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Moduli for principal bundles over algebraic curves: I
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Abstract. We classify principal bundles on a compact Riemann surface. A moduli space for
semistable principal bundles with a reductive structure group is constructed using Mumford’s
geometric invariant theory.
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1. Introduction

Let X be a projective nonsingular irreducible curve over C (or equivalently a connected

.compact Rieman surface) of genus >2 and G a connected reductive algebraic group
over C. Our problem is to classify algebraic principal G-bundles on X. When
G = GL(r, C), i.e. for vector bundles, this has been done by Mumford, Narasimhan and
Seshadri ([131, [15], [19]).

In [14] we have defined the notion of stable and semistable G-bundles on X
(Definition 2.12) and have proved that a G-bundle is stable if and only if it is associated
to certain representations of 7, (X — x,) (cf. Definition 3.14), and have constructed by
local analytic methods, a moduli space, which is a normal complex space, for stable
G-bundles on X ([14], Theorems 7.7 and 4.3). In this thesis we use global algebraic
methods depending on Mumford’s theory of stable and semistable points for actions of
reductive groups on algebraic schemes to construct a moduli space, which is a normal
projective algebraic variety, for semistable principal G-bundles under a suitable
equivalence; see Definitions 3.1, 3.9 and Theorem 5.9 (in part II: Editor).

In § 2 we explain some notations and recall some preliminary results. In § 3 we prove
a kind of Jordan~Holder theorem for semistable G-bundles.

Professor Annamalai Ramanathan, who was a Fellow of the Academy and a co-editor of the Proceedings,
passed away on 12 March 1993, at the young age of 46. For some reason his doctoral thesis (written in 1976)
was never published. A manuscript had in fact been prepared for publication, but apparently he wanted to
revise it, which unfortunately was not to be. :

The results in the thesis have been found very useful by researchers in the area, especially more recently in
view of the remarkable connection between Conformal Field Theory and moduli spaces of principal bundles
on curves. It was suggested by his teachers Professors M S Narasimhan and S Ramanan that the thesis be
published, in the available form, and the idea also found enthusiastic support among other mathematicians,
as this would provide a much needed reference article for the material.

Professor Ramanathan, who was on the Faculty of the Tata Institute of Fundamental Research, Bombay,
was an accomplished mathematician, a recipient of the Shanti Swarup Bhatnagar prize, and a fine person

- very helpful to students and colleagues. As a tribute to his memory we are publishing the thesis in the
Proceedings, convinced that he would have appreciated it if he were to be with us.

For convenience the publication will be in two parts, the second part being scheduled for the next

issue.

- Editor
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Since the unipotent radical U of a parabolic subgroup P=M-U, M a maximal
reductive subgroup of P, can be shrunk to identity (Lemma 3.5.12), it follows that given
a P-bundle we can make it jump’ to the M-bundle obtained from it by the extension of
structure group P—M (Propositions 3.5 (i) and 3.24 (ii)). For constructing moduli
space, this then makes it necessary to identify a G-bundle E and a G-bundle E’ obtained
from E through a reduction of structure group to a parabolic subgroup P = M- U and
followed by the extensions of structure group P — M and M < G. If E is semistable and
the reduction to P is admissible (Definition 3.3), we prove that the G-bundle E’ obtained
by this process is again semistable (Lemma 3.5.11) and define E and E’ to be equivalent
(Definition 3.6).

We then prove that given a semistable G-bundle E, there is an admissible reduction of
structure group to a suitable paraboélic subgroup P = M-U such that the M-bundle
obtained by the extension of structure group P— M is a stable M-bundle (which is
a Jordan—-Holder series for E). Further the G-bundle obtained from this stable M-
bundle by the extension of structure group M & G depends only on E and is denoted by
grE (Proposition 3.12). Also E, is equivalent to E, if and only if grE, ~grE,
(Proposition 3.12 (iii)).

Next we prove a result (Proposition 3.24) which shows that the equivalence on
semistable G-bundles introduced above is the right one in the sense that a semistable
G-bundle can only tend to an equivalent bundle in the limit. Lemmas 3.21 and 3.23
provide the essential tools for proving this proposition.

The method of proof generally is to reduce the problem to a proper reductive
subgroup M of G of maximal rank (a Levi component of a parabolic subgroup P) and to
use induction on the semisimple rank of the structure group. Lemma 2.11 which says
that given two reductions of structure group o,,0, of a semistable G-bundle to the
parabolic subgroups P, P, respectively (with P,, P, in general position (cf. Remark
3.5.6)), we can get a common reduction ¢; N, to the subgroup P, n P, which gives
both o, and ¢, under the extension P, NP, G P;, i = 1,2, is quite useful in this context.

In §4 we first show that there is a family of G-bundles £ —» T x X with a group
H acting on T and on £ as a group of G-bundle isomorphisms compatible with its
action on T with the properties that any other family of G-bundles is locally induced
from ¢ and for any two morphisms ¢,,t,:S— T from any scheme S, the induced
G-bundle (t; x idy)*¢ on § x X are isomorphic if and only if there is a morphism
h:S— H such that t, = h[z,] (where h[t,] is the composite § Prgx TS T, o being
theaction of H on T). Hence a good quotient of T'modulo H (Definition 4.1) would give
a moduli scheme for G-bundles. (Actually it is sufficient if such a G-bundle ¢ existed
locally with respect to the faithfully flat topology on T; see Definition 4.4 and
Proposition 4.5) Let us call the family of G-bundles ¢~ T x X with the above
properties, a universal family of G-bundles (cf. Definition 4.6). Seshadri has constructed
a universal family of semistable vector bundles (say, of rank r) ¥ - R x X, R being
a subscheme of the Quot scheme so that we have a surjective homomorphism
I,—¥ —0, where I, is the trivial vector bundle of rank n, with the group GL(n,C)
acting naturally on 7" and R ([19], § 6; [20]; Prop. 4.11.5). To construct a universal
family for G-bundles we take an embedding of G in a ‘GL(k,C) and look upon
a G-bundle as a vector bundle (of rank k) with a G-structure, ie. a GL(k, C)-bundle
E — X with a reduction of structure group to G given by a section X — E/GofE/G—-X
so that the space S of sections of ¥°, —»r x X = X, asr varies through R, gives a family of
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G-bundles ¢ - S x X (§4-8; Lemma 4.8.1). The group GL({n, C) acts naturally on ¢ and
S and it can be shown that & is a universal family (Lemma 4.10). That the space S can be
constructed as a scheme with suitable universal properties follows from the existence
theorems on Hilbert schemes (Lemma 4.8.1). Then we have to prove the existence of
a good quotient of § modulo GL(n, C). For this it is convenient to take the adjoint
representation Ad:G— GL(%), 4 the Lie algebra of G. However, Ad is not injective in
general and hence we construct first, as outlined above, a universal family & - R x X
for Ad G-bundles and then from & a universal family for G-bundles.(To be more precise
the construction is in three steps: from vector bundles to Aut G-bundles to Ad G-
bundles to G-bundles.) To get from Ad G-bundles to G-bundles, the idea is to look upon
a G-bundle E as an Ad G-bundle E’ together with certain line bundles of suitable types
on the associated bundle E'/B(= E/B) where Bis a Borel subgroup of G and B its image
in Ad G. This is analogous to the fact that a vector bundle V' is determined by the
projective bundle P(V) and the tautological line bundle on P (V) corresponding to
V (Lemma 4.15.1). This involves the existence of the space § of line bundles on the fibres
of the composite £/B— R’ x X — R’, and for this we make use of the existence theorems
on Picard schemes ([TDTE, V]). The Picard functors in general are representable only
after ‘sheafification’ with respect to the faithfully flat topology ([TDTE, V1], § 1; [11)
and hence a universal family of line bundles will exist only locally in the faithfully flat
topology. This means that we will be able to construct universal families for G-bundles
only locally in the faithfully flat topology by this method. However, this is sufficient for
our purposes (cf. Definition 4.4 and Proposition 4.5).

In§ 5 we complete the proof of the existence of a coarse moduli scheme for semistable
G-bundles by showing that a good quotient of S modulo GL(n, C) exists. It follows from
Lemma 5.1, that it is enough to show the existence of a good quotient of R” modulo
GL(n, C). For this we adopt the method of Mumford and Seshadri in the case of vector
bundles where they reduce it to a problem on a product of Grassmannians as follows
([15], § 5; [19], § 6, 7). The surjection I, » ¥ —0 makes the fibres of ¥ points of the
Grassmannian G,, = Z of r-dimensional quotients of I, and by evaluating at points
X4,...,Xy€X we get a morphism R — Z". Seshadri has proved that for a suitable choice
of X,,..., Xy, N0, R maps into the set ZJ;, of semistable points of Z" for the natural
action of SL(n, C) on Z%, and that the morphism R — ZY is a proper injection ([20],§3,
Lemma 2). Since Z¥ has a good quotient modulo GL(n, C) ([10], Theorem 1.10, p. 38;
[22], Theorem 1.1(B)), it follows that R has a good quotient modulo GL(n, C). In the
case of G-bundles for any point (, x)eR’ x X we not only have a fibre of ¥ over (r, x),
where reR is the image of #€R’, which gives a point of G, ,, but also a ‘G-structure’ on
this quotient. Since we have taken the adjoint representation, this ‘G-structure’ is
actually a Lie algebra structure. Let ¥ = GL(%¥)/Ad G and Q—G,, be the universal
quotient bundle on the Grassmannian G,,. We then have, for any point xeX,
amorphism R’ — Q(Y) where Q(Y)is the associated bundle of Q, which is considered as
a GL(%)-bundle, with fibre Y. We prove that for suitable choice of x4,...,xy€X under
the natural morphism R’ — Q(Y)", theimage of R’ is contained in Q(Y)Y (Lemma 5.5.3),
the set of semistable points of Q(Y)" for the natural action of SL(n,C) on Q(Y)" (and
suitable polarization). This is a consequence of the fact that the tensor in
@* R ¥*R% = Hom(%9 ® %, %) corresponding to the Lie algebra structure is semistable
for the action of SL(¥%) (Lemma 5.5.1). Wealso prove R'— Q(Y)N is proper (Lemma 5.6).
(By Lemma 5.1 it follows that R has a good quotient modulo GL(n, C) as required.) For
this, the crucial fact needed is that if a sequence of isomorphic semisimple Lie algebra
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structures on a vector space V' (considered as elements of Hom(V® V, V)) tends to
a semisimple Lie algebra structure on V, then the limit also gives the same Lie algebra
structure on V. In other words, if Y is the GL(%) orbit of xeHom(V® V, V) such that
x: V® V- V makes V into a semisimple Lie algebra and if xo€ Y, the closure of Y in
Hom(V® V¥, V), is such that x,:V® V— V also makes V into a semisimple Lie
algebra, then x,€ Y. (This rigidity result is a consequence of the vanishing theorem,
H*(%,9)=0(cf. [16],§§3,4))

We make essential use (cf. Lemmas 5.5.2 and 5.5.3) of the fact that if we take
a representation G—GL(n,C) such that center of G maps into scalars then the
associated vector bundle of a semistable G-bundle is a semistable vector bundle
(Proposition 3.17). We deduce this as a consequence of the result that stable G-bundles
are unitary bundles. This is one of the reasons why we restrict to working over C, and
not over fields of arbitrary characteristic.

2. Notation and preliminaries

2.1. By a scheme we mean a separated scheme of finite type over the complex numbers
Cand by a point of a scheme we mean a closed (or C-valued) point of the scheme. Terms
such as open, closed, dense, etc. are used with reference to the Zariski topology.

By an algebraic group we mean an affine algebraic group.

2.2. Let A be an algebraic group and Y a scheme. A principal bundle over Y with
structure group A (or an A-bundle over Y, for short) is a scheme E on which A operates
(from the right) and an A-invariant morphism 7: E— Y such that for any point ye Y
there is a neighbourhood U and a faithfully flat morphism f:U’— U, and an A-
equivariant isomorphism f*(E) = U’ x A, over U’, where A operates on U’ x 4 by
right translations on the second factor ([SGA, 11, expose XI, Definition 4.1). Since A4 is
affine and hence a linear group, it follows (LTDTE, I], Proposition 7.1 and the
paragraph following it) that under these conditions 7:E— Y is locally isotrivial i.e. we
can take f:U’— U above to be an étale covering.

23. Let m:E—~ Y be an A-bundle. Let F be a quasi-projective scheme on which
A operates from the left. Let the group 4 act on the product E x F by a(e,f) =(e-a,
a~'f),aeA, ecE, feF.Fromlocal isotriviality and the fact that any finite set of points
of F is contained in an affine subset it follows by descent that there exists an unique
scheme E(F) and a morphismE x F—E (F)which makes E x F an A-bundle over E (F)
for this action of 4 on E x F (cf. [17],§3.2, Proposition 4, pp. 15-16; [SGA, I], exposé
V, §1). There is a natural morphism E(F)— Y and we call E(F) the fiber bundle
associated to E for the actionof 4 on F.

If B is a subgroup of 4 we denote by E/B the fiber bundle associated to E for the
action of 4 on A/B by left translations ' ‘

Let p:4— A’ be a homomorphism of algebraic groups and let 4 act on A’ by
a-a'=p(a)d, acA, deA’. The group A’ acts on E x A’ by right translation on the
second factor and this action goes down to E (4’). This makes E(A’) into an 4’-bundle.
We sometimes denote E(4’) by Py (E).

.

2.4. Suppose A operates on the quasi projective schemes F, and F, andj: F 1—F,isan
A-equivariant morphism. Then idgxj:Ex F{—>ExF, induces a morphism
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E(j):E(F,)— E(F,). Using local isotriviality it follows easily that if j is an open
(respectively closed, locally closed) immersion then so is E(j) ((EGA, IV], Proposition
2.7.1 (x), (xii)). :

2.5. Let B be an algebraic subgroup of 4. A pair (E', ¢) where E' is a B-bundle and ¢ is
an isomorphism i, E'— E of A-bundles is said to give a reduction of structure group of
E to B. Reductions of structure group of E to B and the sections of the fiber bundle
E/B— Y are in natural one-to-one correspondence ([17], Proposition 9; cf. also §4.8
and Lemma 4.8.1 below). E — E/B is a B-bundle over E/B, and to a section g: Y — E/B
we associate the B-bundle ¢*(E) in this correspondence. We sometimes denote the
B-bundle ¢*(E) by E[ B]. Moreover, if p: B— B’ is a homomorphism we denote p, 6*(E)
by E[B, B'] also.

2.6. If E— Y is a GL(n, C)-bundle we often denote by the same letter E the associated
vector bundle E(C") and if V — Y is a vector bundle again we denote by the same letter
V the corresponding GL(n, C)-bundle (which can be constructed back from V) (cf.
[TDTE, 1], p. 28).

For a vector bundle ¥V — Y we denote by P(V) the associated projective bundle of
1-dimensional sub-spaces of V.

If X is a projective non-singular irreducible algebraic curve and V' — X is a vector
bundle of rank n, we mean by the degree of V the degree of the line bundle AV. We
denote by u(V) the number deg V/rkV.

2.7. We let X always stand for a projective non-singular irreducible curve of genus
g =2 (over C) and G a connected reductive algebraic group (over C). We denote by
% the Lie algebra of G and by ¢’ the commutator subalgebra [%4, ] of 4. The center of
% is denoted by zso that ¥ =D ¥'.

For any group M, we let Z[M] stand for its center and Z,[M] the connected
component of identity of Z[M]. Let Z = Z[G] and Z, = Z,[G].

2.8. A subgroup P of Gis a parabolic subgroup of G if G/P is complete. It is convenient
for us to consider G also as a parabolic subgroup. However, by a maximal parabolic
subgroup of G, we mean a parabolic subgroup of G which is maximal among proper
parabolic subgroups. (For comparison note that in [14] we had reserved the term
parabolic to proper parabolic subgroups.)

2.9. For a parabolic subgroup P we generally use the notation M-U for a Levi
decomposition of P with U the unipotent radical of P and M a maximal reductive
subgroup of P. We call a maximal reductive subgroup of P a Levi component of P.

If P, is a parabolic subgroup of M, then P, - U is a parabolic subgroup of G. For any
parabolic subgroup P’ of G contained in P, P’ M is a parabolic subgroup of M. This
gives a bijective correspondence between the set of parabolic subgroups of M and those
of G contained in P ([3], Proposition 4.6, p. 86).

2.10. Since G is a linear algebraic group ([17], §6.3) any analytic G-bundle on the
compact Riemann surface X has a unique algebraic G-bundle structure and any
analytic morphism between G-bundles is an algebraic morphism. The equivalence of
the categories of algebraic and analytic G-bundles on X justifies our use of results from
[14] though we work in the algebraic category now. o '
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2.11. Let k(X) be the function field of X. Then it follows from a result of Springer that
any connected linear algebraic group defined over k(X) has a Borel subgroup defined
over k(X) (cf. [23], Theorem 1.9, p. 57 and the remarks following it.) From this it can be
deduced that any G-bundle over the curve X is locally trivial in the Zariski topology.

2.12. We denote by (Sch) the category of algebraic schemes (over C). We use the
faithfully flat topology on (Sch) and for any functor F: (Sch) —(Sets) we mean by the
sheaf F associated to F the ‘sheafification’ of the presheaf F with respect to the faithfully
flat topology ([1], Theorem 1.1, Chapter II, p. 24; [TDTE, V], p. 3).

We now recall a few things from [14].

2.13. DEFINITION

A G-bundle E— X is called stable (resp. semistable) if for any reduction of structure group
0:X — E/P to any maximal parabolic subgroup P of G we have deg a*(Typ) > O(resp. >0),
where Ty, is the tangent bundle along fibers of E/P— X (cf. [14], Definition 1.1).

2.14. DEFINITION

Let P be a proper parabolic subgroup of G. A character x:P —C*is called dominant if it

is given by a positive linear combination of fundamental weights for some choice of

a Cartan subalgebra and positive system of roots (cf. [14], p. 131)
A dominant character is trivial on Z,,.

2.15. Lemma. The G-bundle E— X is stable (vesp. semistable) if and only if for any
reductiono: X — E/P to any proper parabolic subgroup, not necessarily maximal, we have
deg(x, *E) <0 (resp. <0) for any nontrivial dominant character y of P.

For proof see ([14], Lemma 2.1, pp. 131-132).

3. Equivalence on semistable bundles

We will be interested in studying the following functor.

3.1. DEFINITION

Let F:(Sch)—(Sets) be the functor which associates to a scheme S the set of
isomorphism classes of G-bundles &S x X such that for every point seS the

restriction {;—»sx X =X of £ to s x X is a semistable G-bundle. For a morphism -

f:8 =8, F(f)(¢)is defined to be the pull back (f x idy)*(&).
Given a topological G-bundle ¢ on X we denote by Fy, the sub-functor of F

defined by
FL(8)={£eF(8)|&,—~ X is topologically 1isomorphic to 7V seS}.

We refer to a £eF(S) as a family of semistable G-bundles parameterized by S.

3.1.1. Remark. We will prove later that for an arbitrary G-bundle é—S x X

the set {seS|¢, is semistable} is an open subset of S (Proposition 5.8, cf. also [14];
Proposition 4.1, p. 138). :

We recall the definition of a coarse moduli scheme (cf. [10], Definition 5.6, p. 99).

.
#
i
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3.2. DEFINITION

Let F:(Sch) — (Sets) be a functor. A scheme M and a morphism of functors ¢ from F to hy,
the functor represented by M (i.e. hy(S) = Hom(S, M)), is called a coarse moduli scheme for
F if (i) the map ¢.:F(Spec C) —hy,(Spec C) is a bijection; (ii) given any scheme N and any
morphism y:F — hy there is an unique morphism y:hy, — hy such that = xo.

Proposition 3.5 below (see also Proposition 3.24) shows that F,, cannot have
a separated coarse moduli scheme and suggests an equivalence relation between
semistable G-bundles to obtain a coarse moduli scheme.

3.3. DEFINITION

Let ¢—S x X be a G-bundle. A reduction ¢ of structure group of £ to a parabolic
subgroup P is called admissible if for any character y on P which is trivial on Z, and any
point seS the line bundle y, o¥(£,), given by the reduction o, of structure group of ¢,
induced by ¢ and the character y, has degree zero.

3.4. Remark. For a GL(n, C)-bundle E— X a reduction ¢ of structure group to the
parabolic subgroup P defined by a flag0= Vo c=...c V, = Cr is equivalent to giving
the sub-bundles (6*E)(V,), i=0,...,r. The reduction ¢ is admissible if and only if
WE*E(V,V, ) = WECD) i=1,....7.

3.5. PROPOSITION

Let ¢S x X = Y be a G-bundle. Let ¢ be a reduction of structure group to a parabolic
* subgroup P = M-U. Then there is a G-bundle {’ -»C x Y such that

) &lanxy = (EE)|cexy, where my:C x Y — Y is the projection and &, — Y, the restric-
tionof & to0x Y=Y is isomorphic to j,p,o*(£) where p:P — M is the projection and
j:M & G is the inclusion (C* denotes C —(0)).

ii) if £ S x X is a family of semistable G-bundles and o is an admissible reduction then
¢, —8 x X is also a family of semistable G-bundles.

Before giving a proof of this proposition we note down several remarks and lemmas.

3.5.1. DEFINITION

Let p:G — GL(V) be a representation. Let W be a subspace of V such that the stabilizer
{geGlp(g) W= W}of WinGisa parabolic subgroup. We call any subspace of V ofthe
form p(g) W, for some geG, a subspace of type W (cf. [14], Definition 3.1, p. 135).
Note that the subspaces of type W form the orbit Gr(W) of W under the natural
action of G on the Grassmannian Gr of all subspaces of V of rank = rank W. Since
the stabilizer of W is a parabolic subgroup, Gr(W) is closed in Gr. Suppose E— X is
a G-bundle. Taking Gr(W) with the canonical reduced subscheme structure we have
a closed immersion E(Gr(W)) s E(Gr) (§2.4). A section o of E(Gr)— X gives a sub-

bundle of E(V) in a natural way.

3.5, DEFINITION

If ¢:X — E(Gr) factors through E(Gr(W)) s E(Gr) we call the sub-bundle given by
o a sub-bundle of type W.
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3.5.3. Remark. If P is the stabilizer of W in G then Gr(W)= G/P. Therefore, such
a section o of E(Gr(W))=E/P gives a reduction of structure group to P. The
sub-bundle corresponding to o is then (¢ E)(W). If P is a proper parabolic subgroup and
E is stable (resp. semistable) then it follows, as in the proof of Lemma 3.3 of [14], that

#(a* E)(W)) < (resp. <) u(E(V)).

3.54. Remark. If a sub-bundle of E(V) is generically of type W (i.e. for a nonempty
open subset U, o(U)< E(Gr(W))) it is actually of type W everywhere (ie.
o(X) < E(Gr(W))) since E(Gr(W)) is a closed subvariety of E(Gr).

3.5.5. Remark. Let V— X be a vector bundle. Let W, W’ be sub-bundles of V. We often
identify a vector bundle with the sheaf of its sections, which is a locally free sheaf. That
W is a sub-bundle of V is equivalent to saying that the sheaf W is a subsheaf of V such
that the quotient sheaf V/W is torsion free (or equivalently locally free, since X is
a curve). We denote by Wn W' the subsheaf of ¥ which is the kernel of the natural

homomorphism W - V/W' (or W' — V/W). We denote by W W’ the inverse image
of the torsion subsheaf of V/W~ W’ under the projection V— V/W~ W'. Then

Wn W'is a sub-bundle of V. We call it the sub-bundle generated by W W'. For xe X,
let V, denote the fiber of V' at x. Then W,n W, = (W W’),. There is a non-empty
open subset UcX such that for xeU, W, W,=(Wn W’),. Moreover
Wn W= Wn W if and only if dim(W,~ W) is constant as x varies over X.

3.5.6. Remark. Let 0,,0, be two reductions of structure group of E — X to the parabolic
subgroups P, P, respectively. Let U be an open subset of X on which E is trivial §1.11).
Identifying p~*(U) with U x G the reductions o, give rise to morphisms ¢,:U — G/P,. Let
9:U— G/P; x G/P, be defined by ¢(x)=(c,(x), 5,(x)), xeU. Since P; is its own nor-
malizer G/P; can be identified with the set of conjugates of P, in G by associating to the coset
gP; the conjugate gP;g~*. The group G acts diagonally on G/P, x G/P, and an orbit of
G on G/P, x G/P, can be thought of as giving a relative position of conjugates of P, and
P,. Therefore, as can be seen by using Bruhat’s lemma and the configuration of standard
parabolic subgroups ([3], §4) the number of orbits for this action is finite. Let 04,...,0,be
the orbits of Gin G/P, x G/P,. Then 0, arelocally closed ([2],p.98) and hence ¢ ~1(0,) are
locally closed in U;. Since U is 1-dimensional, the locally closed subsets are either open sets
or finite set of points. Therefore, there is a unique orbit 0, such that ¢ ~1(0;) is a nonempty
open subset of U.If (P,, P,)e0,, then P, and P, are in the relative position corresponding
to the generic relative position determined by ¢, and 0, and we then say that (P,,P,) is

compatible with (g, ,0,). It is easy to see that this notion does not depend on U and the
trivialization of E over U.

3.5.7. Remark. ForgeG let R,:E— Ebetheactionofgon E ‘R (e) = e-gfor eeE. Then
R, induces a morphism E/P - E/g~! Pg. Hence any reduction ¢ of structure group to
the subgroup P gives rise, by composition with E/P—E/g~1Pg, to a reduction o, of
structure group to g~ * Pg. The g~ ! Pg-bundle o* E is obtained from the P-bundle ¢* E
by the extension of structure group P—g~! Py, P9 'pg, peP. If y9:g~1Pg—C* is
the character defined by y?(g ™ pg) = x(p)theny, ¢*E ~ x50 E. Therefore the stability

gresp. semistability) condition for the reduction o is satisfied if and only if it is satisfied
or g, _
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3.5.8. Lemma. Let E— X be a G-bundle and o an admissible reduction of structure group
to the proper parabolic subgroup P. Let p:G — GL(V) be a representation such that Z,
acts by scalars. Let W<V be a nonzero subspace left invariant by P. Then

uo* E(W)) = u(E(V)).

Proof. Let det,:GL(V)—C* and dety:GL(W)—C* be the determinant characters.
The representation p:G— GL(V) induces p:P— GL(W). Define x,:G—C* to be
det,°p and y,:P—C* to be det,°p. We then have deg(E(V))=deg(x,;,E) and
deg(c* E(W)) =deg(x,, 0*E). Also x; ,E ~ x,,06*E. Letr; =rank V and r, = rank W.
Since Z, acts by scalars the character y= y7y;" of P is trivial on Z,. Therefore,
o being admissible, deg(y,o*E)=0, ie. r,deg(x,,0*E)—r deg(y,,0*E)=0, ie.
p(a*E(W)) = W(E(V)).

3.5.9. Lemma. Let P = M-U be a parabolic subgroup of G. Let P, be a proper parabolic
subgroup of M.

i) Let y, be a dominant character of P,. Extend the character y, to a character )y on
P, U by defining it to be trivial on U. Then there exists an integer n > 0 suchthat on P-U
we have Y=y~ where y' is a dominant character of P-U and y is a dominant
character of P.

ii) Let u, be a character on P,-U, trivial on Z,,. Then there exists an integer n > 0 such
that u" = y'-u where y' is a character on P,-U which is trivial on Z,[M] and p is
a character on P which is trivial on Z .

Proof. Let 4 be a Cartan subalgebra of ' and ¥ =+®4DZ,., %" be a root space
decomposition. Let a,...,, be a system of simple roots and 4,,..., 4; the correspond-
ing fundamental weights. We can assume, by conjugating if necessary that the Lie
algebras of P, P,-U and M are z@ 4@ X, ¥ »PADL,p, ¥  and D 4D, . F”
respectively where

D={aecA|a=Zme; withm>0 fori=1,..,r}

D, ={aeA|la=ZImq, withm;>0 fori=1,...,s}
and
D* = {aeA|both a and — o are in D}.

Since P, U = P we have D, = D. The roots ¢, ;,...,®, constitute a simple system of
roots for ., the Lie algebra of M. Since the vector space spanned by 4,,..., 4, is the
orthogonal complement of the space spanned by o,.y,...,%, we can determine
constants a,; such that 4;= A, + Zj_ a;;4;, i=r+1,...,], belong to the space spanned
by &, ,1,...,0. Clearly then A}, i=r+ 1,...,] are the fundamental weights of . corre-
sponding to the simple system of roots o, y,...,0;. Therefore, ¥,, being a dominant
form of P, in M, is of the form ¥, = Zi._, , 1 by A, b, > 0. Clearly the form J; correspond-
ing to the character ; on P,-Uisalso Z}_, , , b, A, = ¥, . Substituting for /; in terms of
A; we have

S r
)?13 Z bk;Lk+ Z aj)'j‘
k=r+1 ji=1

Let
7= ) bkt > a;4;

k=r+1 a;jz0
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and
—i= Z aJ’lj
ai<0
so that
n=x-7

Note thatsince §; correspondsto a character on P, U, b, a;€Z. The linear forms ¥’ and
# may not go down to give characters on the corresponding groups since G may not be
simply connected. However, we can find an integer n > 0 such that nf’ and nj give rise
to characters ¥’ and y on P, U and P respectively. Then y7 = y'-x ™! gives the required
decomposition.

To prove (ii) note that if the finite group Z,[M]1n[M, M] is of order, say n then the
character uj restricted to Z,[M] is trivial on Z,[M]n[M,M] and hence can be
extended to a character p of P by defining it to be trivial on [M, M]-U. Then the
character p' = u}-p~ ' of P, U is trivial on Z,[M] and gives the required decomposi-
tion pj = u'- .

3.5.10. Lemma. Let P = M-U be a parabolic subgroup of G and F a P-bundle on X. Let
F'=p,(F)where p:P — M is the projection. Let P, be a parabolic subgroup of M. Then

i) if o, is areduction of structure group of F' to the subgroup P, of M then there exists
a reduction ¢ of structure group of F to P,-U such that p, oc*E~c}F where
p1:P,-U— P, is the projection.

ii) if © is a reduction of structure group of F to P,-U then there exists a reduction of
structure group t, of F' to P, such that tfF' ~ p, t*F.

Suppose E is a G-bundle and F = ¢'* E for an admissible reduction ¢’ of structure group
of Eto P. Let q:(6¢’*E)/P, U = ¢'*(E/P, - U) > E/P,- U be the projection. Then

i) inthe notation of ()if ¢, is admissible then q° o is an admissible reduction of structure
group of Eto P,-U.
ii)’ in the notation of (ii) if q°t is admissible then 7, is also admissible.

Proof. The natural morphism y:P/P,U— M/P, has a section ¢:M/P, »P/P,-U
induced by the inclusion M s P. The morphism y induces :F/P,-U— F'/P, and
¢ induces a section @:F'/P, — F/P,-U for { since F/P,-U and F'/P, are the associated
fiber bundles of F with fibers P/P, U and M/P, respectively.

For (i) take ¢ = $° 0, and for (ii) take 7, =/ °0.

(i)’ Let x be a character of P,-U. By 3.5.9(ii) for some n > 0 we can write y" = y'-y with

' a character of P, trivial on Z,[M] and y a character of P, trivial on Z,. We have
therefore,

15@°0)* Ex (1 0),(q° 0)* E = (1, 6* F) @ (1, F)
R (x0T F)® (1, F)-

Since ¢, is admissible, deg(y, o F') = 0. Since ¢’ is admissible, deg(y,, F) = 0. Therefore
deg(x,(g°0)*E) = 0 which proves that g°¢ is admissible.

(1) Let x, bea character of P, trivial on Z,[M]. Let y} be the character on P,-U got
by extending x, to P,-U by setting it to be trivial on U. We then have

TR k. T

y
;&Y
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X1 TEF 2 xy,,pFT*F by (il). Also X1 P¥T*F =y o*F x i (g°7)*E. Since g°t 18
admissible deg(x; , (¢°7)* E) = 0, which proves 7, is admissible.

3.5.11. Lemma. Let E— X be a G-bundle and ¢ an admissible reduction of structure
group of E to a proper parabolic subgroup P = M-U. Let p: P — M be the projection, and
j:M & G the inclusion. Then

i) E is a semistable G-bundle if and only if p,c*Eisa semistable M-bundle.
ii) if E is semistable then j p,o*E is semistable.

Proof. Assume p,o*E is a semistable M-bundle. Let o’ be a reduction of structure
group of E to a proper parabolic subgroup P’ of G. We have to show that ¢’ satisfies the
condition for semistability. We can assume by conjugating that (P, P') is compatible
with (o, 6') (see 3.5.6 and 3.5.7).

Let 2,2 be the subalgebras of & corresponding to the subgroups P, P’ respectively.
By ([14], Remark 22, p. 132) semistability condition 1is equivalent to
deg((¢'*E)(#')) <0.

LetO= Vy< V, << V,=% be a flagin & such that V; is invariant under P and
U acts trivially on V;/V,_; forj=1,...,7. The stabilizer of Im(#' N V;— V;/V;_,) in
M is a parabolic subgroup of M since P P'leaves #'n V;invariant and (PAPYnMis
a parabolic subgroup of M (§ 2.9). Since (P, P') is compatible with (g, ¢') the sub-bundle
W, generated by Im((c"*E(@))N(e*E(V;)) »c*E(V;/V,_,)) is a sub-bundle (generi-
cally and hence everywhere cf. 3.5.4) of type Im(#' 0 V;— V;/V;_4). Note that since
U acts trivially on V;/V;_,, c*E(V;/V;-1) R pyo*E(V;/V;-,) where p:P—M is the
projection. Since p,o*E is a semistable M-bundle :

u(W,) < u(po*E(V;/V;- 1)) (1)

(cf. Remark 3.5.3; if the stabilizer of Im(#' N V;— V,/V;_)is M itself, use the fact that
o is admissible). Since ¢ is admissible, by Lemma 3.5.8

u(p, o*E(V,/V;- 1)) = WE(#))=0.
Therefore,
p(W;)<0 forallj. )

Denote by V; the sub-bundle o*E(V;) of E(%) and by & the sub-bundle ¢'* E(#) of E(¥).
We shall show that for 1 <j<r—1

deg(Z? nV;) <0=>deg(?' n¥;+1) <0 )

(see Remark 3.5.5 for notation). Since 2'n ¥V, = W, and deg W, <0 by (2) and
P n Y, = itwill then follow by induction that deg(#') < 0 as required to be shown.

To prove (x) factorize the natural homomorphism#Z' NV, 1 - V;i /_IZJ. (cf.[13],§4,
p. 547)

0—ZnY;—Z Y —2-0

O— Q@ _I_/j+1/l/j“"‘VI/}+1‘_”'0-

Since Q —+ W, , is a generic isomorphism deg Q s deg W, - Using (2) deg 0 <0. By
the hypothesis of () deg(Z' n V) <0. Therefore deg(# N V.. ,) <0, as was to be shown.

— J
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Now suppose, conversely, E is a semistable G-bundle. Let ¢, be a reduction of
structure group of p, ¢* E = E' to a parabolic subgroup P, of M. Let %, be a dominant
character on P,. By Lemma 3.5.10 there is a reduction of structure group ¢’ of 6*E to
the parabolic subgroup P, - U such that ¢*E' ~ Py, o'* o* E where pi:P-U—P,isthe
projection. By Lemma 3.5.9

(i) for the character y, extended to P, U we have xi=y"x"*! for some n>0
with x" a dominant character on P,-U and y a dominant character on P. We have
X% E =(x 1" "),(g°0’*E (where q:6*(E/P,-U)—E/P,-U is the projection).
Also y,(q°0")*E=y,0o*E. Since ¢ is admissible deg(y,06*E)=0 and since E is
semistable  deg(y,(4°¢")*E)<0. Therefore deg(y +OTE)=(1/n)deg(x} 0 E") =
(1/n) {deg (x4(q°0')*E) —deg(y,0*E)} <O0. This shows p,o*E is a semistable M-
bundle.

(i) By (i) the M-bundle p, ¢* E is semistable. But p, 0™ E gives a reduction of structure

group of j, p, 6* E to the subgroup M. Again by (i) it follows J«P40*E 1s a semistable
G-bundle.

3.5.12. Lemma. Let P=M-U be a proper parabolic subgroup of G. Then there is
a 1-parameter subgroup A:C* — Z [ M7 such that the morphism C* x P— P defined by
(z,p)—A(z)pA(2)~ 1, zeC*, peP, extends to a morphism ¢:C x P—P such that
©(0,p) =m where p=m-u, me M, ueU.

Proof. We use the notation of [3], §4. Let P = P, where 0 is a subset of a system of
simple roots of G with respect to a maximal torus 7. Then M =2y, U=V, and
p: I, U,— Vj given by group multiplication is an isomorphism of algebraic varieties
([2], p. 327, § 14.4) where U, is the radical group corresponding to the root b, i.e. there is
an isomorphism of algebraic groups 8,:C — U, such that

t0,(x)t ™1 = 0, (tPx)(x)

([31,82.3, p. 64).

It follows from ([3], Proposition 3.6, p. 75) that we can find a 'I-parameter subgroup
4:C* > Z (M) such that {1,b> > 0 for every bea,, where (4, b is the integer such that
the composite C* — T C is given by zi—z¢49,

Let ¢,:C*x U,—» U, be given by ¢,(z,u)=A(z)ul(z)" !, zeC*, ue U,. Define
¢3:C* x C—C such that the diagram

@b
C*xU,—U,
idxe,T To,
C*xC — C

Py

commutes. ,

Using (x) we get ¢j(2,{) = 2%, zeC*, {eC. Since (1,b> >0, C* x C—C can be
extended as a morphism C x C—C such that (0,{)—0. Therefore, ¢, extends to
a morphism C x U, —U,, again denoted by ¢,, such that ¢,(0,u) = 1, Vue U,. Using
the isomorphism p: Iy, Uy— V, we can write P = M- I,e,; U,. Then the morphism
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¢:C x (M- 1L, Up)>M- 1T, U, defined by o(z,m I, w,)=m- I, ¢4z u;) zeC,
meM, u,e U, satisfies the requirements of the lemma. :
We can now give the proof of Proposition 3.5.

Proof of Proposition3.5. Consider C x Y x P as the trivial group scheme over CxY
determined by P. Then C x (¢*E) is a principal homogeneous space over C x Y under
the group scheme C x Y x P, in the obvious way (in the sense of [SGA, I], expose XI,
Definition 4.1). Let $:Cx YxP—Cx Y x P be the homomorphism of group
schemes defined by ¢(z, y, p) = (z, y, ¢(z, p)) where ¢:C x P— P is the morphism given
by Lemma 3.5.12. Then taking the associated principal homogeneous space of
C x ¢*E—C x Y under the extension ¢ (which exists, since C x Y x P is an affine
algebraic group scheme over C x Y, see [SGAT], expose XL,§4,p. 1 1) we get a principal
homogeneous space £” over C x Y under the trivial group scheme C x ¥ x P. We can
consider & as a P-bundle over C x Y in the obvious way. Let i: P 5 G be the inclusion.
Then & =i, ¢” gives a family of G-bundles for which the assertion (i) of Proposition 3.5
is easily seen to hold. Then (i) follows from 3.5.11 (ii).

3.6. DEFINITION

Two families of semistable G-bundles ¢ —S x X and & — S x X parametrized by the
scheme § are said to be related if there is an admissible reduction of structure group
o (resp. o’) of & (resp. £') to a parabolic subgroup P = M- U (resp. P’ = M'-U’) such that
the G-bundles j,_p, 0* ¢ and j, p, ¢'*¢ are isomorphic, where p:P—M, p': P'— M' are
the projections and j:M & G,j:M’ g G are the inclusions. We say & is equivalent to &' if
there exist families of semistable G-bundles £,— S x X,i=1,...,rsuch that { is related
to &,, &, is related to & and &; is related to &, fori=1,...,r—1.

3.7. Lemma. If the semistable G-bundles E— X and E'— X are equivalent then they are
topologically isomorphic.

Proof. It is enough to prove that if s is a (admissible) reduction of structure group of
E to the parabolic subgroup P=M-U then E and j, p,o*E, where p:P—M is the
projection and j: M & G is the inclusion, are topologically isomorphic.

By Proposition 3.5 (i) there is a family of G-bundles £—C x Xsuchthat{,~ Eforz#0
and &, ~j,p,o*E. Since C is connected, E and j,p,o*E are topologically isomorphic.

3.8. Remark. We can also prove the lemma directly without using Proposition 3.5 by
using the topological classification of bundles on X ([14], § 5, pp. 142-143).

3.9. DEFINITION

Let FSS:(Sch) —(Sets) be the functor which associates to Se(Sch) the set of equivalence
classes of families of semistable G-bundles parametrized by S. On morphisms F is
defined in the obvious way. Given a topological G-bundle t on X let F be the
sub-functor of ¥, which associates to S the set of equivalence classes of families of
semistable G-bundles of the topological type t parametrized by S.

We prove in this thesis that the functors F*_have coarse moduli schemes which are
projective (see Theorem 3.9).
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We shall now study the equivalence of semistable G-bundles on X and pick out
representatives for the equivalence classes. We shall need some more lemmas.

3.10. Lemma. Let P;=M;U; be proper parabolic subgroups of G, i=1,2. Given
a character y on the parabolic subgroup P, NP, U, (§1.9; [3], Proposition 4.4, p. 86)
which is trivial on Z y, there is an integer n > 0 such that y* = y, -y, with y, a character on
P, trivialon Z,,i=1,2. '

Proof. By Bruhat’s lemma there is a maximal torus T < P,nP,. Let 7 be the Lie
algebra of T and 4 =+ @ 4D E,_, %* be a root space decomposition with x + £ = 7.

Let L be the lattice ker(exp: 4 — T) and L* the lattice of linear forms on # which take
integral values on L. Then the characters of a parabolic subgroup P containing
T correspond to the linear forms in L* which are orthogonal (with respect to a Weyl
group invariant form which can be taken to be Q-valued on L*) to all the roots « such
that both ¢ and ¢~ are contained in the Lie algebra of P. Let V; (resp. V) be the
Q-vector space spanned by the elements of L* which are orthogonal to those roots o for
which both *and ¢~ *are contained in the Lie algebra of P, (resp. P,nP,-U,)i=12.
Then clearly V= V, + V,. Let 7 be the linear form corresponding to the character y.
Then geV. Write §=j, + §, with 7,€ V,. We can find an .integer n>0 such that
nj€ L*, i=1,2. Then ny; give characters y; on P, and we have X=X Ks

3.11. Lemma. Let E be a semistable G-bundle and o, an admissible reduction of structure
group of E to the parabolic subgroup P,= M, U, i=1,2. Let pi:P;— M, be the
projections. Suppose (P, P,) is compatible with (¢,,0,). Then

1) thereis areduction of structure group o = 6100, of E to the subgroup P, NP, such
that o;=m;°0 where n,:E/P, "\ P, > E/P,, i = 1,2 is the natural morphism.

ii) letting q;:E/P,nP,—E/P,nP,-U, be the natural morphism, the reductions q;°c
(i=1,2) are admissible.
iii) if p,, 0% E is a stable M ,-bundle then P, N P, contains a Levi component of P, .
iv) let Py nP, =M, U, be a Levi decomposition of PN P, suchthat My = M,. Note
that M is a Levi component for both P, N P,-U,and P,nM,. By 3.5.10 (ii) and (i)’ the
admissible reduction of structure group q,°c of E induces an admissible reduction of
structure group ¢’ of the M ,-bundle P1,0*E = F' to the parabolic sub-group P, M 1
We then have p,, 0*E ~ p,, o' F' where p,:P, NP, —M; and p5:P,nM,—> M, are
the projections.

Proof. Let 2, be the subalgebra of ¥ corresponding to the sub-group Pi, i=1,2. Let
O=VocVic-cV,=2,...V,=% be a flag in ¥ such that each V; is invariant
under P, and U, acts trivially on VilViisi=1,..,r.Let0= Wy W, c ... W,=
P, < - = W, =% be a flag with the same properties with respect to P,. We denote by
V; (resp. W) the sub-bundle a1 E(V}) (resp. o3 E(W))) of E(%). We shall show that
Z,nP, is a sub-bundle of E(¥), ie. P,NP, =P, NP, (cf. Remark 3.5.5). We note
that since o, and o, are admissible by Lemma 3.3.8. 1(V;/Y;- 1) = uw(E(%)) and
W /W, 1) = u(E(%)). Moreover u(E(%)) =0 (cf. [14], Remark 2.2) -
We prove that each ¥,;n W, is a sub-bundle by induction. Assume that VinW,is
a sub-bundle with deg(¥;n W;)=0 for (i,j) such that either i <m— 1 and Jj arbitrary
or i=m and j>n+1. Under this assumption we shall prove that ¥V, n W, is a

é
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sub-bundle of degree zero. It will then follow by induction that ¥;n W;isa sub-bundle
of degree zero for all i,j. '

If ¥, n W,., =0 there is nothing to prove since ¥,,n W, =0 in that case. Suppose
V,,n W, ., #0. Factorize the natural homomorphism V,,n W, ., = W, ., /W,.

024> Vun W, > A4,-0

l
0<_A4<——n+1/-—wn “« A3(—0

Since W, ..,/W, =p,,05E(W,,/W,) and p, 0% E is a semistable M ,-bundle (Lemma
3.5.11(i)) and A, is a sub-bundle of type Im(V,,n W, — W,./W,) which has as
stabilizer a parabolic subgroupin M,, we have deg A5 < 0 (cf. proof of Lemma 3.5.11).
Therefore deg A, < 0 and hence

deg 4, >0, (1)

noting that deg(V,,n W, ) =0 by the induction hypothesis. Now consider the sub-
bundle 4, of E(%). If A, = Oitiseasytosecthat V,,n W, =4, =0 and we are through.
If A, #0 we can find a t<msuch that 4, = Y, and 4, ¢ V,_;. Then factorize the
non-zero homomorphism 4; = V,/V,_,

0—-B, - A, - B,—-0

!
0‘_B4*_.Vt/l/z~—1‘_33‘"0-

Since by the induction hypothesis ¥,_; n W, is a sub-bundle, we see that B, ~ B and
B, =V,_,n W,. Since o, is admissible as before we have deg B; <0. Therefore
deg B, <0. Also deg B, =0. Therefore

deg4, <0. 2)

By (1) and (2) deg A, =0. This implies deg4, = deg A; =0. Then A,— A5 being
a generic isomorphism of vector bundles of the same degree becomes an isomorphism.
Therefore A, = V,,n W, which shows that V,,n ¥, is a sub-bundle.

In particular we have proved that 2, N2, is a sub-bundle of E(%).

(i) Since (P,,P,) is compatible with (¢;,0,) there is a nonempty open subset U
of X over which E is trivial such that, choosing a trivialization, the morphism
o, X 6,:U—G/P, x G/P, given by the sections g, and o, has its image in the G orbit
0 of (P,,P,)eG/P,x G/P, (Remark 35.6). Since the stabilizer in G of
(P,,P,)eG/P, x G/P,is P, P, we have that O is naturally isomorphic to G/Py N P,.
It then follows easily that there is a section ¢ of E/P;nP,—X over U such that
o,|U =700, i = 1,2. The complement X — U of U in X is a set of a finite number of
points. Let xeX — U.Let U' be a neighbourhood of x in X, over which E is trivial, and
choose a trivialization. Then ¢, 0, and ¢ give morphisms ¢’y x 05:U" = G/P, x G/P,
and ¢:UNU —G/P,AP,. By our choice of U, (¢} x 62)(UN U’) = 0. Therefore
(6% x d4)(x) is in the closure 0 of O in G/P, x G/P,. Suppose (¢; X 65)(x)¢0. Since
O — 0is a union of orbits of dimension strictly less than that of O ([2],8(1.8), p. 98), the
stabilizer of (¢}, x ¢,)(x) in G will have dimension strictly greater than P, P,.
However, letting 2, be the fiber over x of the vector bundle 2, it is easy to see that the
Lie algebra of this stabilizer correspondsto £, N2, which has the same dimension as
P, NP, since 2, NP, is a sub-bundle (Remark 3.5.6). This contradiction proves that

(0", X &,)(x)e0. This implies that we can extend the section o over U to x and hence, by
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the same argument at other points of X — U, to the whole of X. Then 0;=Tm;°0 on the
whole of X since both the sides agree on the dense open subset U.

(if) Let y be a character on P, P,-U, which is trivial on Z,. By Lemma 3.10 for some
integer n >0, we can write y" = y, -y, where , is a character on P, trivial on Z,,. Clearly
Xe(g1° oV E= (x,,0FE)® (X240% E). Since both ¢, and o, are admissible deg(y;, o¥ E) = 0,
i=1,2. Therefore deg(y, (q,°0)*E) = 0.

(i) The reduction o gives rise to a reduction of structure group of the P,-bundle ¢} E
to the subgroup P, " P, and henceto P, NP, U,.By Lemma 3.5.10 (ii) and (ii)’ we have
a reduction of structure group of p,, 6¥E to (P, n P,-U,)n M, which is admissible. If
P1,0TE is a stable M,-bundle then we should have (PynP,-U)nM,=M,. This
implies that P, n P, contains a Levi component of P,([3], Proposition 4.4, p. 86).
(iv) Let F = ¢} E. By Lemma 3.5.10 (i) ¢"* F’ X p,(q, °o)*F where p:(P,nP,) U, =
(P,nM,)U;—P,nM, is the projection. Therefore applying p5, to both sides
P34 0* F' = py. p.(g,°0)*F. But the latter is isomorphic to p, <O E.

3.12. PROPOSITION

Let E be a semistable G-bundle on X. Then there exists a semistable G-bundle grade E,
denoted by gr E, uniquely determined up to isomorphism by the condition that there exists
an admissible reduction of structure group ¢ of E to a parabolic subgroup P = MU such
that p, o*E (where p:P — M is the projection) is a stable M-bundle and gr E ~ J4Px0*E
(where j: M 5 G is the inclusion). We then have 1) E and grE are equivalent, ii)

gr(gr E) ~ gr E and iii) two semistable G-bundles E 1 and E, are equivalent if and only if
grE ~grk,.

3.12.1. COROLLARY

The set of isomorphism classes of semistable G-bundles E such that E ~ gr E forms a set
of representatives for the equivalence classes of semistable G-bundles.

Proof. The corollary follows immediately from the proposition.

We shall first prove that given E there exists a semistable G-bundle gr E satisfying the
above condition. If E is stable we have only to take gr E = E. If E is not stable then there
exists an admissible reduction of structure group of E te a proper parabolic subgroup
P=M-U. By Lemma 35.11() E=E [P,M] (cf. §2.5 for notation) is a semistable
M-bundle. To prove the existence of gr E we now use induction on the semi-simple rank (i.e.
the rank of the commutator subgroup) of the structure group. If the semusimple rank is zero
then the group is a torus group and any bundle with a torus group as structure group is
stable and hence we can start the induction. Since the semisimple rank of M is strictly less
than that of G by the induction hypothesis there exists an admissible reduction of structure
group of E to a parabolic subgroup P, = M 1"U; of M such that E'[P;, M, ] is a stable
M;-bundle. Then by Lemma 3.5.10 (ii) and (ti) there is an admissible reduction of structure
group of E to the parabolic subgroup P;-U of G such that E [P,U,P,]J~E[P,].
Therefore E[P, U, P,1(M,) ~E'[P,M,]. Noté that M, is a Levi component of P,-U
alsoand E[P, U, P, J(M,) ~ E[P,U,M,]. Therefore we can set grE=E[P,-U,M,](G).

We now proceed to show the uniqueness of a bundle satisfying the condition of the
proposition. '

First note that for any reduction of structure group of E to P = M-U the isomor-
phism class of E[ P, M](P) and hence of E [P, M1(G), does not depend on the choice of
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the Levi component of P since any two Levi components are conjugate by an element of
U ([3],§0.8, p. 59).

If E is stable, uniqueness is obvious. On the other hand suppose ¢, and ¢, are two
admissible reductions of structure group of E to the proper parabolic subgroups
P, =M, U, and P, = M,-U, respectively such that E[P;, M,] is a stable M;-bundle,
i=1,2. Then we have to show that the G-bundles E; = E[P;, M;](G) are isomorphic.

We can assume, by conjugating if necessary, that (P, P,) is compatible with (5, 5,)
(cf. Remark 3.5.7). Then by Lemma 3.11, it follows that there is a reduction of structure
group o of E to the subgroup P, N P, such that o; = p;,°¢ where p;:E/P, NP, —E/P;,
i=1,2. By Lemma 3.11 (iii) P, n P, contains a Levi component of both P, and P,. Let
P,nP,=M-U be a Levi decomposition for P; " P,. Then M is a Levi component of
both P, and P,. Also U = U,, i=1,2. Therefore both E; and E, are isomorphic to

E[P,nP,,M](G) proving the uniqueness.

The fact that if E, and E, are equivalent then gr E; ~ gr E, follows from Lemma
3.13(i) below. The other assertions of the proposition are clear.

3.13. Lemma. Let o (resp. o) be an admissible reduction of structure group of the semistable
G-bundle E (resp. E') to the parabolic subgroup P = M-U. Then we have the following.

i) gr E~(gr(E[P,M]))(G)
i) grE~ gr(E[P, M](G))
iii) If gr(E[P,M])~ gr(E'[P,M]) thengrE~grE'.
iv) If the M-bundles E[ P, M] and E'[P, M] are equivalent then the G-bundles E and E'
are equivalent.

Proof. Let o, be an admissible reduction of structure group of E to a parabolic
subgroup P, =M, U, such that the M -bundle E[P,,M,] is stable. Then
gr E ~ E[P,, M, ](G). We can assume that (P, P) is compatible with (¢, 0). Then by
Lemma 3.5.10 (i) there is a reduction of structure group s of E to P, NP, such that
o, =p,°sand ¢ = p°s where p,: E/P, "\P— E/P, and p:E/P, NP — E/P are the natu-
ral morphisms. Also by Lemma 3.5.10(iii) P, n P contains a Levi component of P,.
Therefore, conjugating if necessary, we can assume M; = M. We havea Levi decompo-
sition P, nP=M,-U’ for P, P where U’ is the unipotent radical of P;nP. Also
U’ < U and (P,nP)-U =M, U is a Levi decomposition for (P, N P)-U. Therefore,

gr(E[P,, M, 1)~ E[P,nP,M,] (1)
and M, is a Levi component of P, n M. It follows from Lemma 3.5.10 (iv) that

F'[P,AnM,M,J~E[P,nP,M,]. 2
Using (1), F'[P; nM, M, ] is a stable M ;-bundle. Therefore

gr F'x F'[P,nM,M,](M)~ E[P;n P, M, ](M). (3)

From (1) and (3) (gr F')(G) ~ gr E which proves (i). The reduction of structure group of
F'to P, n M gives in the obvious way a reduction of structure group of FF(G)toP "M
such that

F'[P,AnM]~(F(G)[P,nM]. 4)

Since M, is a Levi component of (P; " M)-U, considering the reduction of structure
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group of F'(G) to P, n M as a reduction to the subgroup (P, n M)-U we have from (4),
(F(G)[PinM) UM, ]J=F[P,nM,M,].

Since F'[P, n M, M, ] is a stable M-bundle, gr(F'(G)) ~ F'[P, "M, M, ](G) =~ (gr F’)
(G) and the last bundle is gr E by (i). This proves (ii), and (iii) follows immediately from
(i). Proposition 3.12 (iii) and part (iii) above imply (iv).

We will now relate the algebraic notion of equivalence classes of semistable bundles
to the transcendental notion of unitary bundles. We recall the definition of unitary
bundles on the compact Riemann surface X (cf. [14],§ 1,§ 6). Let x,€ X be a fixed point.
Let I = =, (X —x,) be the fundamental group of X — x, (with respect to some base
point, the base point does not count since we will be concerned only with the
isomorphism classes in the constructions below). Let yeI” be the element correspond-
ing to the ‘loop around x’ ([14], p. 144). Let p:T > Gbe a homomorphism such that

p(y) = CeZ,.Let Z, bethe Lie algebra of Z,and CeZ , such that exp(C) C.LetE, be
the G-bundle on X — x,, associated to the universal covering X — x Xo—=> X — X, which
is a I'-bundle, by the homomorphism p. Let D be a neighbourhood of x,, in X isomor-
phic to the unit disc. Let H be the upper half plane. Then H — D — x,, z+—>exp 2miz, is
the universal covering and y: H — Z, = G defined by ¥/(z) = exp(— zC) gives a section
of E, over D — x,. We define E(p, C) to be the G-bundle obtained by patching up the
trivial G-bundle on D with E, on X — x, with the help of the trivialization of E, on
D — x, given by y (cf. [14], § 6 for more details).

3.14. DEFINITION

We call a G-bundle a unitary G-bundle if it is isomorphic to a G-bundle E(p, C)
constructed as above for some p:I'— G such that p(I') = K, a maximal compact
subgroup of G.

3.15. PROPOSITION
A semistable G-bundle E is unitary if and only if E~grE.

Proof. Let E = E(p, C) be an unitary bundle. Suppose p is irreducible, i.e. the only
elements of ¢ fixed by ad p(h) for every hel are those of the center of ¢ ([14,§ 1). Then
by ([14], Theorem 7.1) E is stable. Therefore in this case E ~ gr E. Suppose p is not
irreducible. Then by ([14], Proposition 2.1) p(T') leaves a proper parabolic subalgebra
# of ¢ invariant and hence p(I') = P, the subgroup corresponding to . Since p is
unitary p(I') = KNP < M where M is a Levi component of P. This implies that E(p, C)
has a reduction of structure group to M. This reduction considered as a reduction to
P is admissible. For let y:P—C* be a character on P which is trivial on Z,. Then by
([14], Remark 6.1, p. 145), X E(p,C) = ‘E(x°p, #(C)) where ¥ is the morphism induced
by x on the universal coverings. Since CeZ, and y is trivial on Z,, 7(C) =0. Therefore
deg(x.(E(p, C)) =0. We have for this reduction E[P,M](G)~ E.If E[P,M]is a stable
M-bundle we are through. If not we use induction on the semisimple rank of the
structure group to conclude that gr E(p, C) ~ E(p, 0).

Conversely suppose E = gr E. If E is stable by ([14], Theorem 7.1) E is an unitary
G-bundle. If E is not stable, let o be an admissible reduction of structure group of E to
the proper parabolic subgroup P = M- U, such that E' = = E[P, M]isastable M-bundle.
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Then gr E ~ E'(G) (Proposition 3.12). By ([14], Theorem 7.1) E' = E'(p’, C’) for some
p:I > K’'< M, where K'is a maximal compact subgroup of M, p(y) = C'eZ,[M] and
C'eZ,[M] such that exp C' = C'. We then make the following

vi Claim. C'eZy < Z,[M].

’ Since the reduction ¢ is admissible deg(x, E[P,M])=0 for any character y on
P which is trivial on Z,,. But y, (E[P,M])~ E'(x°p/, ;Z(é’)) by ([14], Remark 6.1).
Therefore 7(C') = 0. Since any character of Z,[M] which is trivial on the finite group
Z,[M1n[M, M] extends to a character of M and hence of P we see that the group of
characters of P (resp. the group of characters of P which are trivial on Z,) is a subgroup
of finite index in the group of characters of Z,[ M] (resp. in the group of characters of
Z,[M] which are trivial on Z,). This shows that if 5'¢ZO there will be a character y on
P, trivial on Z,, such that 7(C') # 0. This contradiction proves the claim.
_Letp=ip where i: M G G is the inclusion. Then E ~ gr E ~ E'(G) = E(p, C) where
C=1i(C").

3.15.1. COROLLARY

For any semistable G-bundle E the G-bundle gr E is unitary. Associating E to gr E gives
a bijection between the set of equivalence classes of semistable G-bundles and the set of
isomorphism classes of unitary G-bundles.

Proof. This follows immediately from Proposition 3.12 (i) and the preceding proposition.

3.16. Lemma. Let P be a maximal parabolic subgroup of G and y the dominant character
of P which generates the group of characters of P/Zj. Then there is an irreducible
representation p: G — SL(V) such that p(Z,) = 1. There is a line {v} = V whose stabilizer
is precisely P and P acts by the character y on the line {v}.

v Proof. Let G = G/Z, and P’ =image of P in G'. Let n:G'—»G be the universal covering
N group of G. Then P’ = =~ (P") is 2 maximal parabolic subgroup of G. Let p":G' = SL(W)
be the fundamental representation corresponding to P'. Then there is a line {wpe W
whose stabilizer is P’ and P’ acts on {w} by the dominant character § which generates the
character group of P. Since y is dominant y°on =§", for an integer n>0. Then the
irreducible G-subspace V generated by v =w@w® --- @win W W®--- ® W (nfactors)
is actually a representation space for G’ (since the highest weight i goes down to G’) and hence
for G. Thus v and V satisfy the conditions of the lemma.

3.17. PROPOSITION

Let p:G, — G, be a homomorphism between the reductive, connected algebraic groups G,
and G, such that p(Z,[G,1) € Z,(G,). Then

(i) if E is a semistable G -bundle then the associated G,-bundle p  E is semistable.
(i) if the kernel of the homomorphism G/Z,[G,]1— G, /Z,[G,] induced by p is finite,
then E is semistable if and only if pE is semistable.

Proof. (i) Let E be a semistable G,-bundle. We first prove the case when G, = GL(V).
So let p:G, —GL(V) be a representation such that Z,[G,] acts on V through the

I
i
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character x:Z,[G,]— C*. Since E is semistable there is an admissible reduction of
structure group of E to a parabolic subgroup P = MU such that E[P, M] is d stable
M-bundle. Then by ([14], Theorem 7.1, p. 146) E[P,M]~ E'(h, C) for an unitary
representation 4. — K, K’ a maximal compact subgroup of M and C eZo [M]. Since
o is admissible C EZO [G ] (as in the claim in the proof of Proposition 3.15).

Let 0=V, Vyc---c V,= V be the flag in V defined by the condition that
V;/V;_,isthelargest subspace of V/V,_,,i=1,...,nonwhich U acts trivially. This flag
is invariant under the action of P. Since ¢ is admissible by Lemma 3.5.8

WELP](Vi/Vi-1)) = W(E(V)). (1)

Let P’ = M’-U’ be the parabolic subgroup of GL(V) which is the stabilizer of the flag
0=V, V,c...c V,= V. We can assume (by taking a conjugate of M if necessary)
that p(M)< M'. The flag of sub-bundles E[P](V,)< E[P](V,)<...c E(V) gives
areduction of structure group of the GL(V)-bundle E, = p, E to the subgroup P’ which
is admissible because of (1) (Remark 3.4). Now E,[P’,M'] is isomorphic to
E[P,M](M’), the M'-bundle got from E[P, M] by the extension of structure group
p:M — M'. By ([14], Remark 6.1, p. 145) E,[P', M' ]~ E(p°h, 5(C)). (Note that since
CEZO[GI] and Z,[G,] acts by scalars p(C)eZo [GL(V))]). Therefore E,[P',M'] is
semistable by ([14], Proposition 2.2). Therefore by Lemma 3.5.11, E, is semistable.

Now let G, be arbitrary, and E a semistable G;-bundle. We shall show E, = p, E is
semistable. Let ¢ be a reduction of structure group of E, to a maximal parabolic
subgroup P of G,. Let A be the dominant character of P which generates the character
group of P/Z,[G,]. By Lemma 3.16, there is a representation h:G, - SL(V) of G, on
a vector space V such that Z,[G,] acts trivially on ¥, there is a line {v} = V whose
stabilizer is precisely P, and P acts on the line {v} by the character A. Then as proved
above h, E, = h,p,E is a semistable vector bundle (of degree 0 since h(G,) = SL(V)).
Further A E,[P] is a sub-bundle of h E, (corresponding to {v} = V). Therefore
deg(4, E,[P]) <0, which shows that ¢ satisfies the semistability condition.

(ii) Now suppose G,/Z,[G,]1—G,/Z,[G,] has finite kernel and E,=p E is
semistable. Let h:G,—SL(V) be a representation such that kerh=Z,[G,]. Let
P = M-U be a maximal parabolic subgroup of G, and ¢ a reduction of structure group
of E to P. Clearly there is a G,-invariant subspace V; of ¥ such that V, is neither 0 nor
V and U acts nontrivially on V,. Let V, be the largest subspace of V; on which U acts
trivially. Then V¥, # 0 by Lie-Kolchin theorem ([2],(10.5), p.243)and V, # V,.Also V,

is stable under P. Let r=rank of V,. Let W= A V, and {w} < W, the line A V,
correspondingto ¥, = V,.Then P acts on the line {w} by a character A" for some n > 0,

where A is the dominant character of P which generates the group of characters of

P/Z,[G,]. Now since E, is semistable by part (i) E,(W) is a semistable vector bundle
(of degree 0).

Also E,(W)~ E[P](W) and A} E[P]~ E[P]({w})< E[P](W). Since E[P](W) is
semistable we have deg AL ELP] <0 which shows that ¢ satisfies the semistability
condition.

3.18. COROLLARY

Let E be a G-bundle and Ad E be its adjoint bundle. Then E is semistable if and only if
Ad E is semistable.
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Proof. This follows immediately from the preceding proposition.

3.19. Lemma. Let A and B be C-algebras of finite type. Let J be anidealof A® B. Then
C

there is an unique ideal J, of A such that for any C-algebra C and any homomorphism
f:A—C,ker f contains J if and only if ker(f ®idg) contains J.

Moreover, if A is an N'-graded algebra (N = set of natural numbers) and J is
a homogeneous ideal of A % B where A %) B is given the gradation taking B as an algebra

with trivial gradation, then J | is a homogeneous ideal of A.

Proof. Let {I,} be the collection of all ideals of A with the property I;®@ B> J. Let
[»)

J = O 1,. For any collection of subspaces {S;} of 4, (O Sj) %} B= O (SJ@B) we
have J, ® B> J. It is easy to check that J, has the required properties.

If 4 0:is graded by the subspaces {A4,},., and J is homogeneous then
J=@®Jn (A,,@B). Since Jm(A,,@B) < (Jl ®B)r\ (A,,@B) = (JlmA,,)%DB,
for thne homogeﬁeous ideal J', = (? Jq rf A,<J, we hcave Ji Cz) B :f J. Therefore J'|, = J ¢,

proving the homogeneity of J;.

3.20. Lemma. Let H and Y be schemes and D a closed subscheme of H x Y. Then there
exists a unique closed subscheme H of H such that, for any morphism f:S—H from
a scheme S, the morphism f x idy:S x Y—>H x Y factors through D H x Y if and
only if f factors through H, < H.

Proof. We can assume H, Y'to be affine and then apply the previous lemma.

We shall now prove a lemma which is essentially the same as ([14], Lemma 4.1). We
need it in this form.

Let Y be a projective scheme and L a very ample line bundle on Y. Let T be a scheme and
V,-» TxX,i=1,...,r vector bundles on T x X. Let ¥; be the sheaf of sections of V. Then
the scheme V; is Spec(S(V*) where V¥ is the dual sheaf of V; and S(V¥) is the symmetric
algebra of V*. Let V=@®j.,¥. Then V= Spec(SVH® - ®S(VF)), since
S(V*)=S(V*)®---@S(¥). The S(V}) are N-graded algebras and hence S(¥'*) has
a natural N'-gradation. Let C = V be a closed subscheme of V and . the sheaf of ideals of
Cin V. We call C a multiconeif # is homogeneous with respect to the N'-gradation of S(I'*).

Let (Sch/T) be the category of schemes over T. Let  =7(C/T x Y):(Sch/T)— (Sets)
be the functor which associates to an (S— T)e(Sch/T) the set Hom (S x ¥, C) of
T x Y-morphisms of S x Yinto C. For a T-morphism f:S' — S, n(f) is defined to be
pulling back by f.

Letpy: Tx Y— Tandp,: T x Y- Ybe the projections. Fix an integer m sufficient-
ly large such that H'(Y,V; (m))=0 for all te T, where V; (m) is the restriction of
Vi(m)= V,®@py(L™)totx Y= Y([11], Lecture 7, p. 49). ,

Let #; = pr, (V;(m)) and o = pr, (V(m) = @}, ;- Then J#; and 5 are locally free
([11], Lecture 7, p. 51). Let H; = Spec(S (%)) be the vector bundle on T corresponding to
the locally free sheaf 5#; and H = Spec(S(#*)) = Spec(S(#T). .. S(3F)).
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3.21. Lemma. The functor © defined above is representable by a closed subscheme N of
the scheme H.

If Cis a multiconein V= @3%1 V; then N is a multicone in H = @;=1Hj.

3.21.1. COROLLARY

If C is a multicone then the set

J

{ l I(oy,...,0)en(ts T) e HY (L, V,)= @ HY (Y, V;,) such}
te T =1
that 0;#0 as a section of V; Nj=1,....7

is a closed subset of T.

Proof. Let se H°(Y, L™) be a non-zero section and D the divisor of zeros of s. We then
have an exact sequence

0-0-L"-> L"®0,~0, (1)

where O (resp. Op) is the structure sheaf of Y (resp. D) (see [11], p. 63). Pulling back (1)
by py and tensoring by V we get the following exact (py is flat, V' is locally free) sequence
onTx Y.

0-V-o>V(m—->I -0, 2)

where 7 = V(m)® p¥ 0.

Let 7, =n(V(m)/T x Y) (resp. o =n(V/T x Y)) be the functor from (Sch/T) to
(Sets) which associates to (f:S— T) the set Homy,y(S x ¥, V(m))= H(S x Y,
(f x idy)*(V{(m)) (resp. Homy, (S x Y, V)= HO(S x Y, (f xidy)*(V))).

Pulling back (2) by f x idyto S x Y (whichisequivalent to pulling back (1) by the flat

morphism py°(f x idy) and tensoring by the locally free sheaf (f x idy) (V)) we get the
following exact sequence on S X Y

0 (f X idy* (V) S (f % idy)*(V(m)) > (f x idyy* T —0. 3)

The cohomology exact sequence of (3) gives 74(S) < ,,(S) so that 7, is a subfunctor of
7,,. Since C is a subscheme of ¥ clearly n(S) = mo(S). We shall prove that =, is

represented by the T-scheme H = Spec(S(#°*)) 2 Tand 7, and 7 are represented by
closed subschemes of H. :

Since p, is a projective morphism and V(m), being locally free, is flat over T and
H(Y, V,(m)) = Ofor everyte T we have([11], Lecture 7, pp. 50-51) 2# to belocally free
and for any morphism f:S— T the natural morphism

F*(H) = s, ((f x idy)*(V(m))) (x)
is an isomorphism. We then have the following sequence of natural isomorphisms:
Ta(S) = HO(S x Y{f x idy)*(V(m)))
= HOS,ps((f % idy}*(V(m)))
= H°(S,f*(o)), (by (+))
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~ Homy(S, f*(H))
~Hom (S, H).

It follows that =,, is represented by H.

Let ¢ be the universal section in HO(H x Y,(p x idy)*(V(m))) (i.e. the element
corresponding to identity in Hom,(H, H) in the above identifications). Let g, be the
restriction of ¢ to H x D. On H x Y we have the exact sequence (corresponding to (3))

0—(p X idy)*(V) 5 (p x idy*(V () 5 (p X idy)*(7) 0. )

The sheaf (p x idy)* 7 has support on H x D and its restriction to H x D is a vector
bundle which we denote by W. For the vector bundle W — H x D, f’° o, gives a section.
Let M be the closed subscheme of H x D which is the pull back of the zero section of
W by p'°o,. Apply Lemma 3.20 to get a closed subscheme N, of H such that any
morphism f:S — H factors through N, if and only if f x id,:S x D —H x D factors
through M. It is easy to see that the ideal sheaf of M in H x D is homogeneous with
respect to the natural N'-gradation induced from S(#*). Therefore by Lemma 3.19 the
ideal sheaf of N, in H is also homogeneous.

We claim that N, represents the functor 7. It is enough to show that the element
(f x idy)*(o)in 7,,(S) corresponding to feHom(S, H) lies in 7, (S) if and only if ffactors
through N,. Since the restriction of f'° o to Ny x Y (i.e.pullbackby Ny x Y5 H x Y)
is zero we have that if f factors through N, then (f x idy)* (o) is zero. This implies by (3),
(f x idy)*(c)emy(S). Conversely if (f x idy)*(0)emy(S) using (3), Bo((f x idy)*(0)) =
(f x idy)*(B' °0) is zero. Hence (f x idy)*(f'° o) is zero. But this implies that f x idp
factors through M and hence f factors through N,.

Therefore p,: N, — T represents 7y where py, is the restriction of p: H— T. The universal
sectionin HO(N, x Y,(po x idy)*(V))is o, given by the pull back of s by No x Y H x Y.
Let M, be the subscheme of N, x Y which is the pull back of the subscheme
(po X idy)*(C) = (py X idy)*(V) by 0,. If C is a multicone in V the sheaf of ideals of M,
in N, x Y is homogeneous with respect to the natural N'-gradation of the structure
sheaf of Ny x Y. (Since the ideal sheaf of N in H is homogeneous the structure sheaf of
N, has a natural N'-gradation which gives the N'-gradation on the structure sheaf of
Ny x Y)

Again applying Lemma 3.20 we get a closed subscheme N = N, such that any
morphism f:S — N, factors through N if and only if f x idy:S x ¥ — N, x Y factors
through M, . It is then easy to see that N represents the functor n. By Lemma 3.19if C is
amulticone the ideal sheaf of N in N, (and hence in H)is homogeneous. This completes
the proof of the lemma.

To prove the corollary note that if C is a multi-cone in ¥ we have proved that

N = Spec(S(A#7)® -+ @ S(H#7F)/J)

where J is an N'-graded ideal of S(#*) ® --- ® S(#F). Such an ideal defines a closed
subscheme Q of Proj(S(#%*)) x --- x Proj(S(s#*)) and clearly the set defined in the
corollary is 7(Q) where t:Proj(S(#%)) x --- x Proj(S(s#}))— T is the projection.
Singce 1 is a proper morphism 7(Q) is closed in T. :

3.22. Lemma. Let ¢ »S x X be a family of semistable G-bundles. Let P be a maximal
parabolic subgroup of G. Let y be the dominant character on P which generates the group
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of characters of P which are trivial on Z,,. Let L be a line bundle of degree zero on X.
Then the set

Spr= {seS

is a closed subset of S.

& has an admissible reduction o of structure
group to P such that y,0c*E~ L

Proof. Let Y=Sx X and ¢, =S x L.Then ¢, x £isa C* x G-bundle on Y. Let P be
Y

the subgroup {(x(p), p)|peP} of C* x G. It is a closed algebraic subgroup of C* x G
since it is the image of the homomorphism P —C* x G, p—(x(p), p) ([2], (1.4), p. 88).
Under the projection C* x G — G, P maps onto P. Therefore, the projection ¢, >< Eo¢

induces &, >< &/P—¢/P. A reduction of structure group of &, ><<f to P glves by

composing w1th &, x &/P— ¢/P, areduction of structure group of 6 to P and it is easily
Y

checked that y, (£[P]) is isomorphic to &,. Conversely one can check that given
a reduction of structure group ¢ of £ to P such that y, o*¢isisomorphicto ¢, then there
is a reduction of structure group of &, xé to P which when composed with

¢ x £/P—¢/P gives back ¢. By Lemma 3. 16 there is an irreducible representation

p: G—»SL(V) with aline {v} = V such that P = {geG/p(g ){v} = {v}} and p(p)v=x(p)v
for peP. Let C* x G act on Hom(C, V) by (z,9)f = p(g)° foz~ ! where zeC*, geG,
feHom(C, V) and we have denoted by z~* the multlphcanon by the scalar z~'eC*,
Let foeHom(C, V) be defined by f,(z) = z*v. Then the stabilizer of f, in C* x G is
P and hence C* x G—Hom(C, V) is given by (z, g)—(z,9) f, which induces an
isomorphism of schemes of C* x G/P with the orbit C of f, under C* x G (C is locally
closed in Hom(C, V) and endows it with the canonical reduced subscheme structure,
(cf. [2], (1.8), p. 98)). Let C be the closure of C in Hom(C, V). Since C is invariant under
scalar multiplication in Hom(C, V), C taken with the canonical reduced scheme
structure is a cone in Hom(C, V). We claim that C = Cu{0}. Clearly 0eC. Suppose
05 feC. Since C is locally closed, C is also the closure of C with respect to the strong
(Hausdorff) topology. Therefore, there is a sequence p(g,)° f,°z, ! tending to f, with
9.€G,z,eC*. Let K be a maximal compact subgroup of G. Then G = K- P ([14], proof
of Proposition 2.1, p. 130). Write g, =k,p, with k,eK, p,,eP. Since K is compact
we can assume that 11mn‘,mkn— k. Then lim,_,  p(p,)° fo°z L =pk) " tof s0 that
(0(p,)° fo°2, 1)(2) = (x(p,)z, *2)v tends to p(k)™" £ (z). This implies lim, , , x(p,)z ™! = zq.
Therefore p(k) ™! f(z) =z,z-v =(£0°2,)(2), since f #0, z, # 0 and we have f = (z; 1, k) f,.
Therefore feC. Thus we have proved C = Cu{0}.

A reduction of structure group of ¢, x ¢ to P is given by a section of ¢ X /P =(¢, X <)

(C* x G/P) = (¢, X &(C). The inclusions C=C < Hom(C, V) induce the inclusions
(¢, x O =& >; i)(C)C(él X §)(Hom(C, V) (See §2.4).
By Lemma 3.21, the set S ; of points seS such that (¢, >< 6),(C) = (L x £)(C) has

a non-zero section is a closed subset of S. We shall now show that Sp ; = Sp ;. Clearly
Sp1 < Sp - Suppose seS; ;. Then we have a non-zero homomorphlsm o:L—=E (V).
Sincedeg L=0and £ (V)i 1s a semistable vector bundle of degree zero (Proposition 3.17)
it follows that o is an injection ([ 197, Proposition 3.1, p. 306). This implies that o factors




n

Moduli for bundles over curves | 325

through the open immersion (L x &,)(C) s (L x E)(C). Therefore L x &, has a reduction
to P and hence seS5; ;.

3.23. Lemma. Let £ —>S x X be a family of semistable G-bundles. Suppose there exist

(1) a dense open subset T of S
(i) a reductive subgroup M, of G of maximal rank and
(ili) a stable M ,-bundle E,,

with the following property: For every teT the G-bundle &, — X has an admissible
reduction of structure group o to a parabolic subgroup Q having M, as a Levi component
such that the M ,-bundles £,[Q, M,] and E, are isomorphic. Then for all seS gré; is
isomorphic to Ey(G) and hence the G-bundles &, for any seS are all equivalent.

Proof. We can assume without loss of generality that S is reduced, irreducible and
affine. We shall prove the lemma by induction on the semisimple rank of the structure
group.

Suppose M, =G. Let S x E; — S x X be the trivial family of G-bundles given by E,.
Let p:G g GL(V) be a faithful representation and V=V, @ ---@ V, be a decomposi-
tion into irreducible subspaces. Let p;:G — GL(V;) be the representation of G on V;
induced by p. Define .

C = {(plil(g)'» ] pr}'r(g))EGL(V)IALGC*s QEG}

Let C be the closure of C in @!_, End V,. We consider C as a closed subscheme of
@ End V, with the reduced structure. Note that C is an open subscheme in C and C is
amulticone in @ End V,. By the hypothesis of the lemma and assumption M, = G, for
te T we have an isomorphism ¢,: E,—¢,. We can interpret ¢, as a section-of the fiber

bundle (EO X 5,) (G) with fiber G associated to the G x G bundle E, X ¢, for the action
o :

of Gx G on G given by (9,,9,)R) =g,hg7*, 91,92, heG (cf. [17], §3.5, Example,
p. 1-19). Since p is faithful one can identify G with the locally closed subscheme (taken
with reduced structure) p(G) of C < @ End V,. We extend the action of G x G to
@ End V, by setting (g,,9,)f = p(g.)° f°p(91) ™', 91.9,€Gand fe® End V;. Then ¢,

gives a section of (E, x &,)(C) = ((S x Eq) X f) (C). By Corollary 3.21.1 it follows that
SxX

t

(S x E,) x ¢ ) (C) has a section for any seS which induces a non-zero endomorphism
SxX /g

of E,(V;) for every i. Then by ([14], Proposition 3.1) such a section gives rise to
a G-bundle isomorphism of E, with £,. This proves the lemma when M,=G. In
particular if G is of semisimple rank zero then G &~ C*" and any reductive subgroup of
maximal rank has to be C*". Therefore we have proved the lemma in the case of
semisimple rank zero. (When G = C*", alternatively, the lemma follows by observing
that the C**-bundle ¢ is merely an n-tuple of line bundles .#,— S x X and by the
hypothesis the morphism from S into the Jacobian (of suitable degree) of X determined
by %, is constant on T and hence on S.)

Now assume M, is a proper subgroup of G. Let P,..., P, be a set of representatives
of conjugacy classes of parabolic subgroups of G containing M, as a Levi component. Let
P!,..., P, be maximal parabolic subgroups such that P, = P}, i=1,...,r. Let x; be the

i°
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dominant character of P;and let L, = y,, (E,). Since a reduction of structure group to

P, can be considered in a natural way as a reduction of structure group to P, > P,, the
hypothesis of the lemma implies that T <= Uj_, Sp' ; where § p, 1, 1s the set of points
seS such that & has a reduction of structure group to P;such that y; 6* & ~ L;. Since
Tis dense in § and each Sp ; is closed (Lemma 3.22) we have S = U!_, S p, L, But we
have assumed that § is irreducible. Therefore S =S, , for P= P}, L= L, forsomei. Let
P = M-U be a Levi decomposition chosen such that M, = M.

For this parabolic subgroup P and its dominant character y let the cone C <

Hom(C, V) be defined as in the proof of Lemma 3.22. Then <§ L X f) (C)is a cone in the
Y

vector bundle (él X é) (Hom(C, V))— S x X, where Y =S x X. By Lemma 3.21, we
Y
have an S-scheme p:H—S representing the functor n defined by n(S'—S)=
Homyg, 4 (S’ x X, (fl X 5)(5)). Moreover H is of the form Spec(S (#)/J) for a locally
Y

free sheaf # on S and a homogeneous ideal J of S(#). Let ¢:S — H be the zero section
([EGATI], §83)and H' = H — ¢(S). Let p': H' — S be the restriction of p to H'. Let ¢ be
the universal element in n(H). Let & = (p’ x idy)*(¢,) and & = (p' x idy)*(£). Then

o gives a section of (f’l X cf’)( )= H' x X.Asin the proof of Lemma 3.22, this section
Y

factors through (f’l ;< 5’)((7) G (f’l ;< é) (C). It follows that the G-bundle E—-H xX
has an admissible reduction of structure group #” to P=M-U. Let & = ¢'[P, M].

Since §, & £, for he H, the reduction of structure group 7, of &, induced by 2 gives -

canonically a reduction of structure group of ¢ o Which we denote by .

Let n':H'—Proj(S(#)/J) and #:Proj(S(#)/J)—S be the natural morphisms
([EGA, II], §8.3). Since S =S, ;, we have that p' is surjective. Since p’ = o7, 7 is
surjective. Therefore, t being proper and surjective and S being irreducible there is an
irreducible component of Proj(S(#)/J) which maps onto S. It follows from ([EGA, I1],
Corollary 8.3.6, p. 165) that the irreducible components of Proj(S(#)/J) are the images
under n' of the irreducible components of H'. Therefore, there is an irreducible
component H” of H' which maps onto S. Let p” be the restriction of p to H”. Let us
denote by the same letter £” the restriction of the M-bundle ¢” = ¢'[P,M] to H” x X.
The open subset T” = p"~ (T) of H" is dense since H" is irreducible. Let t” = p”~ 1 (¢) for
te T. Then ¢ ~ q, A} &, where q: P — M is the projection. Since te T there is a reduc-
tion of structure group w of &, to a parabolic subgroup Q with M o as a Levi component
such that j, o, w*& ~j,E, Where ¢,:Q — M, is a projection and j:M, G is the
inclusion. We can assume that (P, Q) is compatible with (¢}, w). Using Lemma 3.11 we
see that we have reduction of structure group #, nw of the M-bundle g, A&, ~ &, to
the parabolic subgroup M nQ of M which has M, as a Levi component. Also for this
reduction &, [MNnQ,M,]~E; by 3.11 (iv). This shows that for the M-bundle
¢"— H" x X the conditions (i), (ii) and (iii) of the hypothesis of the lemma are satisfied
(with ‘"= T", ‘My =M, and ‘E; = E,,). Since the semisimple rank of M is one less
than that of G we can apply the induction hypothesis to conclude that gr &y = E (M) for
all heH". But this implies that 8r(q o A 5 &) = Eo(M) =~ gr(E,(M)). Therefore by
3.13(i1) gr &, ~ E,(G) for all seS.

E.

~, ts% S—
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3.24. PROPOSITION
Let E be a semistable G-bundle. Then

Q) if in a family of semistable G-bundles {—S x X we have {, =~ E for t varying in
a dense open subset of S then & is equivalent to E for all seS.

(ii) there exists a family of semistable G-bundles {—C x X such that for 0% zeC,
¢, ~Eand {,~grE.

Proof. (i) follows from the preceding lemma and (ii) follows from Propositions 3.5 and
3.12.
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