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Torsionfree sheaves over a nodal curve of arithmetic genus one
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Abstract. We classify all isomorphism classes of stable torsionfree sheaves on an
irreducible nodal curve of arithmetic genus one defined over C. Let X be a nodal curve
of arithmetic genus one defined over R, with exactly one node, such that X does not
have any real points apart from the node. We classify all isomorphism classes of stable
real algebraic torsionfree sheaves overX of even rank. We also classify all isomorphism
classes of real algebraic torsionfree sheaves over X of rank one.
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1. Introduction

The isomorphism classes of algebraic vector bundles over a smooth elliptic curve defined
over C were classified by Atiyah [At]. His classification extends to vector bundles over a
smooth curve of genus one defined over R which admits a real point. In [BB], stable vector
bundles over a Klein bottle were classified. A Klein bottle is a smooth curve of genus one
defined over R which does not have any real points.

Our aim here is to consider stable vector bundles over a singular curve of genus one
defined over R or C.

LetY be an irreducible nodal curve of arithmetic genus one defined over C. Fix a positive
integer n and an arbitrary integer d . Let UY (n, d) denote the moduli space of semistable
torsionfree sheaves of rank n and degree d on Y . Let UsY (n, d) ⊂ UY (n, d) be the open
subvariety parametrizing the stable sheaves.

We prove the following:

Theorem 1.1.

(1) If n and d are coprime, then the moduli space UY (n, d) is isomorphic to Y .
(2) If n and d are not coprime, then the moduli space UsY (n, d) is empty.

LetX be a geometrically irreducible nodal curve of arithmetic genus one defined over R.
We assume that X does not have any other real points apart from the node. Let UX(n, d)
denote the moduli space of semistable torsionfree sheaves of rank n and degree d onX, and
let U ′

X(n, d) ⊂ UX(n, d) be the open subvariety parametrizing the locally free sheaves.
Let σ be the fixed point free antiholomorphic involution on P

1
C

defined by σ(x : y) =
(ȳ : −x̄). The pair (P1

C
, σ ) gives a nondegenerate anisotropic conic C defined over R. Fix

a point x0 ∈ P
1
C

. Identifying x0 with σ(x0)we have a complex nodal curve Y of arithmetic
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genus 1. The involution σ induces an antiholomorphic involution on Y which we again
denote by σ . Then the pair (Y, σ ) gives an algebraic curve X of arithmetic genus one,
defined over R, with a single node, and X ×R C = Y . Let σn,d be the antiholomorphic
involution of UY (n, d) defined by E �−→ σ ∗Ē.

We have the following description of rank one torsionfree sheaves (note that any rank
one torsionfree sheaf is stable):

PROPOSITION 1.2

Take integers d and d ′.

(1) The pair (UY (1, d), σ1,d ) is isomorphic to the pair (UY (1, d + 2d ′), σ1,d+2d ′).
(2) The set of real points of UY (1, 2d + 1) is a singleton. This point corresponds to the

real torsionfree sheaf π∗(T ⊗d
C ) on X, where TC is the tangent line bundle of C and π

is the quotient map C −→ X.
(3) We have

UX(1, 2d) = U ′
X(1, 2d) ∼= S1.

The set of real points of UY (1, 2d) is the disjoint union

U ′
X(1, 2d)

∐
{p},

where {p} ∈ UY (1, 2d) corresponds to the non-real nonlocally free torsionfree sheaf
π̂∗OP

1
C

(2d − 1) on Y .

It follows from the above proposition that there are no real vector bundles of odd degree
on X. We show that there are no stable real vector bundles of rank r and degree d on X if
the greatest common divisor of r and d is greater than 2. When gcd(r, d) = 2, we prove
the following theorem.

Theorem 1.3. Let r := 2r ′ and d := 2d ′ be integers such that r ′ is a positive integer
coprime to d ′. Let

U ⊂ UY (r
′, d ′)

be the subset defined by all stable torsionfree sheaves which are not of the form F ⊗R C,
where F is some real algebraic torsionfree sheaf over X. Then the following two hold:

(1) The set of isomorphism classes of stable real algebraic torsionfree sheaves over X of
rank r and degree d is canonically identified with the quotient space U/(Z/2Z) for
the involution of UY (r ′, d ′) defined by W −→ σ ∗W̄ .

(2) Moreover, if d ′ is odd, then U = UY (r
′, d ′).

2. Stable sheaves on a complex nodal curve of genus one

2.1 Notations

Let Y be a reduced irreducible projective curve of arithmetic genus one, with one ordi-
nary node, defined over C (or an algebraically closed field of characteristic zero). Let Ik
denote the trivial algebraic vector bundle over Y of rank k. For a torsionfree coherent
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sheaf E on Y , let r(E) and d(E) denote respectively the rank of E and the degree of
E. The slope d(E)/r(E) will be denoted by μ(E). For torsionfree sheaves E and F ,
let Hom(E, F ) denote the torsionfree sheaf of homomorphisms, and let Hom(E, F ) :=
H 0(X,Hom(E, F )) denote the space of all global homomorphisms from E to F . Simi-
larly, Exti (E, F ) and Ext i (E, F )will denote the Ext group and the Ext sheaf respectively.
Define E∗ := Hom(E,OX) and E∗∗ := (E∗)∗.

Let y ∈ Y be the node. LetA andm be the local ring and the maximal ideal respectively
at y. The stalk Ey of a torsionfree sheaf E at the node y is isomorphic to a(E)A⊕ b(E)m

where a(E) and b(E) are nonnegative integers with a(E)+ b(E) = r(E) (Proposition 2,
p. 164 of [Se2]). We will say that E is of local type a(E)A⊕ b(E)m.

For any irreducible complex projective curveZ, we shall denote byUZ(n, d) the moduli
space of semistable torsionfree sheaves of rank n and degree d on Z. The open subvariety
ofUZ(n, d) corresponding to the locally free sheaves will be denoted byU ′

Z(n, d). We will
denote by UsZ(n, d) the open subvariety of UZ(n, d) corresponding to the stable sheaves.
We will employ the following convention: The superscript s will always denote the subset
corresponding to stable sheaves. For a nonnegative integer p, denote by Usp(n, d) the
subset of UsY (n, d) consisting of stable sheaves E with a(E) = p. Therefore, UsY (n, d) is
a disjoint union of Usp(n, d) with p = 0, . . . , n.

2.2 Indecomposable torsionfree sheaves

Atiyah [At], in his pioneering work had determined indecomposable vector bundles (and
hence all vector bundles) on an elliptic curve. On an elliptic curve, it follows from Serre
duality that Ext1(L2, L1) is nonzero if and only if there is a nontrivial homomorphism
from L1 to L2. As a consequence of this, the Harder–Narasimhan filtration of a non-
semistable vector bundle on an elliptic curve splits into a direct sum of vector bundles.
Therefore indecomposable vector bundles on an elliptic curve are semistable. However,
on the nodal curve Y there exist non-semistable indecomposable vector bundles as shown
by the following example.

If L1 and L2 are torsionfree sheaves on Y which are not locally free, then the group
Ext1(L2, L1) is nonzero (see Lemma 2.5 of [B2]).

Lemma 2.1. Let L1 and L2 be rank one torsionfree sheaves over Y, which are not locally
free, with d(L1) = 2 and d(L2) = 0. Let E be a torsionfree sheaf given by a nontrivial
extension

0 −→ L1 −→ E −→ L2 −→ 0. (2.1)

Then E is indecomposable, but E is not semistable.

Proof. As Ext1(L2, L1) �= 0 (Lemma 2.5 of [B2]), there is a nontrivial extension of L2
by L1. Since d(L1) > μ(E) = 1, the vector bundle E is not semistable. Suppose that E
is decomposable. Let E = N1 ⊕N2 with d(N2) ≤ d(N1) ≥ 1.

Since both L1 and L2 have degrees less than three, for any N ⊂ E we have d(N) ≤ 2.
If d(N1) = 2, then N1 ∼= L1 giving a splitting of the exact sequence (2.1). If d(N2) = 1,
then d(N1) = 1, and hence neither N1 or N2 have nonzero homomorphisms to L2. Thus
both N1 and N2 are contained in L1, contradicting the assumption that E = N1 ⊕ N2.
Therefore, E is indecomposable. �
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2.3 Classification of stable torsionfree sheaves

A key lemma (p. 422, Lemma 6′ of [At]) of Atiyah says that every indecomposable vector
bundle E over a complex elliptic curve C admitting a section has a filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr(E)−1 ⊂ Fr(E) = E

such that each successive quotient Li := Fi/Fi−1, 1 ≤ i ≤ r(E), is a line bundle with
Li ⊃ L1 ⊃ OC , and furthermore, L1 is a maximal degree line subbundle. This lemma
(even after replacing line bundles by rank one torsionfree sheaves) and rest of Atiyah’s
proofs are false for the nodal curve Y . The reason for this is that for torsionfree sheaves
L1 and L2 on Y which are not locally free, the group Ext1(L2, L1) is always nonzero (see
Lemma 2.5 of [B2]). Hence the method of Atiyah [At] and Tu [Tu] to classify stable vector
bundles on an elliptic curve fails in case of a nodal curve of arithmetic genus one. Our
strategy is to use a degeneration method coupled with results of Atiyah and Tu on elliptic
curves to determine UY (n, d) and UsY (n, d).

Lemma 2.2. If n and d are noncoprime, then there is no stable torsionfree sheaf of rank n
and degree d over Y .

Proof. Let ϕ: Z −→ T be a flat family of irreducible complex projective curves of
arithmetic genus 1 parametrized by a smooth curve T , and let t0 ∈ T be a base point such
that for all t �= t0, the fiber Zt is an elliptic curve and Zt0 ∼= Y . For any point t ∈ T , the
fiber ϕ−1(t) will be denoted by Zt . Let M −→ T be the relative moduli variety flat over
T such that Mt

∼= UZt (n, d) for all t ∈ T ; see [Se1] for the existence of M . In particular
Mt0

∼= UY (n, d).
LetMs ⊂ M denote the subset corresponding to stable torsionfree sheaves. By openness

of the stability condition,Ms is an open subset ofM (p. 635, Theorem 2.8 of [Ma]). Assume
that there is a stable sheaf on Y of rank n and degree d. ThenMs ∩UZt0 (n, d) is nonempty,
hence Ms is nonempty. Since M is irreducible [Re], Ms ∩ (M\Mt0) is a nonempty open
subset ofM . Consequently,Mt is nonempty for some t �= t0. This contradicts the fact that
there are no stable vector bundles of rank n and degree d, (n, d) �= 1, on an elliptic curve
(Fact, p. 20 of [Tu]). This completes the proof of the lemma. �

Remark 2.3. For a vector bundle E ∈ UsX(n, d) one has h0(End(E)) = 1. Hence
dim Ext1(E,E) = h1(End(E)) = 1. On the other hand, if E ∈ UsX(n, d) is not locally
free, then dim Ext1(E,E) ≥ dim Ext1(Ey,Ey) ≥ 2 (Lemma 2.5 of [B2]). For any
E ∈ UsX(n, d), since Ext1(E,E) gives the Zariski tangent space at E, and the moduli
space UsX(n, d) is irreducible, we conclude the following. A vector bundle E ∈ UsX(n, d)
corresponds to a nonsingular point ofUsX(n, d), and a nonlocally free sheafE ∈ UsX(n, d)
corresponds to a singular point of UsX(n, d).

Lemma 2.4. Let ˜UY (n, d) be the normalization of UY (n, d). For any singular point F ∈
Un−1(n, d), there are exactly two points of ˜UY (n, d) over F .

Proof. The normalization ˜UY (n, d) ofUY (n, d) is the moduli space P(n, d) of semistable
generalized parabolic bundles (GPBs, in short) on the normalization P

1
C

of Y [Su]; see
[B1] for generalized parabolic bundles. Let (E, V ) be a GPB, where E is a vector bundle
of rank n and degree d over P

1
C

, and V ⊂ Ex ⊕ Ez is a vector subspace of dimension n.
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Let x and z be the two points in the normalization P
1
C

of Y that lie over the node y. Let px
and pz be the projections of V to Ex and Ez respectively. There are divisors Dx and Dz
on P(n, d) defined by

Dx := {(E, V )|rank px = n, rank pz < n}
and

Dz := {(E, V )|rank pz = n, rank px < n}.
Both Dx and Dz are normalizations of the complement UY (n, d)\U ′

Y (n, d); the normal-
ization maps are isomorphisms over the subset Un−1(n, d) ⊂ UY (n, d)\U ′

Y (n, d) [Su].
Hence for any F ∈ Un−1(n, d), there are exactly two points in P(n, d) lying over F , one
in Dx and one in Dz. �

Theorem 2.5. Let Y and UY (n, d) be as above.

(1) For (n, d) = 1, the moduli space UY (n, d) is isomorphic to Y .
(2) For (n, d) > 1, the moduli space UsY (n, d) is empty.

Proof. Part (2) of the theorem is a restatement of Lemma 2.2, we need to prove only
part (1).

First assume that (n, d) = 1. Let Z −→ T be a flat family of irreducible projective
curves of arithmetic genus one parametrized by a smooth irreducible curveT such that there
is a point t0 ∈ T with the following property: for t �= t0, the fiber Zt is an elliptic curve,
and Zt0 = Y . Let M → T be the relative moduli variety as in the proof of Lemma 2.2.
It follows from the work of Atiyah [At], that Mt

∼= Zt for all t �= t0. Hence Mt0 is an
irreducible projective curve of arithmetic genus 1.

By Remark 2.3, the nonsingular points of Mt0 correspond to vector bundles over Y . By
(Proposition 2.7 of [B2]), if Usp(n, d) is nonempty, then

dim Usp (n, d) ≤ n2(g − 1)+ 1 − (n− p)2 = p + 1 − n.

Hence for n − p ≥ 2, we have dimUsp(n, d) < 0. This proves that the variety UY (n, d)
consists of locally free sheaves and sheaves of local type (n− 1)A⊕m.

Therefore, there exists a (nonzero) determinant morphism det: UY (n, d) −→ UY (1, d)
[B1]. This morphism sends vector bundles to line bundles, and it sends nonlocally free
sheaves to rank one nonlocally free sheaves. Since UY (n, d) is projective, and UY (1, d)
is an irreducible variety of dimension one, we conclude that det(UY (n, d)) = UY (1, d).
If UY (n, d) consisted of vector bundles only, then det(UY (n, d)) ⊂ U ′

Y (1, d), which is a
contradiction. This proves that there exists a stable torsionfree sheaf of rank n and degree d
onY of local type (n−1)A⊕m. Therefore, by Remark 2.3, the moduli spaceMt0 is singular.

If M̃t0 is the normalization of Mt0 , then

pa(M̃t0) = pa(Mt0)−
r∑

i=1

ei(ei − 1)

2
,

where pa ≥ 0 denotes the arithmetic genus and ei ≥ 0 are the multiplicities of the
infinitesimally near points of the singular points of Mt0 (see Chapter V, Corollary 3.7 and
Proposition 3.8 in pp. 389–390 of [Ha]). Since pa(Mt0) = 1, it follows that pa(M̃t0) = 0,
r = 1 and ei = 2. Thus the desingularization of Mt0 is P

1
C

and Mt0 has a unique ordinary
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double point, i.e., a node or a cusp. Lemma 2.4 implies that the unique singular point is
a node. Hence Mt0

∼= Y . �

Remark 2.6. Recently we have learnt that vector bundles on the nodal curve Y have been
studied by many authors by different methods like matrix methods, Fourier–Mukai trans-
forms, and using line bundles on étale coverings of Y [BBDG], [FM], [Bu]. In these
works, explicit descriptions of indecomposable vector bundles have been obtained. Our
Lemma 2.2 was proved by these methods (cf. Theorem 21 of [BBDG] for comparison). The
fact that for (n, d) coprime, the moduli space U ′

Y (n, d) is isomorphic to the affine line can
be proved by many methods. But it has not been shown that UY (n, d) is isomorphic to Y .

3. Torsionfree sheaves on a real nodal curve of genus one

3.1 Notation

Let σ be the fixed point free antiholomorphic involution on P
1
C

defined by

σ(x : y) = (ȳ : −x̄).
The pair (P1

C
, σ ) gives a nondegenerate anisotropic conic C defined over the field of real

numbers such that C ×R C ∼= P
1
C

. Fix a point x0 ∈ P
1
C

. Identifying x0 and σ(x0) gives a
complex nodal curveY of arithmetic genus 1. The involution σ induces an antiholomorphic
involution on Y which we again denote by σ . Then the pair (Y, σ ) gives an algebraic curve
X of arithmetic genus one, defined over R, with a single node, and one has X×R C = Y .

The desingularization of X is the anisotropic conic C; the conic C has no real points.
The only real point of X is the node y ∈ X. Let

π : C −→ X (3.1)

be the normalization map.

3.2 Torsionfree sheaves on X

Our aim is to study algebraic torsionfree sheaves on X. We shall do this by relating them
to those on Y and C.

Lemma 3.1. Let E1 and E2 be two real algebraic torsionfree sheaves over X. Let Vi :=
Ei ⊗R C, i = 1, 2, be the corresponding complex algebraic torsionfree sheaves over Y .
If the two sheaves V1 and V2 are isomorphic, then E1 is isomorphic to E2.

Proof. This can be proved exactly as done for Lemma 2.1 of [BB] by changing V ∗
1 ⊗ V2

in the proof to Hom(V1, V2). �

DEFINITION 3.2

A real torsionfree sheaf E over X is called stable (respectively, semistable) if for all real
subsheaves F ⊂ E with 0 < rank(F ) < rank(E), the inequality

degree(F )

rank(F )
<

degree(E)

rank(E)

(respectively, degree(F )
rank(F ) ≤ degree(E)

rank(E) ) holds.
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A semistable torsionfree sheaf over X is called polystable if it is a direct sum of stable
torsionfree sheaves.

We denote byUX(n, d) the moduli space of real algebraic semistable torsionfree sheaves
of rank n and degree d onX, and denote byU ′

X(n, d) ⊂ UX(n, d) the open subvariety cor-
responding to locally free sheaves. As before,UsX(n, d) ⊂ UX(n, d)will be the subvariety
defined by stable sheaves.

3.3 The involution on UY (n, d) induced by σ

Let E be a complex algebraic vector bundle over Y . Let Ē be the C∞ complex vector
bundle over Y whose underlying real vector bundle is same as that of E, but the complex
structure of each fiber of Ē is the conjugate of the complex structure of the fibers of E.
The vector bundle Ē does not have a natural holomorphic structure. However, the vector
bundle σ ∗Ē has a natural holomorphic – hence algebraic – structure. It is easy to see that
σ ∗Ē is the complex algebraic vector bundle given by the complex algebraic vector bundle
E using the automorphism of the field C defined by z �−→ z̄. If {Ui}i is an open cover of
Y , then {σ(Ui)}i is also an open cover of Y . If gUi,Uj are the transition functions of E on
the open setUi ∩Uj , then for the open cover {σ(Ui)}i , the transition functions fσ(Ui),σ (Uj )
of σ ∗Ē are given by fσ(Ui),σ (Uj )(t) = gUi,Uj (σ

−1(t)) for t ∈ σ(Ui) ∩ σ(Uj ).
A torsionfree coherent sheaf E on Y is locally free except possibly at the node. Let Y ′

be the nonsingular subset of Y ; so Y ′ is the complement of the node. As explained above,
σ ∗Ē|Y ′ is an algebraic vector bundle. Locally in a neighborhood U of the node, there is
an injection

i: E ↪→ U × C
r

for some r . On the image of i, take the complex structure induced from U × C̄
r . As i is

holomorphic, this complex structure Ē is independent of the choice of the injection i. This
shows that σ ∗Ē is a complex algebraic sheaf on Y . As before, σ ∗Ē is the coherent sheaf
given by the coherent sheaf E using the automorphism of the field C defined by z �−→ z̄.

Let V be a real algebraic torsionfree sheaf over X. Let

VC := V ⊗R C

be the corresponding complex algebraic torsionfree sheaf over Y . The involution σ lifts to
an algebraic isomorphism

δ: VC −→ σ ∗VC (3.2)

such that the composition

VC

δ−→ σ ∗VC

σ ∗ δ̄−→ σ ∗σ ∗VC = VC (3.3)

is the identity map ofVC. Note that sinceσ 2 = IdY , and ¯̄F = F for any complex torsionfree

sheaf F , it follows that σ ∗σ ∗VC is canonically identified with VC. This also follows from
the fact that the automorphism of the field C defined by z �−→ z̄ is an involution.
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Remark 3.3.

(1) A torsionfree sheaf E on Y descends to X if and only if there exists an isomorphism

δ: E −→ σ ∗Ē

such that the composition σ ∗δ̄ ◦δ = IdE . IfE descends toX and F ⊂ E is a subsheaf,
then F descends to X if and only if δ(F ) = σ ∗F̄ ⊂ σ ∗Ē.

(2) The self-map of UY (n, d) defined by

σn,d : E �−→ σ ∗Ē (3.4)

is an antiholomorphic involution. The real points of UY (n, d) correspond to E such
that σ ∗Ē ∼= E.

Take any complex algebraic torsionfree sheafE of rank r over Y . Consider the algebraic
torsionfree sheaf

S(E) := E ⊕ σ ∗Ē (3.5)

of rank 2r over Y . For S(E) we have

σ ∗S(E) = σ ∗E ⊕ σ ∗Ē = σ ∗Ē ⊕ E.

Therefore, there is a canonical isomorphism

σE : S(E) −→ σ ∗S(E) (3.6)

defined by (v1, v2) �−→ (v2, v1).
It is easy to check that the composition (σ ∗σE) ◦ σE is the identity automorphism of

S(E). Therefore, the pair (S(E), σE) gives a real algebraic torsionfree sheaf V (E) over
X of rank r . We shall call V (E) the torsionfree sheaf on X defined by E ⊕ σ ∗Ē on Y .

Lemma 3.4. Let E be a real torsionfree sheaf over X. Let EC = E ⊗R C be the corre-
sponding torsionfree sheaf over Y .

(1) The torsionfree sheaf E is semistable if and only if EC over Y is semistable.
(2) The torsionfree sheaf E is polystable if and only if EC is polystable.
(3) There is a real algebraic morphism UX(n, d) → UY (n, d) whose image is contained

in the set of real points of UY (n, d). (Here the complex variety UY (n, d) is considered
as a real variety using the inclusion of R in C.)

(4) If (n, d) = 1, then UX(n, d) is contained in the set of real points of UY (n, d).

Proof. Statements (1) and (2) can be proved exactly as in Lemma 4.1 of [BB] using
the invariance of Harder–Narasimhan filtration and the Socle respectively (see p. 18,
Corollary 1.3.8 of [HL]).

To prove (3), in view of (1), there is a morphism

UX(n, d) �−→ UY (n, d)
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defined by

E �→ EC.

Clearly, the image of this morphism is contained in the real points of UY (n, d).
To prove (4), take coprime integers n and d. A semistable torsionfree sheaf of rank n

and degree d is stable. We know that two stable torsionfree sheaves define same point of
the moduli space if and only if they are isomorphic. The result now follows from statement
(3) and Lemma 3.1. �

We remark that, unlike the case smooth curves of genus one, a torsionfree sheaf E over
X may not split into a direct sum of semistable torsionfree sheaves. Examples similar to
that in Lemma 2.1 can be constructed.

4. Stable torsionfree sheaves onXXX

We continue with the notation of the previous section.
We first determine UX(1, d) and the real points of UY (1, d) for all integers d.

PROPOSITION 4.1

Take integers d and d ′.

(1) The pair (UY (1, d), σ1,d ) is isomorphic to the pair (UY (1, d + 2d ′), σ1,d+2d ′).
(2) The set of real points of UY (1, 2d + 1) is a singleton. This point corresponds to the

real torsionfree sheaf π∗(T ⊗d
C ) on X, where TC is the tangent line bundle of C, and

π is the projection in (3.1).
(3) We have

UX(1, 2d) = U ′
X(1, 2d) ∼= S1.

The set of real points of UY (1, 2d) is the disjoint union

U ′
X(1, 2d)

∐
{p},

where {p} ∈ UY (1, 2d) corresponds to the non-real nonlocally free torsionfree sheaf
π̂∗OP

1
C

(2d − 1) on Y ; here π̂ is the quotient map P
1
C

−→ Y .

Proof. To prove (1), consider a divisor D = x + σ(x), where x ∈ Y . One has

σ ∗OY (D) = OY (σ (D)) = OY (D).

Furthermore the tautological isomorphism δ: OY (D) −→ σ ∗OY (D) satisfies the condition
that (σ ∗δ̄) ◦ δ = IdOY (D). Therefore the line bundle OY (D) over Y corresponds to a real
algebraic line bundle over X. The map

L �−→ L⊗ OY (d
′D)

defines the required isomorphism in statement (1).
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To prove (2) we need to show that the involution σ1,2d+1 of UY (1, 2d + 1) has a unique
fixed point. In view of statement (1), it suffices to show that σ1,−1 on UY (1,−1) has a
unique fixed point. Note that (UY (1,−1), σ1,−1) is canonically identified with (Y, σ ) by
sending any point x ∈ Y to the maximal ideal in OY for x. Since the node is the only fixed
point of the involution σ of Y , it follows that the only fixed point for the involution σ1,−1
is π̂∗KP

1
C

(the map π̂ is defined in statement (4) of the proposition). This sheaf π̂∗KP
1
C

descends toX, and the descended sheaf is identified with the real torsionfree sheaf π∗KC .
Hence the unique real point of UY (1, 2d + 1) descends to X as π∗L, where L is a line
bundle of degree 2d on C. The only line bundle on C of degree 2d is T ⊗d

C (see [BN]),
hence statement (2) follows.

To prove (3), the variety UY (1, 2d) has a unique point corresponding to a nonlocally
free sheaf, viz. that corresponding to π̂∗OP

1
C

(2d − 1). Since σ1,2d maps nonlocally free

sheaves to nonlocally free sheaves, this point must be a real point. If the corresponding
sheaf is real then it comes from a real torsionfree sheaf L on X. Then L = π∗N with
N being a real line bundle on C of degree 2d − 1. Since C has no real line bundles of
odd degree [BN], it follows that X has no real nonlocally free torsionfree sheaves of even
degree. Thus UX(1, 2d) = U ′

X(1, 2d).
Statement (1) in the proposition says that U ′

X(1, 2d) ∼= U ′
X(1, 0). A line bundle on Y of

degree 0 is obtained by identifying the fiber of the trivial line bundle L = P
1
C

×C over the
point y1 with the fiber of L over y2, where y1 and y2 are the two points lying over the node
y. For any λ ∈ C

∗, let Lλ denote the line bundle on Y of degree 0 obtained by identifying
the fiber Ly1 = C with Ly2 = C using multiplication with λ.

One has an isomorphism

δ: L −→ σ ∗L̄,

defined by

(y1, c) �−→ (y2, c̄), c ∈ C,

where c̄ is the complex conjugate of c. Clearly, σ ∗δ̄ ◦ δ = IdL. Then δ induces a morphism

δ′: Lλ −→ σ ∗L̄λ,

where Lλ is the line bundle over Y defined above, if and only if

λ ◦ δy2 ◦ λ = δy1 .

The last equation is equivalent to λλ̄ = 1, i.e., λ ∈ S1. Note that σ ∗δ̄′ ◦ δ′ = IdLλ as
σ ∗δ̄ ◦ δ = IdL. The statement (3) now follows as the morphism C

∗ → U ′(1, 0) defined
by λ → Lλ is an isomorphism ([B1], [Se2]). �

Henceforth we will assume that n ≥ 2.

PROPOSITION 4.2

Let n and d be integers with n ≥ 2.

(1) There are no real vector bundles of odd degree on X.
(2) If (n, d) = 1 with n and d both odd, then there exists a unique real point of UY (n, d).

The unique point corresponds to the unique stable nonlocally free torsionfree sheaf
on X of rank n and degree d .
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(3) If (n, d) = 1 with d even, then

UX(n, d) = U ′
X(n, d),

i.e., there is no stable real nonlocally free torsionfree sheaf on X.
(4) For d = 1 with n arbitrary, there exists a unique stable real nonlocally free torsionfree

sheaf of rank n and degree 1 on X.

Proof. If E is a real vector bundle of degree d onX, then its determinant detE := ∧n(E)
is a real line bundle of degree d . By Proposition 4.1(2), there are no real line bundles of
odd degree on X. Hence statement (1) in the proposition follows.

To prove (2) first note that since d is odd, by Part (1), U ′
X(n, d) is empty. Theorem 2.5

says thatUY (n, d) has a unique point corresponding to a stable nonlocally free torsionfree
sheaf E. This point, being unique, is invariant under σn,d . Hence it is a real point, proving
statement (2).

To prove (3), Lemma 3.4 says that UX(n, d) is contained in the set of real points of
UY (n, d). As in the proof of statement (2), the point corresponding to the unique nonlocally
free torsionfree sheaf E0 is a real point. Hence there exists an involution

δ: E0 −→ σ ∗Ē0.

Note thatE0 has local type (n− 1)A⊕m and hence its determinant detE0 is a torsionfree
sheaf of rank 1 and degree d . The above involution δ induces an involution det δ on detE0.
Hence detE0 is a real point ofUY (1, d). Moreover, ifE0 comes from a real torsionfree sheaf
onX, then detE0 comes from a real torsionfree sheaf onX. If d is even, then by Proposition
4.1(3), there is no real nonlocally free torsionfree sheaf of rank 1 on X. It follows that E0
does not come from a real nonlocally free torsionfree sheaf. Thus UX(n, d) = U ′

X(n, d).

We shall prove statement (4) in the proposition by induction on n. For n = 1, the direct
image π∗OC ∈ UX(1, 1) is the nonlocally free sheaf required. Suppose that E′ is a stable
nonlocally free torsionfree sheaf of rank n− 1 ≥ 1 and degree 1. Let I denote the trivial
line bundle. Since I is locally free, Ext1(E′, I ) ∼= H 1(E′∗) (Lemma 2.5(B) of [B2]). Since
E′∗ is a stable torsionfree sheaf of negative slope, we have h0(E′∗) = 0 and h1(E′) = 1
by Riemann–Roch theorem. Hence there exists a unique nonsplit exact sequence

0 → I → E → E′ → 0.

We shall prove that E is stable. Let N ⊂ E be a saturated subsheaf of rank r < n and
degree d. Let N ′ be the image of N in E′. The rank and degree of N ′ will be denoted by
r ′ and d ′ respectively. LetM be the kernel of the homomorphism N → N ′. SinceM ⊂ I

and N ′ ⊂ E′, one has d ′ ≥ d , and furthermore, either r = r ′ or r = r ′ + 1. We note that
if r = r ′ + 1, then r ′ ≤ n− 1. If d ≤ 0, then N does not contradict the stability condition
of E, so we may, and we will, assume that d ≥ 1. Then

d ′/r ′ ≥ d/r ′ ≥ 1/r ′ ≥ 1/(n− 1).

This gives a contradiction to the stability condition of E′ if r ′ < n − 1. Hence we must
have r ′ = n− 1 and d ′ ≥ 1. Then d ′ = 1 and N ′ = E′, giving a splitting of the extension
which contradicts our assumption. Thus E is stable.

Let E′ denote any stable real torsionfree sheaf of rank n and degree one which is not
locally free. Then E′

C
is polystable by Lemma 3.4. Since E′

C
has degree 1, it then follows
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thatE′
C

is a stable torsionfree sheaf on Y which is not locally free and hence it is unique (up
to an isomorphism). The uniqueness of E′ now follows from Lemma 3.1. This completes
the proof of the proposition. �

PROPOSITION 4.3

The moduli space U ′
X(2n+ 1, 2) is nonempty for all n.

Proof. The case of n = 0 follows from Proposition 4.1(3). We will assume that n ≥ 1.
Take any E′′ ∈ U ′

X(2n − 1, 2). Since E′′∗ is semistable of negative degree, we have
h0(E′′∗) = 0 and hence by Riemann–Roch theorem, h1(E′′∗) = 2. Therefore there exists
a nonsplit exact sequence

0 → I2 → E → E′′ → 0, (4.1)

where I2 is the trivial vector bundle of rank two. We shall show that a general extension
of type (4.1) gives a stable vector bundle E.

Suppose that E is not semistable. Let N be a stable subsheaf of E with

μ(N) > 2/(2n+ 1).

In particular, d(N) := degree(N) ≥ 1. It follows that N cannot be contained in I2. Hence
the composite N ↪→ E → E′′ is nonzero. Let N ′′ and N ′ denote respectively the image
and kernel of this composition homomorphism. Let r ′, r, r ′′ and t ′, t, t ′′ be respectively
the ranks and degrees of N ′, N,N ′′.

Case of N ′′ = E′′. IfN ′ = 0, thenN ∼= N ′′ = E′′ giving a splitting of the exact sequence
in (4.1). HenceN ′ �= 0, which implies that r(N ′) = 1 and t ′ ≤ 0 asN ′ ⊂ I2. Then r = 2n,
and

d(N) >
4n

2n+ 1
= 2 − 2

2n+ 1
.

Since n ≥ 1, this implies that t ≥ 2, and t ′ = t − t ′′ ≥ 0. AsN ′ ⊂ I2, we then have t ′ = 0
and N ′ = I1 = OX. Thus we have an exact sequence

0 → I → N → E′′ → 0.

This means that the elements e1, e2 ∈ H 1(E′′∗) giving the extension in (4.1) are not
linearly independent. Let U1 ⊂ P(H 1(E′′∗ ⊗ I2)) be the subset defined by

U1 := {(e1: e2) | e1, e2 ∈ H 1(E′′∗) are linearly independent} ⊂ P(H 1(E′′∗ ⊗ I2)).

If we choose e := (e1: e2) ∈ U1, then the case N ′′ = E′′ does not occur.

Case of N ′′ �= E′′. Using the fact that N ′′ is a quotient of the stable torsionfree sheaf N
and a proper subsheaf of the stable vector bundle E′′, we have

0 <
2

2n+ 1
<
t

r
≤ t ′′

r ′′
<

2

2n− 1
. (4.2)

Since r ′′ ≤ 2n− 1, this implies that

0 <
2r ′′

2n+ 1
< t ′′ <

2r ′′

2n− 1
≤ 2. (4.3)
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Thus t ′′ = 1, and 0 < t = t ′′ + t ′ ≤ t ′′ = 1 (recall that N ′ ⊂ I2, hence t ′ ≤ 0). Hence,
we have t = 1. From (4.2) we have

0 <
2

2n+ 1
<

1

r
≤ 1

r ′′
<

2

2n− 1
,

so that

0 <
2n− 1

2
< r ′′ ≤ r <

2n+ 1

2
.

Hence

r = r ′′ = n, t = t ′′ = 1. (4.4)

This implies that N ′ = 0 and N ∼= N ′′. Note that N ∼= N ′′ is the unique (up to an
isomorphism) nonlocally free torsionfree sheaf of rank n and degree 1 (Proposition 4.2(4)).
Set Q := E′′/N ′′. We have an exact sequence

0 → N → E′′ → Q → 0 (4.5)

(recall that N = N ′′).
We claim that Hom(N,E′′) is of dimension ≤ 2. Note that the tensor product of two

stable torsionfree sheaves (or vector bundles) on a nodal curve may not be stable, hence
we cannot prove the claim directly. To prove the above claim, we first check that Q is
stable. Assume thatQ is not stable. LetQ′ ⊂ Q be a subsheaf with μ(Q′) ≥ μ(Q). Since
μ(Q) = 1/(n− 1), one has

d(Q′) := degree(Q′) > d(Q) := degree(Q) > 0,

i.e., d(Q′) ≥ 2. Let F be the inverse image of Q′ in E′′. Then d(F ) := degree(F ) =
d(Q′) + 1 ≥ 2 and r(F ) = m + r(Q′) < 2n − 1. Hence μ(F) > 2

2n−1 = μ(E′′)
contradicting the stability condition of E′′. Therefore, Q is stable.

Dualizing (4.5) and tensoring with the vector bundle E′′ gives the short exact sequence

0 → Q∗ ⊗ E′′ → E′′∗ ⊗ E′′ → N∗ ⊗ E′′ → 0 (4.6)

(Lemma 2.2(2) of [B2]). The long exact sequence of cohomologies associated to this short
sequence is

0 −→ H 0(Q∗ ⊗ E′′) −→ H 0(E′′∗ ⊗ E′′) −→ H 0(N∗ ⊗ E′′) −→ H 1(Q∗ ⊗ E′′).
(4.7)

SinceE′′ is locally free andQ∗ is torsionfree,Q∗ ⊗E′′ is torsionfree and Hom (Q,E′′) =
H 0(Q∗⊗E′′). Since bothQ andE′′ are stable andμ(Q) > μ(E′′), one hash0(Q∗⊗E′′) =
0 and h0(E′′∗ ⊗ E′′) = 1. By Riemann–Roch theorem, h1(Q∗ ⊗ E′′) = 1. The exact
sequence (4.7) shows that Hom(N,E′′) is of dimension ≤ 2 so that the variety S of stable
subsheaves N ′′ ∼= N of E′′ of rank n and degree one has dimension at most one.

Since I2 is locally free, one has H 1(N∗ ⊗ I2) = Ext1(N, I2) (Lemma 2.5(B) of [B2]).
A homomorphism i: N → E′′ lifts to a homomorphism N → E if and only if e ∈
H 1(E′′∗ ⊗ I2) defining the extension (4.1) lies in the kernel of the linear map

fi : H
1(E′′∗ ⊗ I2) → H 1(N∗ ⊗ I2).
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The long exact sequence of cohomologies associated to the dual of the exact sequence in
(4.5) gives

H 0(N∗) → H 1(Q∗) → H 1(E′′∗) → H 1(N∗).

Since N∗ and Q∗ are stable and of negative degree, h0(N∗) = 0, h0(Q∗) = 0 and
h1(Q∗) = 1. Hence the kernel Ki of the map fi : H 1(E′′∗ ⊗ I2) → H 1(N∗ ⊗ I2) is of
dimension two. Let PN = P(Ki) ⊂ P(H 1(E′′∗ ⊗ I2)), then PN has dimension one. As N
vary over S, the linear subspaces PN sweep out a closed subset of P(H 1(E′′∗ ⊗ I2)) ∼= P

3
R

of dimension at most two (recall that the dimension of S is at most one). Let U2 be the
complement of this closed proper subset of P(H 1(E′′∗ ⊗ I2)).

Choose any e ∈ U1 ∩ U2 ⊂ P(H 1(E′′∗ ⊗ I2)). Then the extension (4.1) gives a stable
vector bundleE. Note that the group GL(2,R) acts on I2 and hence on the sequence (4.1). It
acts transitively on bases (e1, e2) ofH 1(E′′∗). Hence all e ∈ U1 give isomorphicE. Thus,
for a givenE′′ ∈ U ′

X(2n−1, 2), the above construction gives a uniqueE ∈ U ′
X(2n+1, 2).

If we start with E′′ = E0 ∈ U ′
X(1, 2), then we get E ∈ U ′

X(3, 2), denote this E by E1.
Repeating this process j times, we get a sequence of stable vector bundles

Ej , j ≥ 0, Ej ∈ U ′
X(2j + 1, 2), Ej+1/I2 ∼= Ej .

This completes the proof of the proposition. �

Conversely, let E ∈ U ′
X(2n+ 1, 2), where n ≥ 1. The stability condition of E implies

that h1(E) = 0 and h0(E) = d(E) = 2. If the evaluation map H 0(E)⊗ I −→ E is not
injective, then there will be a section ofE generating a subsheaf of degree ≥ 1 contradicting
the stability condition ofE. Thus we have I2 ⊂ E. SetE′′ := E/I2. It is easy to see that if
E has a subsheaf N of rank n+ 1 and degree one containing I2, then E′′ is not stable, and
furthermore, any N ′′ ⊂ E′′ with μ(N ′′) ≥ μ(E′′) has to be of the form N/I2. Therefore,
the set theoretic map

hn: U ′
X(1, 2) −→ U ′

X(2n+ 1, 2) (4.8)

defined by E0 �−→ En may not be surjective.

PROPOSITION 4.4

Let n > 0 be an integer.

(1) There is a surjective rational map

h′
n: UX(2n+ 1, 2) → UX(1, 2) ∼= S1.

(2)

h′
1: UX(3, 2) → UX(1, 2) ∼= S1

is a bijective morphism.
(3) There are surjective rational maps

UX(2n+ 1, 2(2n+ 1)+ 2) = U ′
X(2n+ 1, 2(2n+ 1)+ 2) → S1,

UX(2n+ 1, 2(2n+ 1)− 2) = U ′
X(2n+ 1, 2(2n+ 1)− 2) → S1.
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(4) For each d ∈ 2Z with d /∈ 3Z, there is a bijective morphism

UX(3, d) = U ′
X(3, d) → S1.

The moduli space UX(3, d) is empty otherwise.

Proof. Let hn be the map defined in (4.8). Set Zn := hn(U
′
X(1, 2)). The inverse map

h′
n := h−1

n : Zn −→ U ′
X(1, 2) (4.9)

is a morphism, being the composition of the maps Zn → Zn−1 defined by

En �−→ En/(H
0(En)⊗ I ).

By Proposition 4.1(3) we haveUX(1, 2) ∼= S1, and by Proposition 4.2(3) we haveUX(2n+
1, 2) = U ′

X(2n+ 1, 2). Hence statement (1) in the proposition is proved.
To prove statement (2), note that E′′ = E/I2 is automatically stable because it is of

rank 1. Hence we have Z1 = UX(3, 2).
There exist line bundles of all even degrees on X (see Proposition 4.1(3)). It is easy to

see that if E is a stable torsionfree sheaf, and L a line bundle, then E ⊗ L is stable. Thus
we have U(j, 2) ∼= U(j, 2t + 2) for all integers j > 0 and t . A torsionfree sheaf E on
X is stable if and only if E∗ is so (Lemma 2.6 of [B2]), so that U(j, d) ∼= U(j,−d) for
all integers j > 0 and d . Hence statements (3) and (4) follow from statements (1) and (2).
Note that it follows from Lemma 2.2 and Proposition 4.2 that, if d is odd or d is a multiple
of 3, then there are no real stable torsionfree sheaves of rank 3 and degree d on X. �

We will now classify real algebraic stable torsionfree sheaves onX of rank n and degree
d with (n, d) = 2.

Lemma 4.5. Let V be a stable real algebraic torsionfree sheaf overX. Let VC := V ⊗R C

be the corresponding complex algebraic torsionfree sheaf over Y . Then either VC is stable,
or VC is isomorphic to F ⊕ σ ∗F̄ , where F is a stable torsionfree sheaf over Y .

Proof. Since VC is a pullback of a real algebraic torsionfree sheaf on X, there is an
isomorphism

δ: VC −→ σ ∗VC. (4.10)

The torsionfree sheaf VC is polystable, as V is so (see Lemma 3.4(2)).
Assume that VC is not stable. Let

VC =
�⊕

i=1

Fi (4.11)

be a decomposition of VC into a direct sum of stable torsionfree sheaves. Consider the
holomorphic torsionfree sheaf σ ∗F1 ⊂ σ ∗VC. Let

F ′ := δ−1(σ ∗F1) ⊂ VC,

where δ is the isomorphism in equation (4.10).
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Let ψ : F ′ −→ VC/F1 be the natural projection. Note that VC/F1 is polystable, F ′ is
stable, and μ(VC/F1) = μ(F ′). Hence the homomorphism ψ is either the zero homo-
morphism, or it is a sheaf injection with its cokernel a torsionfree sheaf. If ψ = 0, then
F ′ = F1 and F1 defines a real algebraic torsionfree subsheaf FR of V with same slope as
V . This contradicts the assumption that V is stable.

Therefore,ψ is an injection with cokernel a torsionfree sheaf. This implies that F1 +F ′,
which is the subsheaf of VC generated by F1 and F ′, has a torsionfree quotient, and also,
F1 + F ′ is identified with F1 ⊕ F ′. Furthermore, the isomorphism δ takes the subsheaf
F1 ⊕ F ′ ⊂ VC to the subsheaf σ ∗(F1 ⊕ F ′) ⊂ σ ∗VC. Indeed, this follows from the fact
that (σ ∗δ̄) ◦ δ = IdVC

. Therefore, F1 ⊕ F ′ defines a real algebraic subsheaf W of V with

degree(W)

rank(W)
= degree(V )

rank(V )
.

Since V is stable, this implies that F1 ⊕ F ′ = VC. As F ′ = δ−1(σ ∗F1) is isomorphic to
σ ∗F1, this proves the lemma. �

COROLLARY 4.6

Let E be a stable real torsionfree sheaf of rank r and degree d over X. Then either
gcd(r, d) = 1 or gcd(r, d) = 2.

Proof. This follows from Theorem 2.5 and Lemma 4.5. �

PROPOSITION 4.7

Fix a positive integer r ′ and an odd integer d ′ such that r ′ and d ′ are coprime. Let r := 2r ′
and d := 2d ′.

(1) For any stable torsionfree sheaf V over Y of rank r ′ and degree d ′, the real algebraic
torsionfree sheaf over X defined by V ⊕ σ ∗V̄ is stable.

(2) For any stable real algebraic torsionfree sheafE overX of rank r and degree d, there
is a stable torsionfree sheaf V over Y of rank r ′ and degree d ′ such that

E ⊗R C = V ⊕ σ ∗V̄ .

(3) Let V and W be stable torsionfree sheaves of rank r ′ and degree d ′ over Y, and
let VR (respectively, WR) be the real torsionfree sheaves over X given by V ⊕ σ ∗V̄
(respectively, W ⊕ σ ∗W̄ ). Then VR and WR are isomorphic if and only if either V is
isomorphic to W or V is isomorphic to σ ∗W̄ .

Proof. The proof is exactly same as that of Proposition 6.7 of [BB]. �

PROPOSITION 4.8

Fix a positive integer r ′ and an even integer d ′ such that r ′ and d ′ are coprime. Let S(r, d)
denote the set of isomorphism classes of stable torsionfree sheaves over Y of rank r ′ and
degree d ′ which are not of the form E ⊗R C, where E is some real algebraic torsionfree
sheaf over X. Set r := 2r ′ and d := 2d ′.

(1) For any stable torsionfree sheaf V ∈ S(r, d) over Y, the real algebraic torsionfree
sheaf over X defined by V ⊕ σ ∗V̄ is stable.
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(2) For any stable real algebraic torsionfree sheafE overX of rank r and degree d, there
is a stable torsionfree sheaf V ∈ S(r, d) over Y such that

E ⊗R C = V ⊕ σ ∗V̄ .

(3) Take torsionfree sheaves V,W ∈ S(r, d). Let VR (respectively, WR) be the real alge-
braic torsionfree sheaf overX given by V ⊕ σ ∗V̄ (respectively,W ⊕ σ ∗W̄ ). Then VR

andWR are isomorphic if and only if either V is isomorphic toW or V is isomorphic
to σ ∗W̄ .

Proof. This can be proved exactly as Proposition 6.9 of [BB] is proved. �

Theorem 4.9. Let r := 2r ′ and d := 2d ′ be integers such that r ′ is a positive integer
coprime to d ′. Let

U ⊂ UY (r
′, d ′)

be the subset defined by all stable torsionfree sheaves which are not of the form F ⊗R C,

where F is some real algebraic torsionfree sheaf over X. Then the following two hold:

(1) The set of isomorphism classes of stable real algebraic torsionfree sheaves over X of
rank r and degree d is canonically identified with the quotient space U/(Z/2Z) for
the involution of UY (r ′, d ′) defined by W −→ σ ∗W̄ .

(2) Moreover, if d ′ is odd, then U = UY (r
′, d ′).

Proof. The theorem follows from Propositions 4.7 and 4.8. �
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