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Introduction 

Let X be a projective smooth variety of dimension n over an algebraically 
closed field k. Let H be an ample line bundle on X. A torsion free sheaf V on 
X is said to be stable (respectively, semistable) with respect to the polarisation 
H if for every proper subsheaf W c V we have deg W/rk  W <  deg V / r k V  (respec- 
tively <)  where deg W= cl(W). H"-1,  c t(W ) the first chern class and r k = rank 
(see [7, 13]). 

In [10] we proved that the restriction of a semistable sheaf V on X to a 
complete intersection subvariety of X in general position and of high multide- 
gree is again semistable. We prove here that the restriction of a stable sheaf also 
remains stable. This has some interesting consequences. 

When k=~2 and d imX =2  it follows from the recent results of Donaldson 
[2] and Kobayashi 1-6] that any stable vector bundle V with c l (V)=0  and 
c2(V)=0 on the surface X comes from an irreducible unitary representation of 
the fundamental group rcl(X ). It follows from this and our restriction theorem 
that the same result holds for higher dimensional varieties as well. This 
answers a question of Kobayashi [6, Sect. 4, p. 161]. 

1. Preliminaries 

1.I. We recall some notation from [10]. Let X be a projective smooth variety 
of dimension n > 2 over an algebraically closed field k, and H a very ample line 
bundle on X. For  m = ( m  1 . . . . .  mr), a sequence of positive integers, let S,, be 
Sin1 x ... x Smt, where S,,, =IPH~ H"i). Let Z m c X  x S,, be the correspondence 
variety: 

Z m ~--- {(X, S 1 . . . . .  St) ISi(X ) = 0 V i}. 

Let Pm: Zm-*Sm and qm: Z m ~ X  be the projections. 
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The fibres of qm are embedded in X by Pm and we usually identify q~, l(s) 
with Pmqg, l(s) - The function field of S ,  is denoted by K m and Y, denotes the 
generic fibre Z m x S ,  of qm" Let q),,: u  m be the inclusion. 

Km 
We call Ym the generic complete intersection subvariety of type m. When a 

property holds for qg, l(s) for s in a nonempty open subset of S .  we say that it 
holds for a general s. 

1.2. We next recall a few well known facts about vector bundles on curves [7, 
13, 16]. Let C be a projective smooth curve over k. Let V be a vector bundle 
on C. We denote deg V/rkV by/l(V).  A subsheaf W~--* V is called a subbundle 
of V if V / W  is torsion free (and hence, C being a curve, locally free). The 
subbundle W generated by W is the inverse image in V of the torsion subsheaf 
of V/W. 

Suppose V is semistable. Then 
i) Any subsheaf W~--~V with/~(W)= #(V) is a subbundle and is semistable. 

ii) Any homomorphism W ~ V ,  where W and V are semistable with p(W) 
=#(V),  is of constant rank. In particular, if L is a line bundle with deg L=/~(V) 
then any nonzero map  L--+ V makes L a subbundle of V. 

iii) If  W, V are stable with # (W)=p(V)  then any nonzero map  W ~  V is an 
isomorphism. 

iv) Any semistable bundle V has a filtration 0 =  V o = V l c . . .  c Vr= V with 
VJVi-1 stable and #(VJV/_ 0=#(V) .  We call such a filtration a stable filtration. 

It is not unique. However, the associated graded grV= + VJV~_ 1 depends only 
on V. (See [16, Sect. 3]). i= 1 

v) If V is stable then V is simple i.e. End V=scalars (This is true more 
generally for higher dimensional base as well). 

2. Canonical subbundles of semistable bundles 

In this section C will denote a projective smooth curve over k. 

2.1. Definition. Let V be a semistable vector bundle on C. The subbundle of V 
given by the sum of all stable subbundles W of V with #(W)=#(V)  is called the 
socle of V 

2.2. Lemma.  Let V be a semistable vector bundle on C. Then 

i) The socle of V is a direct sum of certain stable subbundles of V, each with 
the same # as V. 

ii) I f  V is semistable but not a direct sum of stable bundles then the socle of 
V ix a proper subbundle of V. 

iii) The soele of V is invariant under all automorphisms of V. 
iv) I f  C and V are defined over a field K and the socle of V (more precisely 

the inclusion of the socle of V in VJ is defined over a Galois extension L of K 
then the socle of V is invariant under the Galois group Gal(L/K) and hence 
defined over K. 

Proof. Clear. 
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2.3. To get rationality of the subbundle over inseparable field extensions we 
introduce the following notion. Let V be a semistable bundle and consider the 
following two conditions on subbundles W~-~V a) #(W)=/~(V) b) each com- 
ponent of gr W (see Sect. 1.2. iv) is isomorphic to a subbundle of V. If two 
subbundles W 1 and W 2 satisfy both al and b) then clearly so does their sum W 1 
+ W 2. Therefore there is a unique maximal subbundle satisfying a) and b). 

2.4. Definition. For a semistable vector bundle V we call the maximal subbundle 
satisfying the above conditions a) and b) the extended socle of V. 

2.5. Lemma.  Let V be a semistable vector bundle over C and W its extended 
socle. 

i) W contains the socle of V. 
ii) I f  further V is simple (i.e. EndV=scalars)  and not stable then W is a 

proper subbundle. 
iii) W is invariant under all automorphisms of V. Moreover Hom(W, V/W) 

-n-O. 

iv) I f  C and V are defined over a field K then so is W~--~ V. 

Proof. i) Clear. 
ii) Let V o c . . .  c Vr_ lc  V be a stable filtration of V (see 1.2. iv). If W =  V 

then from the definition of extended socle VIVa_ ~ is isomorphic to a subbundle 
W' of V. Then the composite V ~ V / V ~ _ I ~ W ' ~ V  gives a nonscalar en- 
domorphism of V. 

iii) Suppose a: W ~ V / W  is a nontrivial homomorphism.  Let 
W o c  ... c W~c...  c W be a stable filtration of W. Then for some i, a maps 
W~/W~_~ nontrivially and hence injectively. Then the inverse image of 
a(WJW/_ 0 under V ~ V / W  satisfies conditions a) and b) of Sect. 2.3 (use Sect. 
1.2). Since it is also strictly bigger than W this contradicts the maximality of 
W. 

iv) The extended socle is always defined over the algebraic c losure / s  of K 
(cf. [7]) and hence over a finite extension of K. If W ~  V is defined over a 
Galois extension L/K  then it is Gal(L/K) invariant and hence descends to K. If 
W-~ V is defined over a purely inseparable extension L/K of exponent one we 
can apply Jacobson descent: Horn(W, V/W) being zero W is invariant under 
all derivations of L/K  (cf. [7]). 

2.6. Remark. Suppose C and the vector bundle V are defined over K. If char K 
= 0  suppose V| is not a direct sum of stable bundles. If char K = p > 0  
suppose moreover V |  (or equivalently V) is simple. Then if every subbundle 
W of V defined over K satisfies /~(W)<p(V) then it is satisfied for all sub- 
bundles and hence V is stable. In other words for such V the notion of stability 
is invariant under change of base field. This follows easily from Lemmas 2.2 
and 2.5. We have restricted ourselves to algebraic extension fields. These 
assertions also hold for arbitrary extensions (cf. [7]). 

2.7. Lemma.  Let V be a semistable vector bundle on C. Then the set {det W] W 
a subbundle of V with #(W)=#(V)} of isomorphism classes of line bundles is 
finite. 



166 V.B. M e h t a  and  A. R a m a n a t h a n  

Proof. Let grV~-VI@...@V~, V i stable with p(V~)=/~(V). Let W be a subbundle 
of V with ~(W)=g(V).  We can then start with a stable filtration of W and 
complete it to one of V: 

W o c . . . c W c . . .  c . . .V.  

Therefore gr V being independent of the filtration we see that det W has to be 
isomorphic to one of det V~,|174 V~j. 

2.8. Lemma. Let V be a semistable vector bundle on C. Let G = Gr(r, V) be the 
bundle of Grassmanians of r dimensional subspaces of fibres of V. We have 

" A GmIP(A V). Let Gm V be the cone over G. Then the set of isomorphism 
classes of line bundles L satisfying i) d e g L = r . p ( V )  and ii) Hom(L, G )# 0  i.e. 

there is a nonzero s~Hom(L, A V) such that s(L)m~, is finite. 

Proof. Let L be the line subbundle generated by the image s(L) of L in /~ V. 
Then we have the natural maps L--*s(L)mL which are isomorphisms over the 
set of x~C with s(x)#O. Hence deg L_<_degL. Since s(L)m6 we have LING. 

r 

Therefore the subbundle L gives rise to a section of GmIP(A V) which in turn 
gives a rank r subbundle W of V with det W--L, by the definition of Grass- 

manian. Since V is semistable /~ (W)_<_#(V) i.e. deg L <#(V). Bur deg L _-> deg L 
r r r 

=la(V). Therefore d e g L = d e g L  and hence L=L. Thus L = d e t W ,  with W a 
subbundle of V with #(W)=p(V).  Now apply Lemma 2.7. 

2.9. Remark. In the situation of the above lemma suppose further C and V are 
defined over a field K. Then the set of L~Pic(C/K) satisfying the conditions i) 
and ii) of the above lemma is also finite since the natural map 
Pic(C/K)~ Pic(C/K) is injective where K is the algebraic closure of K and C 
= C |  

K 

3. Semicontinuity for sections with values in a cone 

The following proposition was suggested to us by M.S. Narasimhan in another 
context (see [15, Lemma 4.1]) 

3.1. Proposition. Let p: X--* T be a projective flat morphism and let n: V--* X be 
a vector bundle. Let C c  V be a cone, i.e. a closed subvariety of V invariant under 
multiplication by scalars. For t e T  let Xt= p- l(t) and Vt= V[X c Then the set 

{teT[3 a~ H~ Vt) s.t. a #O, a(Xt)c C} 

is a closed subvariety of T. 

Proof. First note that the question is really local on T so that we can replace T 
by suitable open subsets as needed. 

Let Sections (-, V/X/T) be the functor from the category of T-schemes to 
sets which associates to a f :  S--*T the set of sections of f * V ~ S x X  (cf. [4, 

T 
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5]). It is well known (see [4]) that this functor is representable. In fact in this 
situation, locally on T, there is a morphism tp: E1--*E 2 of vectorbundles Ei--* T 
over T such that M v=~o- ~ (Zero section of E2) represents the above functor 
([12, Chap. II, Sect. 5]). The corresponding functor Sections (-, C/X/T)  for C is 
represented by a closed subscheme M c of M v (see [4, 5]). Since C is a cone the 
ideal J of functions on E l vanishing on M c c E  1 is a homogeneous ideal of 
SymE T, the symmetric algebra of E* (so that E~=Spec(SymE*)).  Then the 
subset of T in question is the image of the projective morphism 
Proj ((Sym E*)/J) ~ T and hence is closed. 

3.2. Corollary. Let T be an irreducible variety and K its function field. Then 
H~ Cr)+O (with the obvious notation) if and only if there exists a nonemp- 
ty open subset U c  T such that H~ Ct)#:O for every t~U. On the other hand 
if H~ Ct)=0 for a single point of t r  then H~ CK)=0. 

Proof. Follows immediately from the proposition. 

3.3. Corollary. Let L ~ X  be a line bundle. Then the set { teTI3seH~ 
Hom(L t, Vt) ) s.t. s~O, s (L)c  Ct} is a closed subvariety of T. 

Proof. Apply the proposition to the cone "L*|  C" in L*| 

4. Stable sheaf restricts to stable sheaf 

4.1. We fix once for all a sequence of integers (c~1, . . . ,e ,_  1) with each c~i>2. We 
denote the product c~l...c~,_ 1 by c~. When considering complete intersection 

," ct," [10, Sect. 5.1]. subvarieties of codimension t we let (m) stand for (ctl, ..., t ) see 

4.2. Let V be a torsion free sheaf on X. Then for a general smooth complete 
intersection curve C of type (m) in X we have deg(VlC)=em.c~(V). H "-~ and 
rkV=rk(V]C).  Therefore it follows that if V]C is semistable (respectively 
stable) then V itself is semistable (respectively stable). In [10] we proved the 
converse: V semistable=~VI C semistable for a general C for sufficiently large 
m. We now prove that V stable=~ V IC stable for such a C. Note that once we 
have proved this it follows that the restriction of a stable V to a general 
complete intersection subvariety Y of any codimension t is also stable, for we 
can further restrict from Y to a suitable curve in Y (cf. [10, Remark 6.2]). 

4.3. Theorem. Let V be a stable (respectively semistable) torsion free sheaf on 
X with respect to the polarisation H. Let Yt,,) be the generic complete in- 
tersection subvariety of type (m) (see Sects. 4.1 and 1.I for notation). Then there 
is an m o such that for m>=m o the restriction V]Y~,")(i.e. ~o~,") p~,") V, see Sect. 1.1) 
is stable (respectively semistable) with respect to the induced polarisation HI Y~,"). 
Equivalently for m>=m o and for s in a nonempty open subset of St,,) , VIq~(s )  is 
stable (respectively semistable). 

The rest of this section is devoted to the proof of this theorem. 
The semistable case has been proved in [10]. Further, as remarked above it 

is enough to consider the complete intersection curve case. So we assume dim 
Ytm) = 1 and (m)=(ct~ .. . . .  ct~" 1). 
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4.4. Since V is torsion free there is an open subset U c X  with codim ( X - U )  
>2  such that VIU is a vector bundle. Therefore VIY(m) and Vlq&~(s) for a 
general s are vector bundles. 

4.5. Lemma. There is an integer N such that for m> N and for a general s the 
restriction V bq~(s) is simple. 

Proof. Let V** be the double dual of V. It is reflexive and the natural map 
V-*V** is an isomorphism in codimension 2. Therefore V** is also stable and 
hence simple. Moreover Vlq&~(s)=V**Dq~(s) for a general s. We can apply 
the general Enriques-Severi Lemma ([10, Proposition 3.2]) to the reflexive 
sheaf V**. Thus there is an integer N such that for m > N  End 
V**~End(V**lq&~(s)) is surjective for a general s. Since End V**=scalars, 
this proves the lemma. 

4.6. We now fix N sufficiently large so that for m > N, 
i) Vqq&~(s) is simple and semistable for general s (use above lemma and 

[10, Theorem 6.1]) and 
ii) Pic X-~ Pic Y~m)is bijective (Weil's Lemma, [10, Proposition 2.1]). 
We also choose open subsets U,~ of S(,,) as follows. Let Wm~--~ V] Y~m) be the 

extended socle of v ] Y~m). Then U,, satisfies 
a) V[q~m ~ (S) is a simple semistable vector bundle for every s e U,, and 
b) W m extends to a subbundle, again denoted by W~, of (pffm)V)] q~m~(U,,). 

4.7. One uses families of degenerating curves to compare VIY(z) with V]Y~m), 
l>m (see [10, Sects 4, 5]). 

Let A be a discrete valuation ring over k with quotient field K. Let 
D ~ Spec A, D x Spec A -~ X, be a flat family of curves in X parametrised by A, 
such that (a) D is smooth (b) the generic fibre D K is a smooth curve in U~ 
(more precisely, DK=q(T)I(s)cX|  for a K-valued point s of Ui) and (c) the 

k 
special fibre D k is reduced with nonsingular components D~ in U m, i 
= 1 . . . . .  ~z-m. Suppose W ~  VID K is a subbundle. Then W extends uniquely to a 
subsheaf l?g of VID, flat over A. Then we have the following facts (see [10, 
Sect. 4]): 

(1) l~is a vector bundle (but not necessarily a subbundle of VID). 
(2) WID k ~  i ~ VID~ is injective making WID k ~  i a subsheaf of VIDe. 
(3) From (1) and (2) it follows tha t /~K<~#~ where 

i 

#K=max{#(W)l  W subbundle of VIDK} and 

#/k=max{#(W)lW subbundle of VID~k}. 

Note also that deg VI Yu)=c~t(deg V on X). 

4.8. Lemma. I f  for some m > N ,  VIYtm) is stable then VIY~0 is stable Jbr all 
l>m. 

Proof. V I Y~l) stable implies that V I q~m~(s) is stable for a general s. (This follows, 
for example, from Remark 2.6. cf [10, Sect. 4.2]). We can then construct a 
degenerating family of curves D ~ S p e c  A as in Sect. 4.7 above with VID~ 
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stable for all i = 1  . . . . .  s t - "  (see [10, Proposition5.2]). Since i~(Vlq(~l(s))= 
d - "  #(VIq(m~ (S)) the lemma follows from 4.7 (3) and Remark  2.6. 

4.9. So to prove the theorem we now assume that for all r e > N ,  V I Y(m) is not 
stable and show that this leads to the contradiction that V itself is not stable. 

For m>=N, since we have assumed that VI Y(m) is not stable, by Lemma 4.5 
and Lemma2.5 (ii) it follows that the extended socle Wm~V I Y(m) is a proper 
subbundle: 0 < r k  W m<rk  V. Therefore there is an infinite sequence Q1 of in- 
tegers > N  such that rk W,, is a constant, say r, for all rneQt. Let LmePicX be 
the unique line bundle on X such that L,,IY(,,)=det W m for meQ1. We then 
have deg L,,=r.p(V)for meQl. Let G , . ~  U m be the cone over the Grassmann 
bundle in r 

P~,,,) A V l q ~ ( U m ) ~  Urn. 

Now we fix an moeQ1. By Lemma 2.8 and Remark 2.9 the set 

E = {L e Pic X I deg L = r. #(V), H o m  (El Ytmo), Gmo ] Y~mo)) 4= 0} 

is finite. We then have the following lemma. 

4.10. Lemma.  For l>m o with leQx we have LteE. 

Proof. By Corollaries 3.2 and 3.3 it is enough to prove that Hom(L~lq&~(s), 
G,,o[q(mto)(S)) + 0 for a general s. (Note that Lt[ q2,1(s) has the right degree). 

We construct a degenerating family of curves D ~ S p e c  A with D K in U t 
and D~ in U,, o ([10, Proposition 5.2]). Extend the extended socle Wl~ VI Y,) to 
a subsheaf ~ of VID (see Sect. 4.7). Since ~ ID~ is a subsheaf of V[D~ and the 
latter is semistable we have 

~(~1 O~) <= p(VlO~) = ~"~ V i = 1 . . . . .  ~ - -o .  (1) 

Further (see Sect. 4.7) 
~l -- tn 0 

= #(W{Dk). (2) 
i=1  

Since W t is the extended socle I~(WIIDK)=P(VIDK)=~tp(V). Therefore (2) 
implies that equality must hold in (1) for every i. Hence we have 
deg det (if 'IDa)= s p(V) = deg(L zlD~). 

Thus the two line bundles LIID and det IYr on D are isomorphic on D K and 
have the same degree on each component  D~ of the special fibre. Therefore the 
must be isomorphic on the whole of D. But det WIDe, by its construction, 
admits a nontrivial homomorphism into ^ GmolD k. Hence so does LIID ~. Since D~ 
can be chosen to be a general q~m~o)(S) ([10, Proposition 5.2]) the Lemma is 
proved. 

Now the set E being finite there is an infinite subsequence Q2 of Qx such 
that for leQ2. L~ is isomorphic to a fixed LeE = Pic X. 

We now claim that for sufficiently large leQ2 and general seS(t) the sub- 
bundle Wtlq~7)l(s) of Vlq(7)l(s) can be lifted to a subsheaf lYr of V. Then such a 

would be a proper subsheaf of V with #(ITr contradicting the 
stability of K Thus it only remains to prove the claim. The proof  of this is the 
same as that of Lemma 6.5.3 of [10]. We sketch it briefly. Firstly note that as 
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4)eH~ Hom(L, /~ V)) varies the subvarieties S,((o)={xeUlc~(x)e cone over 

the Grassmannian in IP(/~ V)} form a bounded family. Therefore for 1 very 
large, no Z(~b) with Z(~b) ~ U can contain a curve of type (1). On the other hand 
for any sufficiently large leQ2, for a suitable ~b, 2;(q~) does contain a curve of 
type (1) because we can lift the section corresponding to W~I qtT) l(s) ~ V Iq~T)~ (s) to 

Horn(L,/~ V) by Enriques-Severi Lemma (Note that det Wt=LIY,) ). Thus for 
some ~b we must have Z(qS)= U which gives the existence of a subsheaf of V 
lifting a suitable WllqtT)l(s). This proves the claim and we have completed the 
proof of Theorem 4.3. 

5. Narasimhan-Seshadri Theorem for higher dimensions 

The results of Donaldson [2] and Kobayashi [6] extend to surfaces the result 
of Narasimhan and Seshadri on stable and unitary bundles on curves [13]. We 
show here how Theorem 4.3. enables one to extend this result to arbitrary 
dimensions using the results of Donaldson and Kobayashi and the bounded- 
ness theorem of Foster-Hirschowitz-Schneider [3] and Maruyama [-8]. 

5.1. Theorem. Let X be a projective nonsingular variety over C of dimension n. 
Let H be an ample line bundle on X. Let V be a vector bundle on X. with cl(V ) 
=0 and c2(V).H"-2=O. Then V comes from an irreducible unitary representa- 
tion of the fundamental group 7rl(X ) if and only if V is stable (with respect to 
1-1). 

Proof Suppose V comes from an irreducible unitary representation p: 
rrl(X)--*U(r)cGL(r,  ll~), i.e. V is associated to the principal nl(X)-bundle 
) ( ~ X ,  )( being the universal cover of X, for the action of nl(X ) on IIY 
through p. For a general complete intersection smooth curve C o X ,  
n l (C)~rr~(X ) is surjective [1] and hence VIC comes from an irreducible 
unitary representation of rrl(C ). Therefore by the theorem of Narasimhan and 
Seshadri [13-15] V I C is stable and hence so is V (cf. Sect. 4.2). 

Now conversely suppose V is stable. Let S be the set of isomorphism 
classes of stable vector bundles on X, with all chern classes zero and of the 
same rank as V. Then by [3, 8] the set S forms a bounded family. Therefore 
one can find an m sufficiently large such that for a general complete in- 
tersection surface Y in X of type (1) with l>m, the restriction map 
Horn(V, W ) ~ H o m ( V I Y ,  WtY )  is surjective for all WeS. (Use Enriques-Severi 
Lemma. See [10, Proposition 3.2]). 

By Theorem 4.3 there is an l>m such that VIY  is a stable vector bundle 
on Y for a general complete intersection smooth surface Y of type (l). The 
results of Donaldson [2] and Kobayashi [6, Sect. 4 p. 161] imply that VIY  
comes from an irreducible unitary representation p of lh(Y ). By Lefchetz we 
know that rrl(Y)~rrx(X ) is an isomorphism. Thus we get a stable bundle V o on 
X associated to the representation of rrl(X ) given by p. Since Hom(VIY, 
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VolY):t:0, l>m and VowS we see that Horn(V, Vo):t:0. But V and V o are stable 
and the assumption on the chern classes then implies that any nonzero  homo-  
morphism V--* Vp is an isomorphism. This completes the p roof  of the theorem. 

5.2. Remark. The theorem immediately gives that if c l ( V ) = 0  and c2(V).H "-2 
= 0  then V stable with respect to H implies that it remains stable with respect 
to any other polarisation. 

5.3. Remark. In the proof  of the above theorem we can avoid the use of  the 
boundedness theorems of [3, 8 ] .For  we need only the boundedness  of the family 
of bundles on X coming from representations of ~I(X) in (U(n) or) GL(n) and 
clearly such representations form a closed subvariety of  GL(n)x ... x GL(n), 
~I(X) being finitely presented. 

5.4. Remark. R a m a n a n  has pointed out  that  the above theorem implies that if 
V is a stable vector bundle whose projective Chern classes are zero then the 
corresponding projective bundle IP(V) comes from a unitary representat ion of 
7c1(X ) into the projective unitary group PU(n), n=rkV. This can be seen as 
follows. The assumption on V implies that End  V has c I and c 2 zero. Since 
End V is associated to the stable bundle V it follows from [17, Theorem 3.18 
and Sect. 4.7] that  End V is a direct sum of stable bundles. Each of its stable 
components  has c 1 zero and hence by Bogomolov ' s  inequality the stable 
components  also have c 2 zero. Hence End  V being the direct sum of stable 
bundles with c~, c z zero comes from a unitary representat ion tel(X)--* U(n2), by 
the above theorem. Therefore the bundle W = H o m  (End V |  V, End  V) 
also comes from a unitary representation. Hence the section of W correspond- 
ing to the algebra structure on End  V is given by a tel(X) invariant  element of 
the corresponding representat ion space (see [18, Proposi t ion  4.1]). Clearly this 
implies that  the representat ion tel(X)--, U(n 2) giving End V takes values in 
PU(n) sitting in U(n 2) via the adjoint representation. This proves that IP(V) 
comes from a unitary representation rot(X)--* P U(n). 
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