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Abstract. We extend the notion of a parabolic vector bundle on a smooth curve to define
generalized parabolic sheaves (GPS) on any integral projective curve X. We construct
the moduli spaces M (X) of GPS of certain type on X. If X is obtained by blowing up finitely
many nodes in ¥ then we show that there is a surjective birational morphism from M(X)
to M(Y). In particular, we get partial desingularisations of the moduli of torsion-free sheaves
on a nodal curve Y.
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1. Introduction

In [1] we defined and studied GPBs (generalized parabolic bundles) on an irreducible
nonsingular projective curve. The notion easily generalizes to a GPS (= generalized
parabolic sheaf) on an integral projective curve X. A GPS is a torsion-free sheaf E
together with an additional structure called parabolic structure over disjoint effective
Cartier divisors {D;},,, J a finite set (see Definitions 1.3, 1.4). In [1] we constructed
moduli spaces for GPBs with parabolic structure of certain type over a single divisor
(i.e. J = singleton). Here we consider many divisors. Moreover, X being singular, the
method used in [1] fails. Therefore we generalize the method of Simpson [4] for the

construction of moduli spaces.

Theorem 1. There exists a (coarse) moduli space M x.7(k,d) of semistable GPS F of
rank k, degree d with parabolic structure over D; given by a flag F':H°(F ® Op;) =
F{(F)> 0,V;eJ and weights (0,0), where a; = dim F/, (F) and rational number o are fixed
with 0<a<1. My ;=My ;(k,d) is a projective variety of dimension k*(g— 1)+
1 + Z;a;(k degree D; — a;),g = arithmetic genus of X.

If X is nonsingular, then M(k,d) is normal. If further (k,d) = 1,a;=multiple of k
and o is close to 1 then M(k,d) is nonsingular and is a fine moduli space.

Theorem 2. Let X be the curve (proper transform) obtained by blowing up nodes {y;},.,
of an integral projective curve Y,myy:X — Y surjection. For jeJ, let D;=nxy (y;),
‘aj=k. Then there exists a surjective birational morphism fyy:My ju;— My . In
particular, if J' = ¢, X = desingularization of Y, (k,d) = 1,a close to 1, then My , is the
desingularization of the moduli space My , of semistable torsion-free sheaves on Y.
Further, if X' is a partial desingularization of Y, obtained by blowing up y;,jeJ’, nx x:
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X > X', myy:X'— Y, then (with suitable D; and parabolic structure as above) fyy =
Jxyo fxx. Thus My, is a partial desingularization of M, e

There is a close relationship between torsion-free sheaves on a singular curve Y
and GPS on its desingularization. An analogue of Theorem 2 holds if { y;} are ordinary
cusps, and hopefully also in case each y; is an ordinary n-tuple point with linearly
independent tangents.

1. Preliminaries

Let X be an integral projective curve defined over an algebraically closed field k. Let
wy denote the dualising sheaf on X, it is a torsion-free sheaf. For a torsion-free sheaf
E on X we denote by r(E) and d(E) respectively the rank and degree of E. Let {D,}jeJ
be finitely many effective divisors on X such that supports of D ; are mutually disjoint.

DEFINITION 1.1

A quasi-parabolic structure on E over D; is a flag #/(E) of vector subspaces of
H°(E ®0p,) viz.

FIE):Fi(E)= HY(E® 0p,) > Fi(E) > - > Fi(E) = 0.
DEFINITION 1.2

Let & (E) = {#7(E)},.;- A QPS is a pair (E, # (E)) where E is a torsion-free sheaf and
Z (E) is a quasiparabolic structure on {D;}jeJ as above.

DEFINITION 1.3

A parabolic structure on E over D; is a quasiparabolic structure #/(E) (See. 1.1)
together with an r-tuple of real numbers o = (« (E),---, o (E),0<od{E)< - <o) -
(E) <1, called weights associated to %7(E),

Let m} = dim Fi_, (E) — dim Fi(E),i = 1,---,7;. Define wt;(E) = ZiL, m{oi(E), wtE =
Z;wt;(E). Let par d(E) = d(E) + wt(E), par u(E) = par d(E)/r(E).

DEFINITION 14

A GPS (generalized parabolic sheaf) is a triple (E, # (E), &) with #,a as in 1.1 and 1.3,

1.5

Let K be a subsheaf of E such that the quotient E/K is torsion-free in a neighbourhood
of D. Let h:K — E be the inclusion map. Since D is a divisor and E/K is torsion-free,
one has Tor{(E/K,0,)==0 and therefore hp:K|p—E|, is an injection. Hence
H°(K®Up) can be identified with a subspace Fi(K) of Fi(E). Define Fi(K)=
F}(K) Fi(E). This gives (after omitting repetitions) a flag #7(K), jeJ. The set {f(K)}
of weights for K is a subset of {a(K)} defined as follows. One has Fi(K) =

1
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GPS on an integral projective curve 15

FI(E)n Fi(K) for some i, let i, be largest such i. Then of(K): = of (E). Thus a subsheaf
of a GPS with torsion-free quotient gets a natural structure of a GPS.

DEFINITION 1.6

A GPS(E, # (E), ) is semistable (respectively stable) if for every (resp. proper) subsheaf
K of E with torsion-free quotient, one has par pu(K) < (resp. <) par pu(E).

Remarks 1.7. (1) If E/K is not torsion-free, then we may still define F i (K) =image of
H°(K ® 0,,) under H(h|,) and define #/(K) by intersecting Fi(K)with the flag #/(E).
Thus we can talk of wtK. If M is the largest subsheaf of E containing K, with E/M
torsion-free and r(K) = r(M) then par u(K) < par u(M). Then the condition of 1.6 is
satisfied for every subsheaf K of E if (E, # (E),a) is a semistable (resp. stable) GPS.
(2) There exists a natural parabolic structure on a quotient sheaf also. Semistability
and stability can also be defined equivalently using quotients instead of subsheaves,
(See 3.4, 3.5 [1]).

Assumptions 1.8. In this paper we want to study moduli spaces of GPS(F, # (F),a) of
the form #J(F):Fi(F) > F}(F)> 0,0’ = (0,0),0 < a < I. We also assume that for all j
support of D; is contained in the set of nonsingular points of X. Henceforth we restrict
ourselves to bundles of the above type. We also assume that the base field is that of
complex numbers.

DEFINITION 1.9

A morphism of GPS is a morphism of torsion-free sheaves f:F—F' such that
(f|D,)(Fi(F)) < Fi(F') for all j.

Lemma 1.10. Ler (F, % (F),a) be a semistable GPS. Then there exists an integer ny
dependent only on g(= arithmetic genus of X) and degree D, jeJ such that if
¥(F)=n>n,, then

(1) HY(F)=0,C"~ H°(F),
(2) F is generated by global sections,
(3) H°(F)—H°(F ® 0p,) is onto.

Proof. This follows from H(F')~ H°(X,Hom(F’, wy))* and the latter is zero if pu(F g
is sufficiently large (depending on x(F), g). For (3) we need to take F' = F (—Dj). (For
details, see Lemma 3.7 [1D).

Lemma 1.11. A morphism f of semistable GPS of same par i is of constant rank. If
the GPS have the same rank and one of them is stable, than either f =0 or f is an
isomorphism.

Proof. This can be proved similarly as in Lemma 3.8 [1].

COROLLARY 1.12.

A stable GPS is simple i.e. its only endomorphisms are homothesies.
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PROPOSITION 1.13.

The category S of all semistable GPS on X (of type described in 1.18) with a fixed
parp=mis an abelian category. Its simple objects are the stable GPS.

Proof. This follows from 1.11 and 1.12.

DEFINITION 1.14

In view of the above proposition, a semistable GPS(E, #,a) in § has a filtration with
successive quotients stable GPS with paru=m. We denote by gr(E,#,0) the
associated graded object for the filtration. Up to isomorphism this object is independent
of the choice of stable filtration. Define an equivalence relation on S by (E, #,q) is
equivalent to (E', &', a) iff gr(E, #, o)~ gr(E', #'a).

Remark 1.5. We may (for convenience) use the terminology ‘a GPS E” when there is
no confusion about parabolic structure possible. '

2. Construction of the moduli space

2.1 Consider semistable GPS F of type described in 1.8 with rank k, Euler
characteristic n > n, fixed. Let P(m) be the Hilbert polynomial of F. Let 0=0Q(0", P(m))
be the quot scheme of coherent sheaves over X which are quotients of ¢" and have
Hilbert polynomial equal to P. Let # denote the universal quotient sheaf on Q x X.
Let R be the open subscheme of Q consisting of points geQ such that & =Flgx X
is torsion-free and the map H°(0")— H(F ¢) 1s an isomorphism. It follows that
HY(#,)=0 for qeR. For every j, let p;:R x D;— R be the canonical map and define
Vi=(p)(F, o,)- Let G(V;) be the flag bundle over R of the type determined by the
parabolic structure over D ;- It is a relative Grassmannian bundle of quotients of rank

- q;. Let R denote the fibre product of {G(V})}; over R. Let R* (resp. R*) denote the

subset of R corresponding to stable (resp. semistable) GPS. Similarly we can define
Q: és and st_ ‘

The quot scheme Q has a natural embedding in a Grassmannian. For m > M 1(n),
the natural map H°(0% (m)) > H(# o(m)) is surjective for all ge Q. Let W= H %(Ox(m)),
then H(# ,(m)) is a quotient of C* ® W of dimension P(m) for m> M 1. This gives a
closed embedding Q —Grass,,,, (C"® W). A point q of Q gives for each j, a
g;-dimensional quotient of C". Hence we get an embedding Q0 —»Z = Grass Pm)’
C"® W) x(x ;Grass;;(C")). This embedding is equivariant under the action of
PGL(n). The PGL(n) action on Q and C" is the natural one, while on W it acts
trivially. On Z we take the polarization '

a(n—aY q;)/kmx ax x -+ x ag,
J

where 1 denotes 0(1) and a is a sufficiently big integer to make all the numbers above
integers, n> X,q;. ' ‘

We denote a point of Z by (P, (P;);) where P:C"® WU, P;:C"— U are surjective
maps, dim U = P(m), dim U;=g; for all j. Similarly a point of 0 is denoted by (p,(p;);)
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where p:0"— F, p;: H(F|D;) - QF are surjections, dim Qf = q,Vj. For a subsheaf E of
F, we define QF = p,(H°(E|D;)). For a quotient ¢:F — G, define Qf = H°(G|D;)/q(Ker p,).
For simplicity of notation, we denote dim(Qf) (dim(Q¥)) by ¢;(E) (by g,(G)). In
particular, g; = g;(F).

PROPOSITION 2.2

For a nontrivial proper subspace H = C" of dimension h define oy by
oy = ((n —ay qj)/km)(hP(m) —ndim P(H® W))
J

+a) (g;h — ndim P;(H)).
j

Then a point (P,(P;)) bf Z is semistable (resp. stable) for PGL(n) — action (with the
above polarization) if and only if oy <0 (respectively < Q).

Proof. See'[3, Proposition 5.1.1] and [2, Proposition 4.3].
DEFINITION 2.3

Let F be a torsion-free sheaf of rank k on X. For every subsheaf E of F and m>0
integer define

xe(m) = ((n —ay, q,-) / km)(x(E)P(m) — ny(E(m))

+ a;(qjx(E) — ng;(E)),

| qs(m)=v((n—-a;q,-) / km)(h"(E)P(m)—nx(E(m))
+ a; (4;h°(E) — ng,(E)).

Lemma 2.4. Let F be a torsion-free sheaf corresponding to a point (p, (p;);) of Q. Then
F is semistable (respectively stable) if and only if for every subsheaf E of F we have
Xe = xg(m) < (resp. < 0) for any integer m. :

Proof. Let E be a subsheaf of F with F/E torsion-free. Substituting P(m) = km + n,

X(E(m)) = x(E) + mr(E)(r(E) = rank of E) in the expression for y; and simplifying one -
gets

xe(m) = nr(E)[x(E)/r(E) —nfk+ a;qj/k - dij(E)/r(E)]-

By definition F is semistable (respectively stablé) if and only if the expression in the
square bracket is <0 (resp. < 0).
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Suppose now that F/E is not torsion-free. Then there exists E, E < E such that F/E
is torsion-free, rank E = rank E. Let E/E = t = % + 2,7, where Tp, = Tp,- By the above
argument, yz(m)<0. We claim that yz(m) < xz(m). Using x(E(m))— x(E (m)) = h°(z)
for m >0, g;(E) — q;(E) < h°(z;) we get yg(m) — xg(m) =n(@Z;h°%(z;) — h°(x)) < O since
a<l.

Lemma 2.5. There exists an integer M ,(n) > M, (n) such that if ( ,(pj))eQ is a point
satisfying the following two conditions, then the image of the point in Z is semistable
(resp. stable).

(1) The canonical map C*— H°(F) is an isomorphism.
(2) For every subsheaf E of F generated by global sections, og(m) <0 (resp. <0)
Jfor m= M, (n).

Proof. Let H = C" be a subspace. Let E be the subsheaf of F generated by H and let
K be the kernel of the surjection H® 0, — E. As H varies over subspaces of C" and
F varies over Q, the sheaves E and hence K form a bounded family. Hence there exists
M, (n) such that for m > M,(n),h' (E(— D;)(m)) =0, h*(E(m))=0 and h*(K(m)) =0
for all such E and K. It follows that diim P(H® W)= % (E(m)). Clearly dim H < h°(E),
dim P;(H) = g;(E). Therefore oy < 05(m) <0 (resp. <0). Thus the image (P,(P;)) of
(p,(p;)) is semistable (resp. stable).

Lemma 2.6. One can find M5 (n) > M ,(n) such that for m> M 3(n) the following holds.
If (p,p))€Q is a point whose image in Z is semistable then (i) C"— HO(F) is injective
and (ii) for all torsion-free quotients F — G — 0, one has 16 < 0. Here 1 is defined by

To= (t%?ﬁ;) ( ~ kh(G) + nr(G)) + 03 (1,(6) — 4,1°(G).

Proof. Note that if H,, is the kernel of the map C"— H (F), then oy, > 0 contradicting
the semistability of the image point in Z (Proposition 2.2). Hence (i) follows. For (ii),
suppose that there exists a torsion-free quotient G with 7g > 0. Then h°(G) < n, for
h°(G) = n implies 75 < 0. Let' H be the kernel of the composite C"— H°(F)— H°(G).
Let E denote the subsheaf of F generated by H. Clearly we have r(E) + r(G) <k,
(G =n—hq (G)<q;—g,(E), dim PJ(H)<q ;(E)- Substituting these in the expression
for ©; one gets

((n - anj) /k)(kh —nr(E)) + o) (q;h — ng;(E)) > 0.

Since H and hence E runs over a bounded family we can find M4(n) > M, (n) such
that for m > M,(n), the term kh — nr(E) can be replaced by (hP(m) — ny(E(m))/m=

(hP(m) — ndim P(H® W))/m. Thus we get oy >0 contradicting the semistability of
the image point in Z.

Lemma 2.7. There exists ny>n, such that for all semistable GPSF with Euler
characteristic n 2 n, the following holds

¥
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(1) If EcF then 1 <0 where

Tp= ((n - chqj)/k>(kh°(E) — nr(E)) + oy’ (q;h°(E) — ng,(E)).

() If tg=0 for some¢ E c F, then yz=0.
() If <0, then ag(m) <O for m>= M,(n). If 1, =0, then og(m)=0 for m>= M,(n).

Proof. (1) Lét 0=E,c E, = --- < E,= E be the Harder-Narasimhan filtration of E
considered as a torsion-free sheaf only, ignoring the parabolic structure. Let 0,=E,E;,_,,
i=1,---,r, u; = degree Q;/ rank Q;,v=infy;. One has y, > Ki+1Vi<r (by definition),
h°(E) < Z;h°(Q;) (by induction). Using Corollary 2.5 [4], this implies h°(E) < Z'r(Q,)
(#; + By), B; constant. Since Q, is a subsheaf of a semistable GPS F we have
i < iy < u(F) + WY, w=(weF)/k. Since n>n,,Z,r(Q,) =r(E),v =y, we get h°(E) <
Z,2 @) (W(F) +w + By ) + (v + By) + (r(Q;,) — D(u(F) + w + By) < v+ (r(E) — 1)-
n/k + B,, B, constant. Hence t; < n(v+ B, — n/k). Therefore if v < n/k — B, (resp. <)
then 77 <0 (resp. <0). We can choose n, large enough so that for n> n,, we have
h*(Q(m)) =0 for all m>0 and for all stable torsion-free sheaves 0 of rank <k anda
p=nfk— B,. Hence if v > n/k — B, for E, then h*(Q,(m) = OVi, therefore h'(E(m)) =0
and y(E(m)) = h°(E(m)) for m > 0. Then t; = y; and y; < 0 by Lemma 2.4. Thus 1, <0
for all Ec F.

(2) If 7z =0, then by the above argument one must have v > n/k — B,, x(E) = h°(E)
and 1z = yg. Thus yp = 05(m)=0.

(3) Note that 1z = lim,,., ., 6(m). Hence given & > 0,3 M, (n) such that form > M 4(n),
og(m) <tg+e¢ If 1, <0 then choosing & such that 15+ ¢<0, we get og(m) <0 for
mz=M,(n).

Theorem 1. (I) Let X be an integral projective curve of arithmetic genus g over C. Let
{D;};e; be finitely many effective Cartier divisors in X such that the support of D; does
not intersect the set of singular points of X for all j, supports of D; are mutually disjoint
and degree D;=d;, jeJ. Let S denote the set of equivalence classes of semistable GPS
F of rank k degree d with parabolic structure over D; given by Fi(F)=H°(F® 0p;)
F{(F)>0, co-dimension of Fj(F) in Fi(F) equal to q; (fixed) for jeJ and weights
(0,0),0 <a < 1. Then S has the structure of a projective variety M(k,d) of dimension
k*(g—1)+1 +Z;q;(kd; — g;). ‘ ,

(IT) If X is nonsingular, then M(k,d) is normal. If further (k, d)=1,q; is a multiple
of k and a is sufficiently near 1 then M (k, d) is nonsingular and it is a fine moduli space.

Proof. Let wy denote the dualising sheaf of X, it is a torsion-free sheaf. Fix n > max
(ny, kh®(wy) + 0X;q;) and m > M,(n). We keep the notations of 2.1. We shall show
that a geometric invariant theoretic quotient of R modulo PGL(n) exists. Our required
moduli space M (k,d) will be this quotient. R is an open subset of §, () is embedded
in Z (with m, n as above) by a PGL(n) equivariant embedding. We first claim that if
(p, ;)€ R* (resp. R®) then its image belongs to Z* (resp. Z°). This follows immediately
from Lemma 2.7 and Lemma 2.5. Let F correspond to a point in R* — R*. Then F
has a subsheaf E which is a torsion-free stable GPS with par u(E) = par u(F)i.e. x5z =0.
For such an E, 640, = xz (Lemma 1.10), hence the image in Z belongs to Z* — Z*.
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Conversely we shall now check that if a point in @ is such that its image belongs
to Z*, then the point is in R ie. if F is the corresponding quotient, then F is
torsion-free, the map C"— H®(F) is an isomorphism and F is a semistable GPS.
Lemma 2.6 implies that C"— H°(F) is injective and for every rank 1 torsion-free
quotient G of F,n < kh®(G) + aX;q; (as ¢ < 0). We claim that H'(F) = 0. Otherwise
there exists a nontrivial homomorphism F —wy. If G is the sheaf image of this
morphism, h°(wy) > h°(G) and hence n < kh®(wy) + «Z;q; contradicting the assumptions
on n. Thus h°(F) = n and C"— H°(F) is an isomorphism. Let 7 be the torsion subsheaf
of F,t=1,+ Z;1;, support t; S supp D;, (supp 7,)n(u supp D;)= ¢. Taking H =
HOt,), HO(z;), 05 <0 gives H(t,)=0,H%(t;)=0. Here a<1 is crucial since
oy =n(h—odim P;(H)). Thus H°(t)= H%(z,) + £;H°(t;) =0 ie. 1=0.

Suppose that F is not semistable. Then there ex1sts a subsheaf E of F such that E
is a semistable GPS with par u(E) > par u(F) i.e. xz > 0. By Lemma 1.10, oo = xg > 0
contradicting the semistability of the image point in Z.

It follows that the (geometric invariant theoretic) quotient M (k,d) of R mod PGL(n)
is the same as that of Q and it exists if and -only if the quotient of image of OinZ
exists. It is well known that the latter exists. The quotient M(k,d) is a projective
variety as Q is so. It is easy to check that the points of M (k, d) correspond to equivalence
classes of semistable GPS(3.15, [1]; [4])-

(2) If X is nonsingular R is known to be nonsingular and hence M(k, d) is normal.
If (k,d) =1, is sufficiently near to 1 and g; is an integral multiple of k, then GPS is
semistable if and only if it is stable by Lemma 3.3 (or Lemma 3.17, [1]). The
nonsingularity of R together with corollary 1.12 then imply that M (k, d) is nonsingular.
One can show that M(k, d) is then a fine moduli space, by proving the universal bundle
on R descends to a universal bundle on M (k, d) after twisting by a line bundle (see [1],
Proposition 3.18).

3. Application

3.1. Let Y be an integral projective curve with only singularities ordinary double
points {y;}jeJ. Let J' < J be a subset. Let X be the curve (proper transform) obtained
by blowing up {y;},.;- Let myy:X — Y be the natural morphism. Let D; denote the
divisor 7xy (y;),jeJ’. All the QPS and GPS that we consider are assumed to be of
the type described in 1.8. We also assume that dim FJ (F)) = r(F) for jeJ'.

DEFINITION 3.2

Let o be a real number in [0,1]. A QPS (F, #) on X is a-stable (resp. a-semistable)
if for any proper subsheaf K of F with torsion-free quotient, one has

(d(K) + a3, dim F{(K))/r(K) < (<)(d(F) + @ r(F))/r(F).

jeJ'

Remark. For 0 <o <1, the above condition is same as that for stability (resp.
semistability) of the GPS(F, #,a) with o/ = (0, a),jeJ".
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Lemma3.3. (1) Supposethat1 —1/J'r(F)(r(F)— 1)<a < 1. Then(F, %) is a-semistable
implies that it is 1-semistable. If the QPS is 1-stable then it is also o-stable. '

(2) Assume that (r(F),d(F))=1. Then the QPS is 1l-stable if and only if it is
1-semistable. Thus under the assumptions of (1) and (2) l-stability, a-stability and
a-semistability are all equivalent.

Proof. This is a straightforward generalization of Lemma 3.17 [1].

PROPOSITION 34.

Let Q denote the set of isomorphism classes of QPS (F,%) on X of given type (3.1).
Let r(F)=k,d(F)=d be fixed. Let S be the set of isomorphism classes of torsion-free
sheaves of rank k and degree d on Y. Let S, denote the subset of S corresponding to
sheaves which are locally free at y; for jeJ'. Then (a) there is a surjective map fxy:Q —S
such that its restriction to fyx¢(Sy) is a bijection onto S,. (b) (F,%) is 1-stable
(1-semistable) iff its image under fyy is stable (semistable).

Proof. Let D;=x;+z;. Then ((nxy),F)® k(y;) = (k(x; )@k(zj))"”—Ho(F® Opj) =
Fi(F). Thus we have a surjectlve Oy-linear map (nyy),F — FL(F). Let F’ be the kernel
of the composite of this map with the surjection Fi(F)— Fi(F)/F/(F). Since d(F)=
2(F) —r(F)x(Ox),d(F') = x(F') = r(F') x(Oy), x(F) = x((mxy). F). x(Oy) = x(Ox) = J', it
follows that if (F, #)eQ then F'eS. We define fyy(F, %)) = F'.If F'eS, then F = n}y F’
and Fj(F)=F ®k(y;) = Fj(F) gives the bijection. Surjectivity of f can be proved as
in 4.5 [1] while the last assertion follows exactly as in 4.2 [1].

Theorem 2. (I) Let My ;. be the moduli space of semistable GPS on X of type described
in 3.1. Assume that o satisfies the conditions of Lemma 3.3(1). Then there is a surjective
birational morphism fyy:My ;. — M , (= moduli space of torsion-free sheaves on Y).

(IT) Let Z be the desingularization of Y. Then the morphism f,y:M, ;— M, , factors
as fyy© fox- If the conditions of Lemma 3.3 are satisfied then M ; is a desingularization
of My, and My ;(J' = J) are ‘partial desingularizations.

Proof. (I) This follows easily from Lemma 3.3 and Proposition 3.4 since it is easy to
globalise the construction (of fyy) to families of GPS. (See Theorem 2 [1] for details).

(II) Let f,x(F, %) = F'. Notice that n,y is an isomorphism outside J — J'. Hence F’
has a parabolic structure &' over D;,jeJ’ viz. F{(F’)~ F{(F) for i=0,1,jeJ’. Thus
fox(F, F)=(F,#")eMy ;. Let fXY(F' ZF')=F". Then we have the exact sequences
(defining F', #")

0—F' = (nzx).F = ®@;_p FJ(F)/F{(F)~>0
0 F" = (ntyy), F' = @, FY(F')/F{(F) 0.
Using these and 7,y = myymzy, ONE gets
05 F o (). F > ©,Fi(F)/Fy(F) 0

proving fzy = fxy,fzx- The last assertion follows from Theorem 1 (II).
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