(p) = (s∗E(p)xj
⊕

s∗E(p)zj
)/(σj ∩(s∗E(p)xj

⊕s∗E(p)zj
)). Note that the quotient ofF(g)bySs′ is the torsion

free sheaf obtained froms∗E(g/p) with induced parabolic structure (viz. the image ofσj

in E(g/p)xj
⊕ E(g/p)zj

, ∀j). The second sequence implies that par degs∗E(p) − J rank
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s∗E(p) = deg(Ss′). SinceF is stable, deg(Ss′) < 0. The result follows from Lemma 1.6.
The converse follows similarly working backwards in the above argument. One has only
to note that ifs′ : Y ′ → (F/P ) |′Y is a reduction to a maximum parabolicP , thens′ gives a
reductions : C → E/P (asG/P is complete). In case of semistability one has to replace
strict inequalities in the above proof by inequalities.

2.5 Bundles associated to representations

The fundamental groupπ1(Y ) of Y is isomorphic toH = π1(C)∗Z ∗ . . .∗Z, a free product
of π1(C) andJ copies ofZ (3.5, [U3]). To a representationρ : H → G we associate a QPG
(Eρ, (σj )) as follows.Eρ is the principalG-bundle onC associated to the representation
ρC = ρ | π1(C). If C̃ is the universal covering ofC, thenEρ = C̃ ×ρ G. Fixing
suitably pointsx′

j , z
′
j of C̃ lying overxj , zj respectively, the fibres(Eρ)xj

and(Eρ)zj
can

be identified toG. Letgj = ρ(1j ), 1j denoting the generator of thej th factorZ in H . Then
gj gives an isomorphismh′

j : (Eρ)xj
∼= (Eρ)zj

and hencehj : (Eρ(g))xj
∼= (Eρ(g))zj

.
Defineσj = graph ofhj . If F is the principalG-bundle onY obtained by identifying
fibres ofEρ at xj andzj by gj∀j , then one hasF = Fρ , theG-bundle associated to the
representationρ of π1(Y ) andEρ = p∗Fρ .

PROPOSITION 2.6

If ρC is irreducible unitary(resp. unitary) thenFρ is stable(resp. semistable).

Proof. If ρC is unitary, so is Ad◦ρC and henceFAd◦ρ = Fρ(g) is semistable ([U3],
Proposition 2.5). ThereforeFρ is semistable.

If ρC is irreducible unitary, then by Theorem 7.1 of [R1] (in our caseE(ρ, c) = Eρ, c =

Id)Eρ is a stableG-bundle. We check below that(Eρ, (σj )) is 1-stable, thenFρ is stable by
Proposition 2.4. Lets be a reduction of the structure group ofEρ to a maximum parabolic
subgroupP . The stability ofEρ implies that deg(s∗Eρ(p)) < 0. Note thatσj maps
isomorphically onto(Eρ)xj

, j = 1, . . . , J . Henceσj (Eρ(p)) = σj ∩(Eρ(p)xj
⊕Eρ(p)zj )

maps injectively intoEρ(p)xj
. Therefore dimσj (Eρ(p)) ≤ rank (Eρ(p)) for all j . It

follows that par deg(s∗Eρ(p)) = deg(s∗Eρ(p)) +
∑

j dim σj (Eρ(p)) < J rank(Eρ(p)).
Thus(Eρ, (σj )) is 1-stable.

Remark2.7. There may exist stable principalG-bundles onY which are not associated to
any representations ofπ1(Y ). For examples in caseG = GL(n) see [U3], similar examples
can be constructed in caseG = O(n), Sp(2n) also.

Principal G-bundles on a reducible curveY

Notations2.8. Let the notation be as in 1.1. Assume further thatY has nodesyj , j =

1, . . . , J as only singularities. Let0 be the graph obtained from the (dual) graph ofY by
omitting loops. Lety1, . . . , yK be the nodes ofY such that eachyj lies on two different
components ofY . ThenK = the number of edges of0, I = the number of vertices of0.

For i = 1, . . . , I , letPi denote either a maximum parabolic subgroup ofG or the trivial
group {e} or the groupG itself. Let F denote a principalG-bundle onY. For eachi,
let s′

i : Y ′
i → F(G/Pi) |Y ′

i
be a section. LetP = (Pi)i , s

′ = (s′
i )i be I -tuples. We

call s′ a reduction of the structure group toP over Y ′. Let T (G/Pi) denote the tangent
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bundle along the fibres ofF(G/Pi) |Yi
. If Pi = {e} thens

′∗
i (T (G/Pi)) ≈ Ad F |Y ′

i
. If

Pi = G, thenF(G/Pi) |Yi
≈ Yi and the Euler characteristicχ(s

′∗
i (T (G/Pi))) = 0. Let

Qs′ be the smallest torsionfree quotient of AdF such thatQs′ |Y ′
i

≈ s
′∗
i (T (G/P )) |Y ′

i

for all i. Let pi denote the Lie algebra ofPi andF(pi ), F(g), F(g/pi ) the fibre bundles
(with fibrespi , g, g/pi respectively) associated to thePi-bundleF → F(G/Pi) via the
adjoint representation. Thuss

′∗
i F(g) = Ad F |Y ′

i
, s

′∗
i F(g/pi ) = s

′∗
i T (G/Pi). Let Ss′ be

the maximum subsheaf of AdF such thatSs′ |Y ′
i
≈ s′∗F(p). Let a = (a1, . . . , aI ), where

{ai} are positive rational numbers with
∑

ai = 1. Recall that for a vector bundleV onY,

a-rankV =
∑

i

ai rank(V |Yi
).

DEFINITION 2.9

The principalG-bundleF on Y is a-semistable (resp.a-stable) if for every reductions′

of the structure group toP with Pi 6= {e} for all i andPi 6= G for all i one has (in the
notations of 2.8)

χ(Qs′)/a − rankQs′ ≥ (resp. >)χ(Ad F)/a − rank AdF .

Lemma2.10. F is a-semistable(resp.a-stable) if for every reductions′ as above,

χ(Ss′)/a − rankSs′ ≤ (resp. <)χ(Ad F)/a − rank AdF .

Proof. As in Lemma 2.3, we have the exact sequences 0→ s
′∗
i F(p) → Ad F | Y ′

i →

s
′∗
i T (G/P ) → 0 for all i and so 0→ Ss′ → Ad F → Qs′ → 0. The lemma follows using

the fact that both the Euler characteristic anda-rank are additive for an exact sequence.

PROPOSITION 2.11

For i = 1, . . . , I , let Ci be a partial desingularization ofYi and C =
∐

Ci . Suppose
that C is obtained by blowing up nodesy1, . . . , yJ ′ , J ′ ≤ J of Y . Let (E, (σj )) denote a
QPG with quasi-parabolic structureσj overDj, 1 ≤ j ≤ J ′. Then a QPG(E, (σj )) is
(a, 1)-stable(resp.(a, 1)-semistable) if and only if the corresponding principalG-bundle
onY (obtained by identifying fibres ofE byσj ) is a-stable(resp.a-semistable).

Proof. The proof is exactly on same lines as that of Proposition 2.4. Starting withF

a-stable (resp. semistable) and a reductions′ to P, one gets an exact sequence 0→ Ss′ →

p∗Ss → ⊕jQj (Ss) → 0, with qj (Ss) = dim Qj(Ss). Then Lemma 1.9 gives
(a, 1)-stability (resp. semistability) of(E, (σj )). The converse is proved by reversing the
argument.

2.12. G-bundles associated to representations

Let ρ : π1(Y ) → G be a representation of the fundamental groupπ1(Y ) of Y in G. For
i = 1, . . . , I, let fi : π1(Yi) → π1(Y ) be the natural maps,ρi = ρ ◦ fi. Let F be the
G-bundle onY associated toρ. Let p∗F = E = (Ei)i . ThenEi is theG-bundle on
Yi associated toρi. The principalG-bundleF corresponds to a QPG(E, (σj )) on

∐
i Yi

where{σj }, j = 1, . . . , K areG-isomorphisms of fibres ofE. Finally let Ci denote the
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desingularization ofYi, gi = arithmetic genus ofYi, g(Ci) = genus ofCi, g(Ci) ≥ 1.

Our aim is to prove the following Theorem.

Theorem 1. There exist positive rational numbersa1, . . . , aI with
∑

ai = 1, depending
only on0 andgi, such that fora = (a1, . . . , aI ) the following statements are true.

(1) If ρCi
= ρi | π1(Ci) are unitary representations for alli, then the principalG-bundle

F onY associated toρ is a-semistable.

(2) If ρCi
are irreducible unitary representations for alli, then the principalG-bundleF

associated toρ is a-stable.

For the proof of the theorem, we need the following combinatorial result.

PROPOSITION 2.13

Let 0 be a connected graph without loops. LetI be the number of vertices andK the
number of edges of0, K = I + m, m ≥ −1. Fix integersr ≥ 1, gi ≥ 1, i = 1, . . . , I and
g =

∑
gi . Then there exist positive rational numbersai, i = 1, . . . , I with

∑
ai = 1 such

that for everyI -tupler = (r1, . . . , rI ) of integersri with 0 ≤ ri ≤ r and for everyK-tuple
of integersq = (q1, . . . , qK) with max(ri(j), rt (j)) ≤ qj ≤ r, j = 1, . . . , K, one has

I∑
i=1

ri(gi − 1) +

K∑
j=1

qj ≥ (g + m)

(
I∑

i=1

airi

)
. (SS)

If in additionri = 0 for somei, 0 6=
∑

i ri , then the inequality(SS) is a strict inequality.

Proof. We prove the result by induction onm.

Casem = −1: 0 is a tree in this case. Letai = gi/g, i = 1, . . . , I . Let ri0 = mini ri .

SinceK = I − 1 andqj ≥ max(ri(j), rt (j)), one has
∑

j qj ≥
∑

i 6=i0
ri =

∑
i ri − ri0.

L.H.S. of (SS) =
∑

i rigi −
∑

i ri +
∑

j qj

≥
∑

i rigi − ri0 =
∑

i rigi −
∑

i (giri0)/g

≥
∑

i rigi −
∑

i giri/g

= (g − 1)
∑

rigi/g

= (g − 1)
∑

i airi .

If 0 6=
∑

ri andri = 0 for somei, thenri0 = 0 and

L.H.S. of (SS) ≥
∑

rigi = g
∑

i

airi > (g − 1)
∑

airi .

Casem ≥ 0: If m ≥ 0, then0 contains a cycle. By removing a suitable edge, saye`, from
this cycle in0, we get a connected subgraph0′ of 0 such thatK(0′) − I (0′) = m − 1.
By induction, there exist positive rational numbersa′

i , i = 1, . . . , I with
∑

a′
i = 1, such
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that for allr andq = (q1, . . . , q̂`, . . . , qj ) satisfying the given conditions, one has

∑
i ri(gi − 1) +

∑
j 6=`

qj ≥ (g + m − 1)(
∑

i a′
i ri)

=
∑

i b′
i ri , b′

i = a′
i (g + m − 1),

L.H.S. of (SS) =
∑

i ri(gi − 1) +

J∑
j=1

qj

≥
∑

i b′
i ri + (ri(`) + rt (`))/2

=
∑

biri,

wherebi = b′
i if i 6= i(`), t (`) andbi = b′

i +
1
2 if i = i(`) or t (`). Takeai = bi/(g+m) for

all i, then (SS) holds. The assertion about strict inequality follows by induction similarly.

Remark2.14. (1) Note that if botha, a′ satisfy (SS) then for 0≤ t ≤ 1, at = ta+(1− t)a′

also satisfies (SS). Thus the set of solutionsa of (SS) is a convex set.
(2) Giveni1, i2, , 1 ≤ i1, i2 ≤ I , takea′

i = (gi−
1
2)/(g−1) for i = i1, i2 anda′

i = gi/(g−1)

for i 6= i1, i 6= i2. Then in case0 is a tree (i.e.m = −1) the inequality (SS) holds (though
the strict inequality may not be true eg. forri1 = ri2 = 0). ForK − I ≥ 0, the inductive
proof of Proposition 2.13 then gives newa′ = (a′

1, . . . , a
′
I ) satisfying the inequality (SS).

It follows that the inequality holds forat , 0 ≤ t ≤ 1.

PROPOSITION 2.15

Theorem1 is true forG = GL(r).
(1) If ρi | π1(Ci) are unitary representations for alli, then the vector bundleF on Y

associated toρ is a-semistable.
(2) If ρi | π1(Ci) are irreducible unitary for alli, thenF is a-stable.

Proof.

(1) As in Propositions 3.9 and 3.7(3) of [U2], it can be seen that the vector bundleF on
Y corresponds to a QPGE = (E, Fj (E)) on

∐
Yi andF is a-semistable (resp.a-stable)

if and only if E is (a, 1)-semistable (resp.(a, 1)-stable). Note thatE =
∐

Ei is the
pull-back ofF to

∐
Yi . By Theorem 2, [U3], the vector bundlesEi onYi associated toρi

are semistable for alli. Hence, for any subsheafNi of Ei , one hasχ(Ni) ≤ ri(1−gi), ri =

rankNi (note that degree(Ei) = 0). Thus

SN =


∑

i

χ(Ni) −
∑
j

qj (N)



/∑

i

airi ≤
∑

i

ri(1 − gi) −
∑
j

qj (N)/
∑

i

airi ,

where the summation overj is taken for 1≤ j ≤ K. For the choice of{ai} made in
Proposition 2.13, we get

SN ≤ I − K −
∑

gi =

(∑
i

χ(Ei) − rK

)/
r.

Thus(E, Fj (E)) is (a, 1)-semistable and henceF is a-semistable.
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(2) We need to consider two cases. With the notations in the proof of (1) ifri = 0 for some
i then by Proposition 2.13, we haveSN < I −K −

∑
gi . If ri 6= 0 for all i, then there exists

an i0 such that 06= ri0 6= r. SinceEi0 is stable by Theorem 2 [U3], we haveχ(Ni0) <

ri0(1 − gi0). Therefore,SN <
∑

i ri(1 − gi) −
∑

j qj (N)/
∑

i airi ≤ I − K −
∑

gi (by
Proposition 2.13). Thus(E, Fj (E)) is (a, 1)-stable and soF is a-stable.

Remark2.16. The proof of Proposition 2.13 shows that there exist curvesYm, m =

0, . . . , n+1 such that (1)Y 0 = Y, (2)Yn+1 is a curve with ordinary nodes such that the dual
graph ofYn+1 is a tree after omitting loops (3)Ym+1 is obtained fromYm by blowing up a
node which lies on two different components. Form = 0, . . . , n, let ϕm = Ym+1 → Ym

be the natural surjective maps. LetF denote a unitary (resp. irreducible unitary) vector
bundle onY . The proofs of Propositions 2.13 and 2.15 together show how the ‘polariza-
tion’ a = (a1, . . . , aI ) for which the vector bundlesϕ∗

mF area-semistable (resp.a-stable)
varies as we go down the tower of curves{Ym}.

Proof of Theorem1.

(1) If ρCi
is unitary, so is Ad◦ ρCi

= (Ad ◦ ρ)Ci
. Therefore there exist positive rational

numbersa1, . . . , aI with
∑

ai = 1 (depending only on0 andgi) such that the vector
bundleFAd◦ρ ≈ Ad F associated to Ad◦ρ is a-semistable (Proposition 2.15). Hence
F is a-semistable.

(2) By Proposition 2.6, the principalG-bundlesEi on Yi associated toρi are stable for
all i. We claim that for the choices of{ai}i as in the proof of (1), the QPG(E, (σj ))

corresponding toF is (a, 1)-stable. The result follows from the claim in view of
Proposition 2.11. To prove the claim we check that the condition(∗2′) of Lemma 1.9
is satisfied for any reductions of the structure group toP. Let ri be the rank ofSsi .
SinceSs is a proper subsheaf ofE(g),

∑
ri 6= nI . SinceEi are stable, by Lemma 2.3,

χ(Ssi ) ≤ ri(1− gi) and the inequality is strict if 0< ri < n. By Proposition 2.13, for
the choices of{ai} as in (1), one has

χ(Ss) −
∑
j

qj (Ss)

/∑
j

airi < I − K −
∑

i

gi(= χ(Ad E)/n − K)

if ri0 = 0 for somei0 and 0 6=
∑

ri . If ri 6= 0 for all i, since
∑

ri 6= nI, there exists

ani0 such that 0< ri0 < n. Thenχ(Ss) <
∑

i
ri(1 − gi) and so

χ(Ss) −
∑
j

qj (Ss) <
∑

i

ri(1 − gi) −
∑
j

qj (Ss)

≤ (I − K −
∑

gi)

(∑
i

airi

)
, by Proposition 2.13,

= (χ(Ad E)/n − K)
∑

i

airi .

This proves the claim.
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3. The Picard group of the stack of QPGs

In this sectionY denotes a reduced connected projective curve with ordinary nodes{yj }, j

= 1, . . . , J as only singularities. Let{Yi}, i = 1, . . . , I be the irreducible components of
Y andCi the desingularization ofYi . Let C =

∐
i Ci be the desingularization ofY . For

convenience of notation, we fix an orientation of the dual graph ofY . For 1≤ j ≤ J , let
i(j), t (j) denote the initial and terminal points ofj in the dual graph. They correspond to
curvesCi(j), Ct(j) intersecting atyj . Let xj ∈ Ci(j) andzj ∈ Ct(j) be the two points of
C mapping toyj ∈ Y andDj = xj + zj , j = 1, . . . , J . Let G denote an affine simply
connected simple algebraic group overC (or an algebraically closed field of characteristic
zero). Fori = 1, . . . , I , fix pointspi ∈ Ci, pi not mapping to a singular point ofY . Let
C∗

i = Ci − {pi}, C
∗ = C − ∪ipi .

The results of this section were inspired by [LS]. IfG is semisimple, then a principal
G-bundle on a smooth curveC is trivial on the complement of a point inC. This no longer
holds ifC is replaced by a nodal curveY . The results of [LS] cannot be generalized directly
to G-bundles onY . Hence we work with QPGs onC. Though we closely follow the ideas
in [LS], the generalization to QPGs is not straightforward. All the functors involved have to
be defined carefully to take care of the additional structure (generalized parabolic structure).
Unlike the usual parabolic structure which is supported on isolated points, the generalized
parabolic structure is supported on divisors, so one has the action ofG × G rather thanG.

3.1 The stackQgpar
G,C and the stackBungpar

G,C

Let Aff/k be the flat affine site over the base fieldk = C, i.e. the category ofk-algebras
equipped withfppf topology. LetR denote ak-algebra,Ci,R := Ci× specR and
C∗

R = C∗× specR. Let qi be a local parameter at the pointpi, i = 1, . . . , I . Let LG,i

denote thek-group defined by associating toR the groupG(R(qi)). LetL+
G,i (resp.LCi

G ) be
thek-group defined by associating toR the groupG(R[[qi ]]) (resp.G(0(C∗

i,R, OC∗
i,R

))).

DefineLG =
∏

iLG,i, L
+
G =

∏
iL

+
G,i, L

C
G =

∏
iL

Ci

G . Let

QG,C = LG/L+
G =

∏
i

LG,i/L
+
G,i, Q

gpar
G,C = QG,C ×

∏
j

G.

The indgroupLC
G acts onQG,C . For eachj , the evaluation atxj andzj gives an evaluation

mapej : LC
G → G×G. G×G acts onG by (g1, g2)g = g−1

1 gg2. Thus we have a natural
action ofLC

G onQ
gpar
G,C . Let LC

G\Q
gpar
G,C be the quotient stack.

To an objectR ∈ Aff/k, associate the groupoid whose objects are families of QPGs
(E, (σj )) onC parametrized by specR and whose arrows are isomorphisms of the families
of QPGs i.e. isomorphisms ofE which preserve the parabolic structures(σj ). For any
morphismR → R′ we have a natural functor between the associated groupoids. Thus we
get ak-stack of (generalized) quasiparabolicG-bundles onC. We denote this stack by
Bungpar

G,C .

Theorem 2. There exists a canonical isomorphism of stacks

πpar : LC
G\Q

gpar
G,C

∼
→ Bungpar

G,C.

The projectionπpar : Q
gpar
G,C → Bungpar

G,C is locally trivial in etale topology.
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Proof. QG,C represents the functor which associates to everyk-algebraR the set of iso-
morphism classes of pairs(E, ρ) whereE is aG-bundle overCR andρ is a trivialization
of E over C∗

R ([LS], Proposition 3.10). HenceQgpar
G,C represents the functorPG which

associates toR the isomorphism classes of triples(E, ρ, s) with (E, ρ) as above and
s ∈

∏
j G(R), s = (s1, . . . , sJ ), sj ∈ G(R) = Mor (SpecR, G), G being thej th factor

in
∏

j G. Such a triple gives a family of QPGs(E, (σj )) parametrized byS = SpecR as
follows. Let sj : S × xj × G → S × zj × G be given bysj (s, xj , g) = (s, zj , gsj (s))

for s ∈ S, g ∈ G. Defineσj : E|S×xj

≈
→ E|S×zj

by σj = ρ−1
|S×zj

◦ sj ◦ ρ|S×xj
. Thus

we get a universal QPG overQgpar
G,C × C, giving a mapπpar : Q

gpar
G,C → Bungpar

G,C . Being

LC
G-invariant, this map induces a morphism of stacksπpar : LC

G\Q
gpar
G,C → Bungpar

G,C .

To define a morphism Bungpar
G,C → LC

G\Q
gpar
G,C , for eachR and(E, (σj )) ∈ Bungpar

G,C(R)

we have to give aLC
G-bundleT (R) on Bunpar

G,C(R) together with anLC
G-equivariant map

T (R) → Q
gpar
G,C(R). Take(E, (σj )) ∈ Bungpar

G,C(R). For anyR-algebraR′, let SpecR′ = S′

andT (R′) = the set of isomorphism classes of pairs(ρR′ , σ ′) whereρR′ is a trivialization
of ER′ overC∗

R′ andσ ′ = (σ ′
j )j , σ

′
j : E|S′×xj

≈ E|S′×zj
is theG-isomorphism which is the

pull back ofσj toR′. This defines anR-spaceT with the action of the groupLC
G (acting on

ρR′). It is anLC
G-bundle ([DS]; also [LS], Theorem 3.11). AsQgpar

G,C represents the functor

PG, to every element(ρR′ , σR′) of T (R′) corresponds an element ofQ
gpar
G,C(R′) giving aLC

G-

equivariant mapT → Q
par
G,C . Hence we get a morphism of stacks Bungpar

G,C → LC
G\Q

gpar
G,C

which is clearly the inverse ofπpar.
To check the local triviality ofπpar in etale topology, we have to show that for any

morphismf from a schemeS to Bungpar
G,C the pull back of the fibrationπpar to S is etale

locally trivial i.e. admits local sections for the etale topology. Such a morphism corresponds
to a QPG(E, (σj )) overS × C. For s ∈ S, we can find an etale neighbourhoodU of s

and a trivializationρ of E|U×C∗ ([DS]). Usingρ, theG-isomorphismσj gives a morphism
sj : U → G. The triple(E, ρ, (sj )) defines a morphismf ′ : U → Q

gpar
G,C such that

πpar ◦ f ′ = f ; i.e. the section overU of the fibrationπpar. This completes the proof of
Theorem 2.

PROPOSITION 3.2

One has

(1) PicQG,C ≈ ⊕iZOQG,Ci
(1)

(2) Pic(Q
gpar
G,C) ≈ ⊕iZOQG,Ci

(1).

Proof. (1) It is known that eachQG,Ci
is an ind-scheme which is an inductive limit of

reduced projective Schubert varietiesXi,w, this ind-scheme structure coincides with the
one by Kumar and Mathieu ([LS], Proposition 4.7). One hasH 1(Xi,w, O) = 0 ([KN, M]).
It follows that PicQG,C ≈ ⊕i PicQG,Ci

. It is known that Pic(QG,Ci
) = ZOQG,Ci

(1) for
all i ([LS], 4.10; [M]; [NRS], 2.3) The first assertion follows.
(2) Since

∏
j
G is a simply connected affine algebraic group Pic(

∏
j
G) is trivial. The ind-

schemeQG,Ci
is the inductive limit of integral projective reduced (generalized) Schubert

varietiesXi,wi
with H 1(Xi,wi

, O) = 0. By III, Exer. 12.6 [H] it follows that Pic(X1,w1 ×∏
j
G) ≈ Pic(X1,w1) ([H], III, Exer. 12.6) and therefore by induction oni one sees that
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Pic


∏

i

Xi,wi
×
∏
j

G


 ≈ ⊕iPic(Xi,wi

) ≈ ⊕iZOXi,wi
(1).

Since(Qgpar
G,C) is the inductive limit of

∏
i
Xi,wi

×
∏

j
G and the restrictionOQG,Ci

(1) |Xi,wi

≈ OXi,wi
(1) it follows that Pic(Qgpar

G,C) ≈ ⊕iZOQG,Ci
(1).

The following result must be well-known, we are including a proof since we could not find
a reference.

Lemma3.3. LetG be a connected semisimple algebraic group. Then any invertible regular
function onG is constant.

Proof. We remark first that the only regular invertible functions onSL2 and the additive
groupGa are constant functions. Letf : G → Gm be a regular function.

Claim. For anyx in a 1-parameter unipotent subgroupU of G, one hasf (gx) = f (g) for
all g ∈ G.

Proof of the claim. Consider the functionU → Gm defined byx → f (gx). Since
U ≈ Ga , this function is constant i.e.f (gx) = f (g) for all g ∈ G.

SinceG is semisimple,G is generated byXα, α varying over roots ofG ([Sp], 9.4.1). There-
fore, in view of the claim, one hasf (g) = f (hα1 . . . hαr ) with hαi

∈ ImSL2. The function
SL2 → Gm defined byx → f (hα1 . . . hαr−1x) is constant. Hencef (hα1 . . . hαr ) =

f (hα1 . . . hαr−1). Repeating this process the result follows.

3.4. For eachi, there are morphisms of stacksπi : QG,Ci
→ BunG,Ci

inducing isomor-
phismsπ∗

i : Pic(BunG,Ci
) → Pic(QG,Ci

). If L′
i denotes the generator of Pic(BunG,Ci

) as
well as its pull back to BunG,C , thenπ∗

i L′
i = OQG,Ci

(1) ([LS, So, T]). Hence if we denote
the pull back ofOQG,Ci

(1) to QG,C by OQG,Ci
(1) again, we haveπ∗(L′

i ) = OQG,Ci
(1).

Since PicQG,C = ⊕iZOQG,Ci
(1) it follows thatπ∗ is surjective. Similar argument using

Proposition 3.2 shows thatπ∗
par is surjective. One hasπ∗

par(Li) = OQG,Ci
(1), whereLi

denotes the pull back ofL′
i under the forgetful morphism Bungpar

G,C → BunG,C . Note that
we have a commutative diagram

Pic(BunG,C)
π∗

→ Pic(QG,C)

8∗ ↓ ↓≈

Pic(Bungpar
G,C)

π∗
par

→ Pic(Qgpar
G,C).

We now check thatπ∗
par is injective, the injectivity ofπ∗ follows similarly. Denote by

PicLC
G(Q

gpar
G,C) the group ofLC

G-linearized line bundles onQgpar
G,C . Sinceπpar is locally trivial

(Theorem 2), for any line bundleL on Bungpar
G,C, πpar induces an isomorphism between

the sections ofL andLC
G-invariant sections ofπ∗

parL. Therefore we have an injection

Pic(Bungpar
G,C) → PicLC

G(Q
gpar
G,C) induced byπ∗

par. The kernel of the forgetful morphism
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PicLC
G(Q

gpar
G,C) → Pic(Qgpar

G,C) is the set ofLC
G-linearizations of the trivial line bundle. Any

such linearization is given by an invertible (regular) functionh on LC
G × Q

gpar
G,C satisfying

a cocycle condition.QG,C being an inductive limit of integral projective schemes ([LS],
4.6) has no non constant regular functions. SinceG is simple,

∏
j G has no invertible

nonconstant regular functions (Lemma 3.3). Henceh is the pull back of an invertible
function onLC

G. Since it satisfies a cocycle condition, it is in fact a character onLC
G.

By [LS], Lemma 5.2,h is trivial. Thus the forgetful morphism is injective. Hence the

compositeπ∗
gpar : Pic(Bungpar

G,C) → PicLC
G(Q

par
G,C) → Pic(Qgpar

G,C) is injective. Thusπ∗
par is

an isomorphism. Similarlyπ∗ is an isomorphism and hence8∗ is also an isomorphism.
We have proved the following theorem.

Theorem 3. LetG be a simple simply connected affine algebraic group overC. Then we
have the following isomorphisms.

(1) Pic(BunG,C) ≈ ⊕I
i=1ZL′

i ,

(2) Pic(Bungpar
G,C) ≈ ⊕I

i=1ZLi,

whereL′
i andLi are the pullbacks of the generator ofPic(BunG,Ci

) toBunG,C andBungpar
G,C

respectively.

Remark3.5. ForG = GL(n), SL(n), Sp(2n), the moduli stack (resp. moduli space) of
bundles onY is isomorphic to the moduli stack (resp. moduli space) of QPGs onC ([U1,
U2, U4]). Hence we have

Pic(BunG,Y ) ≈ ⊕iZ

for G = GL(n), SL(n) or Sp(2n).

PROPOSITION 3.6

Assume thatC is irreducible andG as in Theorem3. Let (Bungpar
G,C)ss denote the substack

corresponding toα-semistable QPGs. Then

Pic(Bungpar
G,C)ss ≈ Z.

Proof. We claim that a QPG(E, σ ) is α-semistable (resp. stable) for anyα, 0 ≤ α ≤ 1
if the underlying bundleE is semistable (resp. stable). The semistability (resp. stability)
of E implies that degE(p) ≤ (resp. <)0. Sinceσj is an isomorphism, the subspaceσj

of E(g)xj
⊕ E(g)zj

maps isomorphically ontoE(g)xj
under the projection map. Hence

σj ∩ (E(p)xj
⊕ E(p)zj

) maps injectively intoE(p)xj
and hence has dim.≤ rank E(p).

It follows that pardegE(p) ≤ (resp. <)αJ rankE(p). The claim now follows from
Lemma 1.6.

The morphismφ : Bungpar
G,C → BunG,C (forgetting the quasiparabolic structure) is a

surjective morphism with isomorphic fibres. It follows from the claim thatφ−1(BunG,C

− Bunss
G,C) ⊇ Bungpar

G,C − (Bungpar
G,C)ss. Hence codim.Bungpar

G,C
(Bungpar

G,C − (Bungpar
G,C)ss) ≥

codim.BunG,C
(BunG,C − Bunss

G,C). Since the latter is≥ 2 for g ≥ 2 ([L-S], 9.3) the same
is true for the former. The result now follows from Theorem 3.
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3.7. Results in caseG = GL(n), SL(n)

In case of vector bundles we have the following results on Picard groups of moduli spaces
([U5, U6]). LetY denote an irreducible reduced curve overC with at most ordinary nodes
as singularities. LetL be a line bundle onY . Let U ′

Y (n, d) (resp. U ′
L
(n, d)) denote

the moduli space of semistable vector bundles of rankn and degreed (resp. with fixed
determinantL) on Y . Let U

′s
Y (n, d) (resp.U

′s
L

(n, d)) denote the open subset ofU ′
Y (n, d)

(resp.U ′
L
(n, d))consisting of stable vector bundles. LetgC (resp.gY ) denote the geometric

(resp. arithmetic) genus ofY .

I. Assume thatgC ≥ 2. Then, except possibly forgC = 2, n = 2, d even, one has

1. PicU
′s
L

(n, d) ≈ PicU ′
L
(n, d) ≈ Z .

2. PicU
′s(n, d) ≈ PicU ′(n, d) ≈ PicJ ⊕ Z, whereJ denotes the Jacobian ofY .

II. Assume thatgY = 2, n = 2. Then

Pic U ′
L
(2, d) ≈ Z.

4. Compactifications

In general, the moduli spacesMG of principal G-bundles on a nodal curveY are not
complete. In caseG = GL(n) a compactification ofMG is given by the moduli space of
torsionfree sheaves of rankn (and fixed degree) onY , this compactification is not normal. A
normal compactification ofMG is obtained as the moduli space of (generalized) parabolic
bundles on the desingularizationC of Y ([U1, U2]). This can be done for other classical
groupsG = O(n), SO(n), Sp(2n) also, we briefly describe the main result (Theorem 5).
The details will appear elsewhere [U4]. To construct a normal compactification ofMG,
one needs a good compactification ofG and hence a good representation ofG. In case
of classical groups we use their natural representations. For a general groupG, a natural
choice is the adjoint representation. Unfortunately it gives a compactification ofG only if
G is of adjoint type ([DP], §6; [S]; [D]). Using this compactification we give a more general
definition of QPGs in caseG hastrivial centre. For classical groups and adjoint groups we
‘compactify’ the stack Bungpar

G,C and also compute the Picard group of the compactification.
In case of classical groups, the compactifications of moduli spaces obtained are complete
normal varieties (see Theorem 5). We do not prove that the ‘compactification’ is a proper
stack in case of adjoint groups. It will be useful to know a natural (canonically defined)
compactification ofG in the general case.

4.1. Let the notations be as in §3. We further assume thatG is a semisimple algebraic
group with trivial centre. Letgdenote the Lie algebra ofG, n = dim g. G×G acts ong⊕g
(via adjoint representation) and hence on the Grassmannian Gr(n, g⊕ g) of n-dimensional
subspaces ofg⊕ g. Let1G denoteG embedded inG × G diagonally. SinceG has trivial
centre the adjoint representation is faithful. HenceG ≈ G × G/1G gets embedded in
Gr(n, g ⊕ g) asG × G-orbit of 1g ∈ Gr(n, g ⊕ g). Let F be the closure of theG × G

orbit of 1g in Gr(n, g ⊕ g).
Given a principalG-bundleE and disjoint divisorsDj = xj + zj onC, define

Ej = Exj
× Ezj

∼= G × G, Ej (F ) = Ej ×(G×G) (F ), j = 1, . . . , J.
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A QPG (quasiparabolicG-bundle) is a pair(E, (σj )) whereE is a principalG-bundle and
σj ∈ Ej(F ), j = 1, . . . , J .

DEFINITION 4.2

QPGs(E, (σj )) and(E′, (σ ′
j )) are isomorphic if there is an isomorphismf : E → E′ of

principalG-bundles which mapsσj to(σ ′
j ) i.e. for the isomorphismf j

F : Ej(F ) → E′j (F )

one hasf j
F (σj ) = σ ′

j .

4.3. A family of QPGs(E, (σj )) → C × T is a family ofG-bundlesE → C × T together
with a sectionσj : T → Ej (F ).

Remark4.4. (1) The following diagram commutes

G × G
h1

−→ F = G × G/1G

t2 ↓ ↓ t1

GL(g) × GL(g)
h2
↪→ Gr(n, g ⊕ g).

Here t1 is inclusion, t2 = product of adjoint representations ofG in g, h2(f1, f2) =

subspace ofg ⊕ g generated by{(f1v, f2v), v ∈ g} and t1 ◦ h1 is the map inducing the
Demazure embedding ofG (by identifyingG with G × G/1G).

(2) Recall that a (generalized) quasiparabolic structure (overDj = xj +zj , j = 1, . . . , J )

on a vector bundleN of rankn is given by ann-dimensional subspace ofNxj
⊕Nzj

, j ∈ J

i.e. by an element of5j Gr(n, Nxj
⊕ Nzj

) [U1]. Given a family of QPGsE → C × T , let
E(g) be the family of vector bundles of rankn associated toE via the adjoint representation
of G in g. It follows from the above commutative diagram thatσ composed with the
injection5jE

j (F ) → (5jE
j (Gr(n, g ⊕ g))) gives a quasi parabolic structure onE(g).

4.5 The stackQ
gpar
G,C and the stackBungpar

G,C

Let the notations be as in 3.1. LetQ
gpar
G,C = QG,C ×

∏
jF. The ind-schemeQG,C is ind-

proper, so isQ
gpar
G,C . The indgroupLC

G acts onQG,C . For eachj , the evaluation atxj and
zj gives an evaluation mapej : LC

G → G × G. G × G acts onF naturally. Thus we have

a natural action ofLC
G onQ

gpar
G,C . Let LC

G\Q
gpar
G,C be the quotient stack.

As in 3.1, we define thek-stack of (generalized) quasiparabolicG-bundles onC (with
extended definition of the parabolic structure usingF ). We denote this stack byBungpar

G,C .

It contains Bungpar
G,C as an open substack.

Theorem 4. (1) There exists a canonical isomorphism of stacks

πpar : LC
G\Q

gpar
G,C→̃Bungpar

G,C.

Moreover the projection mapQ
gpar
G,C → Bungpar

G,C is locally trivial for étale topology.
(2) Let G be a simple, simply connected affine algebraic group overC. Then there exists
an isomorphism



288 Usha N Bhosle

Pic (Bungpar
G,C) ≈ ⊕iZLi ⊕ ⊕j PicF,

whereLi are line bundles coming fromBunG,Ci
.

Proof. The proof is on similar lines as that of Theorem 2 and Theorem 3, we omit some
details to avoid repetition.

(1) Q
gpar
G,C represents the functorP G which associates to everyk-algebraR the set of

isomorphism classes of triples(E, ρ, s) whereE is a principalG-bundle onCR, ρ is a
trivialization of E overC∗

R ands ∈ Mor (SpecR,
∏

j F ). Thens = (s1, . . . , sJ ), sj ∈

Mor (SpecR, F) for all j . We can associate to such a triple a QPG(E, (σj )) on CR.
We only need to define for eachj , morphismσj : S → Ej(F ), S = SpecR. The
restriction ofρ−1 gives isomorphismsS × xj × G ≈ E|S×xj

, S × zj × G ≈ E|S×zj
and

hence an isomorphism ofG × G-bundlesS × G × G = (S × xj × G) ×S (S × zj ×

G) ≈ E|S×xj
×S E|S×zj

= Ej . Therefore we have an isomorphism of associated fibre

bundlesρj (F ) : S × F
≈
→ Ej(F ). Defineσj by σj (s) = ρj (F )(s, sj (s)). It follows

thatQ
gpar
G,C × C has a universal QPG and we have anLC

G-equivariant morphism of stacks

πpar : Q
gpar
G,C → Bungpar

G,C . This induces the morphismπpar on the quotient stack.

To define the inverse ofπpar, let (E, (σj )) ∈ Bungpar
G,C(R). Let R′ be anR-algebra,S′ =

SpecR′. Let T (R′) be the set of pairs(ρR′ , σ ′) whereρR′ is a trivialization ofER′ , σ ′ =

(σ ′
1, . . . , σ

′
J ) whereσ ′

j is a pull back ofσj∀j . This defines aT -space with an action of

LC
G (via ρR′), it is anLC

G-bundle [DS]. We now define aLC
G-equivariant mapT → Q

gpar
G,C .

Given(ρR′ , σ ′) ∈ T (R′), we defines′
j : S′ → F by s′

j = prF ◦ ((ρR′)j (F ))−1 ◦ σ ′
j . Then

(ER′ , ρR′ , (s′
j )) ∈ P G(R′). SinceQ

gpar
G,C represents the functorP G, this defines a map

α : T → Q
gpar
G,C , it is LC

G-equivariant. TheLC
G-bundleT together withα give a morphism

of stacks fromBungpar
G,C to the quotient stackLC

G\Q
gpar
G,C which is easily seen to be the inverse

of πpar.
The assertions about local triviality ofπpar follow similarly as in Theorem 2.

(2) Using the facts that eachQG,Ci
is an inductive limit of reduced projective varieties

Xi,w with H 1(Xi,w, O) = 0 andF is a projective variety withH 1(F, O) = 0, it can be
proved that PicQ

gpar
G,C ≈ ⊕iZOQG,Ci

(1) ⊕ ⊕j PicF (similarly as Proposition 3.2). The
injectivity of π∗

par follows exactly as in Theorem 3. Note thatF being a projective variety

Q
gpar
G,C is an inductive limit of integral projective schemes and hence has no nonconstant

regular functions.
We now check the surjectivity ofπ∗

par. We have a commutative diagram

Pic(BunG,C)
π∗

→ Pic(QG,C) = ⊕ZOQG,Ci
(1)

ϕ∗ ↓ ↓

Pic(Bungpar
G,C)

π∗
par

→ ⊕j PicF ⊕ ZOQG,Ci
(1)

with ϕ the forgetful morphism and the right vertical arrow is the inclusion as direct sum-
mand. Hence one hasπ∗

par(ϕ
∗L′

i ) = OQG,Ci
(1), L′

i being the pull back of the generator
of Pic (BunG,Ci

) to Pic(BunG,C). Thus for the surjectivity ofπ∗
par it suffices to show that

there exist line bundles{L′
i,j } on Bungpar

G,C which pullback to the generators of⊕j Pic F .
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From the construction and results in [S], it follows that PicF is a lattice of rankr generated
by L′

i , i = 1, . . . , r, r = rank of G. For eachi, there exists aG × G moduleWi and
a G × G equivariant embeddingF → P(Wi) such thatOP(Wi)(1) restricts toL′

i on F .
Given a family of QPGs(E, (σj )) onC × SpecR one hasEj(F ) ⊂ Ej(P (Wi)). Let L′

ij

denote the line bundle onEj(P (Wi)) (and also its restriction toEj(F )) which restricts to
OP(Wi)(1) on each fibre. The pull-back ofL′

ij by σj : SpecR → Ej(F ) is a line bundle
L′

ij,R on SpecR. This construction can be done for anyR. Hence{L′
ij,R} define a line

bundleL′
ij on the stackBungpar

G,C . By construction,π∗
par(L

′
ij ) is the generator of thej th

factor PicF in Pic (Q
gpar
G,C).

Case of classical groups

For the simple and simply connected classical groupsSL(n) andSp(2n) the compactifi-
cationsF of G are defined using natural representations (described below). We claim that
Theorem 4 holds in these cases also. The existence of the isomorphismπpar and injectivity
of π∗

par can be seen exactly as in the proof of the Theorem 4. We only need to check the
surjectivity ofπ∗

par, this is done below.

4.6. CaseG = SL(n). For G = SL(n), the compactificationF of G using natural
representation ofG ([U1, U4]) can be described as follows.SL(n) × SL(n) is embedded
diagonally inSL(2n) ⊂ GL(2n). Let G → GL(V ) be the natural representation. Let
P ⊂ SL(2n) be the stabilizer of the diagonal inV ⊕ V ; P is a maximum parabolic

subgroup. The Grassmannian Gr= SL(2n)/P is embedded inP(
n
∧ (V ⊕ V )) by Plücker

embedding. Let{Pi1, . . . ,in} denote the Plücker coordinates. LetF be the hyperplane sec-
tion of Gr defined byP1, . . . ,n = Pn+1, . . . ,2n. ThenF can be regarded as a compacti-
fication of SL(n) with SL(n) identified with the subset ofF defined byP1, . . . ,n 6= 0.
The generator of Pic Gr≈ Z is the line bundle associated to the characterwn onP and its
restriction toF is the generatorL′ of PicF ≈ Z. F −SL(n) is a divisorD′ in F to whichL′

is associated. Given a family of QPGs(E, (σj )) onC× SpecR, one hasEj(F ) ⊂ Ej(Gr).
Let L′

j be the line bundle onEj(Gr) associated to theP -bundleEj(SL(2n)) → Ej(Gr)

via the characterwn. The pull back ofL′
j by σj : SpecR → Ej(F ) ⊂ Ej(Gr) is a line

bundleL′
j,R on SpecR, L′

j,R define a line bundleL′
j on the stalkBungpar

G,C . By construction,

π∗
par(L

′
j ) is the generator of thej th factor PicF in Pic Q

gpar
G,C . Hence the morphism in

Theorem 4(2) is a surjection and thus an isomorphism forG = SL(n) andF as above.

4.7. CaseG = Sp(2n). In caseG = Sp(2n) also one can use the natural representation of
G to defineF (§5, [U4]). LetG → GL(V ) be the natural representation. We regardSp(2n)

as the groupSp(q, V ) of automorphisms ofV preserving a symplectic form (nondegenerate
alternating form)q on V . ThenF is the variety of maximum isotropic subspaces for
q ⊕ (−q) onV ⊕V . The groupSp(2n)× Sp(2n) = Sp(q, V )× Sp(−q, V ) is embedded
inSp(q⊕(−q), V ⊕V ) =Sp(4n)diagonally. ThenF ≈ Sp(4n)/P ,P being the maximum
parabolic subgroup ofSp(4n)which is the stabilizer of the maximum isotropic subspace1V

of V ⊕V , PicF = ZL′, L′ being the line bundle associated to the fundamental weightw2n.
Given a family of QPGs(E, (σj ))onC parametrized byS = SpecR, σj : S → Ej(F ), one
hasEj(F ) = Ej(Sp(4n)/P ) andEj(Sp(4n)) → Ej(F ) is aP -bundle. LetL′

j denote the
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line bundle onEj(F ) associated to thisP -bundle via the characterw2n. Let L′
j,R denote

the line bundle onS which is the pullback of this line bundle byσj . This construction
being valid for anyR, it defines a line bundleL′

j on the stackBungpar
G,C . Clearly,π∗

par(L
′
j )

is the generator of PicF , thej th factor. It follows that the injection in Theorem 4(2) is an
isomorphism forG = Sp(2n) with F defined as above.

The following definitions and results are stated forO(n)-bundles, they hold forSp(2n)-
bundles also with orthogonal replaced by symplectic andn replaced by 2n.

DEFINITION 4.8

An orthogonal bundle(E, q) onC is anI -tuple of vector bundlesE = (E1, . . . , EI ), Ei =

a vector bundle onYi with a nondegenerate quadratic formqi andq = (q1, . . . , qI ). We
assume that rankEi = n for all i, we calln the rank ofE. For a closed pointx ∈ C, letqx

denote the induced quadratic form on the fibreEx .

DEFINITION 4.9

A generalized quasiparabolic orthogonal bundle (orthogonal QPBin short) onC is an
orthogonal bundle(E, q) of rankn together withn-dimensional vector subspacesF

j

1 (E)

of Exj
⊕ Ezj

which are totally isotropic forqxj
⊕ (−qzj

).

Theorem 5. Assume further thatY is irreducible. Then there is a coarse moduli spaceM

for α-semistable orthogonal QPBs of rankn, α ∈ (0, 1) being rational.M is normal and
complete.

Let U be the moduli space of orthogonal sheaves of rankn onY . Assume that 0< α <

1, α is close to 1. Then
(1) there exists a morphismf : M → U .
(2) Let U s

n be the subset ofU corresponding to stable orthogonal bundles. Then the
restriction off to f −1(U s

n) is an isomorphism ontoU s
n.
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