

Generalized parabolic sheaves on an integral projective curve

USHA N BHOSLE

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

MS received 2 January 1992

Abstract. We extend the notion of a parabolic vector bundle on a smooth curve to define generalized parabolic sheaves (GPS) on any integral projective curve X . We construct the moduli spaces $M(X)$ of GPS of certain type on X . If X is obtained by blowing up finitely many nodes in Y then we show that there is a surjective birational morphism from $M(X)$ to $M(Y)$. In particular, we get partial desingularisations of the moduli of torsion-free sheaves on a nodal curve Y .

Keywords. Generalized parabolic sheaf; projective curve.

1. Introduction

In [1] we defined and studied GPBs (generalized parabolic bundles) on an irreducible nonsingular projective curve. The notion easily generalizes to a GPS (= generalized parabolic sheaf) on an integral projective curve X . A GPS is a torsion-free sheaf E together with an additional structure called parabolic structure over disjoint effective Cartier divisors $\{D_j\}_{j \in J}$, J a finite set (see Definitions 1.3, 1.4). In [1] we constructed moduli spaces for GPBs with parabolic structure of certain type over a single divisor (i.e. J = singleton). Here we consider many divisors. Moreover, X being singular, the method used in [1] fails. Therefore we generalize the method of Simpson [4] for the construction of moduli spaces.

Theorem 1. *There exists a (coarse) moduli space $M_{X,J}(k, d)$ of semistable GPS F of rank k , degree d with parabolic structure over D_j given by a flag $\mathcal{F}^i: H^0(F \otimes \mathcal{O}_{D_j}) \supset F_1^j(F) \supset 0, \forall j \in J$ and weights $(0, \alpha)$, where $a_j = \dim F_1^j(F)$ and rational number α are fixed with $0 < \alpha < 1$. $M_{X,J} = M_{X,J}(k, d)$ is a projective variety of dimension $k^2(g-1) + 1 + \sum_j a_j (k \text{ degree } D_j - a_j)$, $g = \text{arithmetic genus of } X$.*

If X is nonsingular, then $M(k, d)$ is normal. If further $(k, d) = 1, a_j = \text{multiple of } k$ and α is close to 1 then $M(k, d)$ is nonsingular and is a fine moduli space.

Theorem 2. *Let X be the curve (proper transform) obtained by blowing up nodes $\{y_j\}_{j \in J}$ of an integral projective curve $Y, \pi_{XY}: X \rightarrow Y$ surjection. For $j \in J$, let $D_j = \pi_{XY}^{-1}(y_j)$, $a_j = k$. Then there exists a surjective birational morphism $f_{XY}: M_{X,J \cup J'} \rightarrow M_{Y,J'}$. In particular, if $J' = \phi, X = \text{desingularization of } Y, (k, d) = 1, \alpha \text{ close to } 1$, then $M_{X,J}$ is the desingularization of the moduli space $M_{Y,\phi}$ of semistable torsion-free sheaves on Y . Further, if X' is a partial desingularization of Y , obtained by blowing up $y_j, j \in J', \pi_{X,X'}$:*

$X \rightarrow X', \pi_{X'Y}: X' \rightarrow Y$, then (with suitable D_j and parabolic structure as above) $f_{XY} = f_{X'Y} \circ f_{XX'}$. Thus $M_{X'Y}$ is a partial desingularization of $M_{Y,\phi}$.

There is a close relationship between torsion-free sheaves on a singular curve Y and GPS on its desingularization. An analogue of Theorem 2 holds if $\{y_j\}$ are ordinary cusps, and hopefully also in case each y_i is an ordinary n -tuple point with linearly independent tangents.

1. Preliminaries

Let X be an integral projective curve defined over an algebraically closed field k . Let ω_X denote the dualising sheaf on X , it is a torsion-free sheaf. For a torsion-free sheaf E on X we denote by $r(E)$ and $d(E)$ respectively the rank and degree of E . Let $\{D_j\}_{j \in J}$ be finitely many effective divisors on X such that supports of D_j are mutually disjoint.

DEFINITION 1.1

A quasi-parabolic structure on E over D_j is a flag $\mathcal{F}^j(E)$ of vector subspaces of $H^0(E \otimes \mathcal{O}_{D_j})$ viz.

$$\mathcal{F}^j(E): F_o^j(E) \equiv H^0(E \otimes \mathcal{O}_{D_j}) \supset F_1^j(E) \supset \dots \supset F_r^j(E) = 0.$$

DEFINITION 1.2

Let $\mathcal{F}(E) = \{\mathcal{F}^j(E)\}_{j \in J}$. A QPS is a pair $(E, \mathcal{F}(E))$ where E is a torsion-free sheaf and $\mathcal{F}(E)$ is a quasiparabolic structure on $\{D_j\}_{j \in J}$ as above.

DEFINITION 1.3

A parabolic structure on E over D_j is a quasiparabolic structure $\mathcal{F}^j(E)$ (See. 1.1) together with an r_j -tuple of real numbers $\alpha^j = (\alpha_1^j(E), \dots, \alpha_{r_j}^j(E))$, $0 \leq \alpha_1^j(E) < \dots < \alpha_{r_j}^j(E) < 1$, called weights associated to $\mathcal{F}^j(E)$.

Let $m_i^j = \dim F_{i-1}^j(E) - \dim F_i^j(E)$, $i = 1, \dots, r_j$. Define $wt_j(E) = \sum_{i=1}^{r_j} m_i^j \alpha_i^j(E)$, $wt E = \sum_j wt_j(E)$. Let $\text{par } d(E) = d(E) + wt(E)$, $\text{par } \mu(E) = \text{par } d(E)/r(E)$.

DEFINITION 1.4

A GPS (generalized parabolic sheaf) is a triple $(E, \mathcal{F}(E), \alpha)$ with \mathcal{F}, α as in 1.1 and 1.3.

1.5

Let K be a subsheaf of E such that the quotient E/K is torsion-free in a neighbourhood of D . Let $h: K \rightarrow E$ be the inclusion map. Since D is a divisor and E/K is torsion-free, one has $\text{Tor}_1(E/K, \mathcal{O}_D) = 0$ and therefore $h|_D: K|_D \rightarrow E|_D$ is an injection. Hence $H^0(K \otimes \mathcal{O}_D)$ can be identified with a subspace $F_o^j(K)$ of $F_o^j(E)$. Define $F_i^j(K) = F_o^j(K) \cap F_i^j(E)$. This gives (after omitting repetitions) a flag $\mathcal{F}^j(K)$, $j \in J$. The set $\{\alpha_i^j(K)\}$ of weights for K is a subset of $\{\alpha_i^j(E)\}$ defined as follows. One has $F_i^j(K) =$

$F_i^j(E) \cap F_o^j(K)$ for some i , let i_o be largest such i . Then $\alpha_i^j(K) := \alpha_{i_o}^j(E)$. Thus a subsheaf of a GPS with torsion-free quotient gets a natural structure of a GPS.

DEFINITION 1.6

A $\text{GPS}(E, \mathcal{F}(E), \alpha)$ is semistable (respectively stable) if for every (resp. proper) subsheaf K of E with torsion-free quotient, one has $\text{par } \mu(K) \leq (\text{resp. } <) \text{par } \mu(E)$.

Remarks 1.7. (1) If E/K is not torsion-free, then we may still define $F_o^i(K) = \text{image of } H^0(K \otimes \mathcal{O}_D)$ under $H^0(h|_D)$ and define $\mathcal{F}^j(K)$ by intersecting $F_o^j(K)$ with the flag $\mathcal{F}^j(E)$. Thus we can talk of $\text{wt } K$. If M is the largest subsheaf of E containing K , with E/M torsion-free and $r(K) = r(M)$ then $\text{par } \mu(K) \leq \text{par } \mu(M)$. Then the condition of 1.6 is satisfied for every subsheaf K of E if $(E, \mathcal{F}(E), \alpha)$ is a semistable (resp. stable) GPS. (2) There exists a natural parabolic structure on a quotient sheaf also. Semistability and stability can also be defined equivalently using quotients instead of subsheaves. (See 3.4, 3.5 [1]).

Assumptions 1.8. In this paper we want to study moduli spaces of $\text{GPS}(F, \mathcal{F}(F), \alpha)$ of the form $\mathcal{F}^j(F): F_o^j(F) \supset F_1^j(F) \supset \dots \supset 0, \alpha^j = (0, \alpha), 0 < \alpha < 1$. We also assume that for all j support of D_j is contained in the set of nonsingular points of X . Henceforth we restrict ourselves to bundles of the above type. We also assume that the base field is that of complex numbers.

DEFINITION 1.9

A morphism of GPS is a morphism of torsion-free sheaves $f: F \rightarrow F'$ such that $(f|_{D_j})(F_1^j(F)) \subseteq F_1^j(F')$ for all j .

Lemma 1.10. Let $(F, \mathcal{F}(F), \alpha)$ be a semistable GPS. Then there exists an integer n_1 dependent only on g (= arithmetic genus of X) and degree $D_j, j \in J$ such that if $\chi(F) = n > n_1$, then

- (1) $H^1(F) = 0, \mathbf{C}^n \approx H^0(F)$,
- (2) F is generated by global sections,
- (3) $H^0(F) \rightarrow H^0(F \otimes \mathcal{O}_{D_j})$ is onto.

Proof. This follows from $H^1(F) \approx H^0(X, \text{Hom}(F', \omega_X))^*$ and the latter is zero if $p\mu(F')$ is sufficiently large (depending on $\chi(F'), g$). For (3) we need to take $F' = F(-D_j)$. (For details, see Lemma 3.7 [1]).

Lemma 1.11. A morphism f of semistable GPS of same $\text{par } \mu$ is of constant rank. If the GPS have the same rank and one of them is stable, then either $f = 0$ or f is an isomorphism.

Proof. This can be proved similarly as in Lemma 3.8 [1].

COROLLARY 1.12.

A stable GPS is simple i.e. its only endomorphisms are homotheties.

PROPOSITION 1.13.

The category S of all semistable GPS on X (of type described in 1.18) with a fixed par $\mu = m$ is an abelian category. Its simple objects are the stable GPS.

Proof. This follows from 1.11 and 1.12.

DEFINITION 1.14

In view of the above proposition, a semistable GPS (E, \mathcal{F}, α) in S has a filtration with successive quotients stable GPS with par $\mu = m$. We denote by $\text{gr}(E, \mathcal{F}, \alpha)$ the associated graded object for the filtration. Up to isomorphism this object is independent of the choice of stable filtration. Define an equivalence relation on S by (E, \mathcal{F}, α) is equivalent to $(E', \mathcal{F}', \alpha)$ iff $\text{gr}(E, \mathcal{F}, \alpha) \approx \text{gr}(E', \mathcal{F}', \alpha)$.

Remark 1.5. We may (for convenience) use the terminology 'a GPS E ' when there is no confusion about parabolic structure possible.

2. Construction of the moduli space

2.1 Consider semistable GPS F of type described in 1.8 with rank k , Euler characteristic $n > n_1$ fixed. Let $P(m)$ be the Hilbert polynomial of F . Let $Q = Q(\mathcal{O}^n, P(m))$ be the quot scheme of coherent sheaves over X which are quotients of \mathcal{O}^n and have Hilbert polynomial equal to P . Let \mathcal{F} denote the universal quotient sheaf on $Q \times X$. Let R be the open subscheme of Q consisting of points $q \in Q$ such that $\mathcal{F}_q = \mathcal{F}|_{q \times X}$ is torsion-free and the map $H^0(\mathcal{O}^n) \rightarrow H^0(\mathcal{F}_q)$ is an isomorphism. It follows that $H^1(\mathcal{F}_q) = 0$ for $q \in R$. For every j , let $p_j: R \times D_j \rightarrow R$ be the canonical map and define $V_j = (p_j)_*(\mathcal{F}|_{D_j})$. Let $G(V_j)$ be the flag bundle over R of the type determined by the parabolic structure over D_j . It is a relative Grassmannian bundle of quotients of rank q_j . Let \tilde{R} denote the fibre product of $\{G(V_j)\}_j$ over R . Let \tilde{R}^s (resp. \tilde{R}^{ss}) denote the subset of \tilde{R} corresponding to stable (resp. semistable) GPS. Similarly we can define \tilde{Q} , \tilde{Q}^s and \tilde{Q}^{ss} .

The quot scheme Q has a natural embedding in a Grassmannian. For $m \geq M_1(n)$, the natural map $H^0(\mathcal{O}_X^n(m)) \rightarrow H^0(\mathcal{F}_q(m))$ is surjective for all $q \in Q$. Let $W = H^0(\mathcal{O}_X^n(m))$, then $H^0(\mathcal{F}_q(m))$ is a quotient of $\mathbf{C}^n \otimes W$ of dimension $P(m)$ for $m \geq M_1$. This gives a closed embedding $Q \rightarrow \text{Grass}_{P(m)}(\mathbf{C}^n \otimes W)$. A point q of \tilde{Q} gives for each j , a q_j -dimensional quotient of \mathbf{C}^n . Hence we get an embedding $\tilde{Q} \rightarrow Z = \text{Grass}_{P(m)}(\mathbf{C}^n \otimes W) \times (\times_j \text{Grass}_{q_j}(\mathbf{C}^n))$. This embedding is equivariant under the action of $\text{PGL}(n)$. The $\text{PGL}(n)$ action on \tilde{Q} and \mathbf{C}^n is the natural one, while on W it acts trivially. On Z we take the polarization

$$a(n - \alpha \sum_j q_j)/km \times a\alpha \times \cdots \times a\alpha,$$

where 1 denotes $\mathcal{O}(1)$ and a is a sufficiently big integer to make all the numbers above integers, $n > \sum_j q_j$.

We denote a point of Z by $(P, (P_j)_j)$ where $P: \mathbf{C}^n \otimes W \rightarrow U$, $P_j: \mathbf{C}^n \rightarrow U_j$ are surjective maps, $\dim U = P(m)$, $\dim U_j = q_j$ for all j . Similarly a point of \tilde{Q} is denoted by $(p, (p_j)_j)$

where $p: \mathcal{O}^n \rightarrow F$, $p_j: H^0(F|D_j) \rightarrow Q_j^F$ are surjections, $\dim Q_j^F = q_j \forall j$. For a subsheaf E of F , we define $Q_j^E = p_j(H^0(E|D_j))$. For a quotient $q: F \rightarrow G$, define $Q_j^G = H^0(G|D_j)/q(\text{Ker } p_j)$. For simplicity of notation, we denote $\dim(Q_j^E)$ ($\dim(Q_j^G)$) by $q_j(E)$ (by $q_j(G)$). In particular, $q_j = q_j(F)$.

PROPOSITION 2.2

For a nontrivial proper subspace $H \subset \mathbb{C}^n$ of dimension h define σ_H by

$$\begin{aligned} \sigma_H = & \left(\left(n - \alpha \sum_j q_j \right) \middle/ km \right) (hP(m) - n \dim P(H \otimes W)) \\ & + \alpha \sum_j (q_j h - n \dim P_j(H)). \end{aligned}$$

Then a point $(P, (P_j))$ of Z is semistable (resp. stable) for $\text{PGL}(n)$ -action (with the above polarization) if and only if $\sigma_H \leq 0$ (respectively < 0).

Proof. See [3, Proposition 5.1.1] and [2, Proposition 4.3].

DEFINITION 2.3

Let F be a torsion-free sheaf of rank k on X . For every subsheaf E of F and $m \geq 0$ integer define

$$\begin{aligned} \chi_E(m) = & \left(\left(n - \alpha \sum_j q_j \right) \middle/ km \right) (\chi(E)P(m) - n\chi(E(m))) \\ & + \alpha \sum_j (q_j \chi(E) - nq_j(E)), \\ \sigma_E(m) = & \left(\left(n - \alpha \sum_j q_j \right) \middle/ km \right) (h^0(E)P(m) - n\chi(E(m))) \\ & + \alpha \sum_j (q_j h^0(E) - nq_j(E)). \end{aligned}$$

Lemma 2.4. Let F be a torsion-free sheaf corresponding to a point $(p, (p_j))$ of \tilde{Q} . Then F is semistable (respectively stable) if and only if for every subsheaf E of F we have $\chi_E = \chi_E(m) \leq 0$ (resp. < 0) for any integer m .

Proof. Let E be a subsheaf of F with F/E torsion-free. Substituting $P(m) = km + n$, $\chi(E(m)) = \chi(E) + mr(E)r(E) = \text{rank of } E$ in the expression for χ_E and simplifying one gets

$$\chi_E(m) = nr(E) \left[\chi(E)/r(E) - n/k + \alpha \sum_j q_j/k - \alpha \sum_j q_j(E)/r(E) \right].$$

By definition F is semistable (respectively stable) if and only if the expression in the square bracket is ≤ 0 (resp. < 0).

Suppose now that F/E is not torsion-free. Then there exists $\tilde{E}, E \subset \tilde{E}$ such that F/\tilde{E} is torsion-free, $\text{rank } E = \text{rank } \tilde{E}$. Let $\tilde{E}/E = \tau = \tilde{\tau} + \sum_j \tau_j$, where $\tau_{j|D_j} = \tau_{j|D_j}$. By the above argument, $\chi_{\tilde{E}}(m) \leq 0$. We claim that $\chi_E(m) < \chi_{\tilde{E}}(m)$. Using $\chi(\tilde{E}(m)) - \chi(E(m)) = h^0(\tau)$ for $m \geq 0$, $q_j(\tilde{E}) - q_j(E) \leq h^0(\tau_j)$ we get $\chi_E(m) - \chi_{\tilde{E}}(m) = n(\alpha \sum_j h^0(\tau_j) - h^0(\tau)) < 0$ since $\alpha < 1$.

Lemma 2.5. *There exists an integer $M_2(n) \geq M_1(n)$ such that if $(p, (p_j)) \in \tilde{Q}$ is a point satisfying the following two conditions, then the image of the point in Z is semistable (resp. stable).*

- (1) *The canonical map $\mathbf{C}^n \rightarrow H^0(F)$ is an isomorphism.*
- (2) *For every subsheaf E of F generated by global sections, $\sigma_E(m) \leq 0$ (resp. < 0) for $m \geq M_2(n)$.*

Proof. Let $H \subset \mathbf{C}^n$ be a subspace. Let E be the subsheaf of F generated by H and let K be the kernel of the surjection $H \otimes \mathcal{O}_X \rightarrow E$. As H varies over subspaces of \mathbf{C}^n and F varies over Q , the sheaves E and hence K form a bounded family. Hence there exists $M_2(n)$ such that for $m \geq M_2(n)$, $h^1(E(-D_j)(m)) = 0$, $h^1(E(m)) = 0$ and $h^1(K(m)) = 0$ for all such E and K . It follows that $\dim P(H \otimes W) = \chi(E(m))$. Clearly $\dim H \leq h^0(E)$, $\dim P_j(H) = q_j(E)$. Therefore $\sigma_H \leq \sigma_E(m) \leq 0$ (resp. < 0). Thus the image $(P, (P_j))$ of $(p, (p_j))$ is semistable (resp. stable).

Lemma 2.6. *One can find $M_3(n) \geq M_2(n)$ such that for $m \geq M_3(n)$ the following holds. If $(p, p_j) \in \tilde{Q}$ is a point whose image in Z is semistable then (i) $\mathbf{C}^n \rightarrow H^0(F)$ is injective and (ii) for all torsion-free quotients $F \rightarrow G \rightarrow 0$, one has $\tau_G \leq 0$. Here τ_G is defined by*

$$\tau_G = \left(\frac{n - \alpha \sum_j q_j}{k} \right) \left(-kh^0(G) + nr(G) \right) + \alpha \sum_j (nq_j(G) - q_j h^0(G)).$$

Proof. Note that if H_0 is the kernel of the map $\mathbf{C}^n \rightarrow H^0(F)$, then $\sigma_{H_0} > 0$ contradicting the semistability of the image point in Z (Proposition 2.2). Hence (i) follows. For (ii), suppose that there exists a torsion-free quotient G with $\tau_G > 0$. Then $h^0(G) < n$, for $h^0(G) \geq n$ implies $\tau_G \leq 0$. Let H be the kernel of the composite $\mathbf{C}^n \rightarrow H^0(F) \rightarrow H^0(G)$. Let E denote the subsheaf of F generated by H . Clearly we have $r(E) + r(G) \leq k$, $h^0(G) \geq n - h$, $q_j(G) \leq q_j - q_j(E)$, $\dim P_j(H) \leq q_j(E)$. Substituting these in the expression for τ_G one gets

$$\left(\left(n - \alpha \sum_j q_j \right) / k \right) (kh - nr(E)) + \alpha \sum_j (q_j h - nq_j(E)) > 0.$$

Since H and hence E runs over a bounded family we can find $M_3(n) \geq M_2(n)$ such that for $m \geq M_3(n)$, the term $kh - nr(E)$ can be replaced by $(hP(m) - n\chi(E(m)))/m = (hP(m) - n \dim P(H \otimes W))/m$. Thus we get $\sigma_H > 0$ contradicting the semistability of the image point in Z .

Lemma 2.7. *There exists $n_2 \geq n_1$ such that for all semistable GPSF with Euler characteristic $n \geq n_2$ the following holds*

(1) If $E \subset F$ then $\tau_E \leq 0$ where

$$\tau_E = \left(\left(n - \alpha \sum_j q_j \right) / k \right) (kh^0(E) - nr(E)) + \alpha \sum_j (q_j h^0(E) - nq_j(E)).$$

(2) If $\tau_E = 0$ for some $E \subset F$, then $\chi_E = 0$.

(3) If $\tau_E < 0$, then $\sigma_E(m) < 0$ for $m \geq M_4(n)$. If $\tau_E = 0$, then $\sigma_E(m) = 0$ for $m \geq M_4(n)$.

Proof. (1) Let $0 = E_0 \subset E_1 \subset \dots \subset E_r = E$ be the Harder-Narasimhan filtration of E considered as a torsion-free sheaf only, ignoring the parabolic structure. Let $Q_i = E_i/E_{i-1}$, $i = 1, \dots, r$, $\mu_i = \text{degree } Q_i / \text{rank } Q_i$, $v = \inf \mu_i$. One has $\mu_i > \mu_{i+1} \forall i < r$ (by definition), $h^0(E) \leq \sum_j h^0(Q_j)$ (by induction). Using Corollary 2.5 [4], this implies $h^0(E) \leq \sum_i r(Q_i) (\mu_i + B_1)$, B_1 constant. Since Q_1 is a subsheaf of a semistable GPS F we have $\mu_i \leq \mu_1 \leq \mu(F) + w \forall i$, $w = (\text{wt } F)/k$. Since $n \geq n_1$, $\sum_i r(Q_i) = r(E)$, $v = \mu_{i_0}$ we get $h^0(E) \leq \sum_{i \neq i_0} r(Q_i) (\mu(F) + w + B_1) + (v + B_1) + (r(Q_{i_0}) - 1) (\mu(F) + w + B_1) \leq v + (r(E) - 1) \cdot n/k + B_2$, B_2 constant. Hence $\tau_E \leq n(v + B_2 - n/k)$. Therefore if $v \leq n/k - B_2$ (resp. $<$) then $\tau_E \leq 0$ (resp. < 0). We can choose n_2 large enough so that for $n \geq n_2$, we have $h^1(Q(m)) = 0$ for all $m \geq 0$ and for all stable torsion-free sheaves Q of rank $\leq k$ and $\mu \geq n/k - B_2$. Hence if $v \geq n/k - B_2$ for E , then $h^1(Q_i(m)) = 0 \forall i$, therefore $h^1(E(m)) = 0$ and $\chi(E(m)) = h^0(E(m))$ for $m \geq 0$. Then $\tau_E = \chi_E$ and $\chi_E \leq 0$ by Lemma 2.4. Thus $\tau_E \leq 0$ for all $E \subset F$.

(2) If $\tau_E = 0$, then by the above argument one must have $v \geq n/k - B_2$, $\chi(E) = h^0(E)$ and $\tau_E = \chi_E$. Thus $\chi_E = \sigma_E(m) = 0$.

(3) Note that $\tau_E = \lim_{m \rightarrow \infty} \sigma_E(m)$. Hence given $\varepsilon > 0$, $\exists M_4(n)$ such that for $m \geq M_4(n)$, $\sigma_E(m) < \tau_E + \varepsilon$. If $\tau_E < 0$ then choosing ε such that $\tau_E + \varepsilon < 0$, we get $\sigma_E(m) < 0$ for $m \geq M_4(n)$.

Theorem 1. (I) Let X be an integral projective curve of arithmetic genus g over C . Let $\{D_j\}_{j \in J}$ be finitely many effective Cartier divisors in X such that the support of D_j does not intersect the set of singular points of X for all j , supports of D_j are mutually disjoint and $\text{degree } D_j = d_j$, $j \in J$. Let S denote the set of equivalence classes of semistable GPS F of rank k degree d with parabolic structure over D_j given by $F_o^j(F) = H^0(F \otimes \mathcal{O}_{D_j}) \supset F_1^j(F) \supset 0$, co-dimension of $F_1^j(F)$ in $F_o^j(F)$ equal to q_j (fixed) for $j \in J$ and weights $(0, \alpha)$, $0 < \alpha < 1$. Then S has the structure of a projective variety $M(k, d)$ of dimension $k^2(g-1) + 1 + \sum_j q_j(kd_j - q_j)$.

(II) If X is nonsingular, then $M(k, d)$ is normal. If further $(k, d) = 1$, q_j is a multiple of k and α is sufficiently near 1 then $M(k, d)$ is nonsingular and it is a fine moduli space.

Proof. Let w_X denote the dualising sheaf of X , it is a torsion-free sheaf. Fix $n > \max(n_2, kh^0(w_X) + \alpha \sum_j q_j)$ and $m \geq M_4(n)$. We keep the notations of 2.1. We shall show that a geometric invariant theoretic quotient of \tilde{R} modulo $\text{PGL}(n)$ exists. Our required moduli space $M(k, d)$ will be this quotient. \tilde{R} is an open subset of \tilde{Q} , \tilde{Q} is embedded in Z (with m, n as above) by a $\text{PGL}(n)$ equivariant embedding. We first claim that if $(p, p_j) \in R^{ss}$ (resp. R^s) then its image belongs to Z^{ss} (resp. Z^s). This follows immediately from Lemma 2.7 and Lemma 2.5. Let F correspond to a point in $\tilde{R}^{ss} - \tilde{R}^s$. Then F has a subsheaf E which is a torsion-free stable GPS with $\text{par } \mu(E) = \text{par } \mu(F)$ i.e. $\chi_E = 0$. For such an E , $\sigma_{H^0(E)} = \chi_E$ (Lemma 1.10), hence the image in Z belongs to $Z^{ss} - Z^s$.

Conversely we shall now check that if a point in \tilde{Q} is such that its image belongs to Z^{ss} , then the point is in \tilde{R}^{ss} i.e. if F is the corresponding quotient, then F is torsion-free, the map $\mathbf{C}^n \rightarrow H^0(F)$ is an isomorphism and F is a semistable GPS. Lemma 2.6 implies that $\mathbf{C}^n \rightarrow H^0(F)$ is injective and for every rank 1 torsion-free quotient G of F , $n \leq kh^0(G) + \alpha \sum_j q_j$ (as $\tau_G \leq 0$). We claim that $H^1(F) = 0$. Otherwise there exists a nontrivial homomorphism $F \rightarrow w_X$. If G is the sheaf image of this morphism, $h^0(w_X) \geq h^0(G)$ and hence $n \leq kh^0(w_X) + \alpha \sum_j q_j$ contradicting the assumptions on n . Thus $h^0(F) = n$ and $\mathbf{C}^n \rightarrow H^0(F)$ is an isomorphism. Let τ be the torsion subsheaf of F , $\tau = \tau_o + \sum_j \tau_j$, support $\tau_j \subseteq \text{supp } D_j$, $(\text{supp } \tau_o) \cap (\cup \text{supp } D_j) = \emptyset$. Taking $H = H^0(\tau_o)$, $H^0(\tau_j)$, $\sigma_H \leq 0$ gives $H^0(\tau_o) = 0$, $H^0(\tau_j) = 0$. Here $\alpha < 1$ is crucial since $\sigma_H = n(h - \alpha \dim P_j(H))$. Thus $H^0(\tau) = H^0(\tau_o) + \sum_j H^0(\tau_j) = 0$ i.e. $\tau = 0$.

Suppose that F is not semistable. Then there exists a subsheaf E of F such that E is a semistable GPS with $\text{par } \mu(E) > \text{par } \mu(F)$ i.e. $\chi_E > 0$. By Lemma 1.10, $\sigma_{H^0(E)} = \chi_E > 0$ contradicting the semistability of the image point in Z .

It follows that the (geometric invariant theoretic) quotient $M(k, d)$ of $\tilde{R} \text{ mod PGL}(n)$ is the same as that of \tilde{Q} and it exists if and only if the quotient of image of \tilde{Q} in Z exists. It is well known that the latter exists. The quotient $M(k, d)$ is a projective variety as \tilde{Q} is so. It is easy to check that the points of $M(k, d)$ correspond to equivalence classes of semistable GPS (3.15, [1]; [4]).

(2) If X is nonsingular \tilde{R} is known to be nonsingular and hence $M(k, d)$ is normal. If $(k, d) = 1$, α is sufficiently near to 1 and q_j is an integral multiple of k , then GPS is semistable if and only if it is stable by Lemma 3.3 (or Lemma 3.17, [1]). The nonsingularity of \tilde{R} together with corollary 1.12 then imply that $M(k, d)$ is nonsingular. One can show that $M(k, d)$ is then a fine moduli space, by proving the universal bundle on R descends to a universal bundle on $M(k, d)$ after twisting by a line bundle (see [1], Proposition 3.18).

3. Application

3.1. Let Y be an integral projective curve with only singularities ordinary double points $\{y_j\}_{j \in J}$. Let $J' \subseteq J$ be a subset. Let X be the curve (proper transform) obtained by blowing up $\{y_j\}_{j \in J'}$. Let $\pi_{XY}: X \rightarrow Y$ be the natural morphism. Let D_j denote the divisor $\pi_{XY}^{-1}(y_j)$, $j \in J'$. All the QPS and GPS that we consider are assumed to be of the type described in 1.8. We also assume that $\dim F_1^j(F) = r(F)$ for $j \in J'$.

DEFINITION 3.2

Let α be a real number in $[0, 1]$. A QPS (F, \mathcal{F}) on X is α -stable (resp. α -semistable) if for any proper subsheaf K of F with torsion-free quotient, one has

$$(d(K) + \alpha \sum_{j \in J'} \dim F_1^j(K)) / r(K) < (\leq) (d(F) + \alpha \sum_{j \in J'} r(F)) / r(F).$$

Remark. For $0 < \alpha < 1$, the above condition is same as that for stability (resp. semistability) of the GPS (F, \mathcal{F}, α) with $\alpha^j = (0, \alpha)$, $j \in J'$.

Lemma 3.3. (1) Suppose that $1 - 1/J'r(F)(r(F) - 1) < \alpha < 1$. Then (F, \mathcal{F}) is α -semistable implies that it is 1-semistable. If the QPS is 1-stable then it is also α -stable.

(2) Assume that $(r(F), d(F)) = 1$. Then the QPS is 1-stable if and only if it is 1-semistable. Thus under the assumptions of (1) and (2) 1-stability, α -stability and α -semistability are all equivalent.

Proof. This is a straightforward generalization of Lemma 3.17 [1].

PROPOSITION 3.4.

Let Q denote the set of isomorphism classes of QPS (F, \mathcal{F}) on X of given type (3.1). Let $r(F) = k, d(F) = d$ be fixed. Let S be the set of isomorphism classes of torsion-free sheaves of rank k and degree d on Y . Let S_k denote the subset of S corresponding to sheaves which are locally free at y_j for $j \in J'$. Then (a) there is a surjective map $f_{XY}: Q \rightarrow S$ such that its restriction to $f_{XY}^{-1}(S_k)$ is a bijection onto S_k . (b) (F, \mathcal{F}) is 1-stable (1-semistable) iff its image under f_{XY} is stable (semistable).

Proof. Let $D_j = x_j + z_j$. Then $((\pi_{XY})_* F) \otimes k(y_j) = (k(x_j) \oplus k(z_j))^{r(F)} = H^0(F \otimes \mathcal{O}_{D_j}) \equiv F_o^j(F)$. Thus we have a surjective \mathcal{O}_Y -linear map $(\pi_{XY})_* F \rightarrow F_o^j(F)$. Let F' be the kernel of the composite of this map with the surjection $F_o^j(F) \rightarrow F_o^j(F)/F_1^j(F)$. Since $d(F) = \chi(F) - r(F)\chi(\mathcal{O}_X), d(F') = \chi(F') - r(F')\chi(\mathcal{O}_Y), \chi(F) = \chi((\pi_{XY})_* F), \chi(\mathcal{O}_Y) = \chi(\mathcal{O}_X) - J'$, it follows that if $(F, \mathcal{F}) \in Q$ then $F' \in S$. We define $f_{XY}(F, \mathcal{F}) = F'$. If $F' \in S_k$ then $F = \pi_{XY}^* F'$ and $F_1^j(F) = F' \otimes k(y_j) \subset F_o^j(F)$ gives the bijection. Surjectivity of f can be proved as in 4.5 [1] while the last assertion follows exactly as in 4.2 [1].

Theorem 2. (I) Let $M_{X, J'}$ be the moduli space of semistable GPS on X of type described in 3.1. Assume that α satisfies the conditions of Lemma 3.3(1). Then there is a surjective birational morphism $f_{XY}: M_{X, J'} \rightarrow M_{Y, \phi}$ (= moduli space of torsion-free sheaves on Y).

(II) Let Z be the desingularization of Y . Then the morphism $f_{ZY}: M_{Z, J} \rightarrow M_{Y, \phi}$ factors as $f_{ZY} \circ f_{ZX}$. If the conditions of Lemma 3.3 are satisfied then $M_{Z, J}$ is a desingularization of $M_{Y, \phi}$ and $M_{X, J'} (J' \subset J)$ are 'partial desingularizations'.

Proof. (I) This follows easily from Lemma 3.3 and Proposition 3.4 since it is easy to globalise the construction (of f_{XY}) to families of GPS. (See Theorem 2 [1] for details).

(II) Let $f_{ZX}(F, \mathcal{F}) = F'$. Notice that π_{ZX} is an isomorphism outside $J - J'$. Hence F' has a parabolic structure \mathcal{F}' over $D_j, j \in J'$ viz. $F_i^j(F') \approx F_i^j(F)$ for $i = 0, 1, j \in J'$. Thus $f_{ZX}(F, \mathcal{F}) = (F', \mathcal{F}') \in M_{X, J'}$. Let $f_{XY}(F', \mathcal{F}') = F''$. Then we have the exact sequences (defining F', \mathcal{F}'')

$$0 \rightarrow F' \rightarrow (\pi_{ZX})_* F \rightarrow \bigoplus_{j \in J'} F_o^j(F)/F_1^j(F) \rightarrow 0$$

$$0 \rightarrow F'' \rightarrow (\pi_{XY})_* F' \rightarrow \bigoplus_{j \in J'} F_o^j(F)/F_1^j(F) \rightarrow 0.$$

Using these and $\pi_{ZY} = \pi_{XY} \pi_{ZX}$, one gets

$$0 \rightarrow F'' \rightarrow (\pi_{ZY})_* F \rightarrow \bigoplus_{j \in J} F_o^j(F)/F_1^j(F) \rightarrow 0$$

proving $f_{ZY} = f_{XY} \circ f_{ZX}$. The last assertion follows from Theorem 1 (II).

Acknowledgements

We thank A Ramanathan and T R Ramadas for useful discussions.

References

- [1] Bhosle Usha N, Generalised parabolic bundles and applications to torsion-free sheaves on nodal curves. (*Arkiv. Math.*) (to appear)
- [2] Mumford D, *Geometric invariant theory*. (New York: Academic Press) (1985)
- [3] Narasimhan M S and Trautmann G, Compactification of $M_{23}(0, 2)$ and Poncelet pairs of conics. *Pacific J. Math.* **145** (1990) 255-265
- [4] Simpson C T, Moduli of representation of the fundamental group of a smooth projective variety (preprint, 1990)