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" Abstract. We prove the existence of the moduli space M(n,d) of semistable generalised
parabolic bundles (GPBs) of rank r, degree d of certain general type on a smooth curve. We
‘study interesting cases of the moduli spaces M (n,d) and find explicit geometric descriptions for
them in low ranks and genera. We define tensor products, symmetric powers etc. and the
determinant of a GPB. We also define fixed determinant subvarieties M (n,d), Lbeing a GPB
of rank 1. We apply these results to study of moduli spaces of torsionfree sheaves on a reduced’
irreducible curve Y with nodes and ordinary cusps as singularities. We also study relations
among these moduli spaces (rank 2) as polarization varies over [0,1].
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1. Introduction

This work is a generalization and continuation of our work in [B3] where (and in [B5])
we introduced the notion of generalized parabolic bundles (GPBs). They are vector
bundles with flags (of vector spaces) over effective divisors. In [B3] we studied the
special case of flags of length 2 and we consider here flags of sufficiently general type. In
§2 we study the generalities on semistable and stable GPBs and their properties. We
prove the existence of the moduli space M (n,d) of semistable GPBs of rank n, degree
d of certain general type. In § 3, we study interesting cases of the moduli spaces M(n, d)
with flags of length 2. We define 1-stability and 1-semistability, compare these notions
with the stability and semistability of GPBs and use them to prove the existence of fine
moduli spaces for GPBs. We consider the question of defining tensor products,
symmetric powers etc. and the deterrninant of a GPB. We also define fixed determinant
subvarieties M, (n,d), L being a GPB of rank 1. We describe M, (2,d) explicitly when
X is an elliptic curve. There is interesting geometry associated to this (Remark 4.3).
Section 4 is the application of these results to the study of moduli spaces of torsion-free
sheaves on a reduced irreducible curve Y with nodes and ordinary cusps as singular-
ities. The case of a single node was considered in [B3]. Let X be the desingularization of
Y, p:X — Y being the natural map. We give a correspondence between GPBs on X and
torsionfree sheaves on Y. Unlike the correspondence given by Seshadri (Theorem 17,
p. 178 [S]), this correspondenceis not bijective, but it preserves rank and degree. Also it
maps 1-stable (1-semistable) QPBs to stable (semistable) torsionfree sheaves and vice
versa. We also consider relations among various moduli spaces (rank 2) as the weight
avaries over [0, 1] (see 4.9). These relations are similar to those obtained for stable pairs
by Bradlow, Thaddeus, Garcia-Prada and others.

Finally we introduce orthogonal GPBs and study their relation to orthogonal
sheaves on Y (510, 5-11). We postpone the general case (principal G-bundles) to a future
paper. On the one hand GPBs are generalizations of parabolic bundles ([SM], [B2]).
On the other hand they generalize the presentation functor giving normalizations of
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compactified Jacobians studied in detail by Seshadri, Oda, Kleiman, Altman and
others. GPBs are associated to representations of the group 7, (X)* % «---% %, where

71(X) is the fundamental group of X and * denotes the free ploduct of groups
(Theorems 1,2 [B4]). GPBs have many applications. They have been used crucially for
proving factorization rules of generalized theta functions [RN] and for proving
Frobenius splitting for moduli varieties of vector bundles on ordinary curves [MR].

2. Generalized parabolic bundles

2A Generalities on GPBs

Let X be an irreducible nonsingular algebraic curve defined over an algebraically
closed base field k. Let D be an effective divisor on X. Let E be a vector bundle of rank
n and degree d on X.

DEFINITION 2.1

A quasi parabolic structure on E over the divisor D is a ﬂag & of vector subspaces of
HE® 0)) given by F:Fo(Ej= H(E® 0,)> F,(E) > --- o F,(E) =
DEFINITION 2.2

A qua51parab0hc bundle (QPB in short) is a vector bundle E together with quasi-
parabolic structures #/ over finitely many disjoint divisors D;, j=1,...,J. Let
F =(F',...,#7). Then a QPB is a pair (E, ).

DEFINITION 2.3

An isomorphism of QPBs (E, #) and (E’, ') is an 1somorphlsm f:E— E"which maps
the flag & to the flag #’, for all j.

DEFINITION 2.4

A (generalized) parabolic structure on a vector bundle E over an effective divisor
D consists of

(1) a quasiparabolic structure on E over D

(2) real numbers a, ..., o, with 0< o, <--- <a, <1 called weights associated to the
flag.-

DEFINITION 2.5 ,
Leta=(ay,...,0,),m;=dim F,_, (E)/F|(E),i=1,...,r. Definewt, E = 3;_ myo;. If we
consider parabolic structures over divisors D,,...,D,, we define wtE =Y sWip E

Define pardeg E = degree E + wtE and par u(E ) pardeg E/rank E. These are called
respectively the parabolic degree and the parabolic slope of E.

DEFINITION 2.6

A generalized parabolic bundle (abbreviated as GPB)is a vector bundle E to gether with

parabolic structures over ﬁmtely many dlsjomt divisors. We denote it by a triple
(E.Z.2) Hore g =@, ....e0) o = . i =L
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DEFINITION 2.7

Every subbundle K of E gets a natural structure of a GPB (see 3.2 [B3]). By
a subbundle of a GPB, we will mean a subbundle with this induced parabolic structure.
A GPB (E, Z, ) is semistable (respectively stable) if for every (respectively proper)
subbundle K of E, one has par u(K) < (resp. <) par p(E).

DEFINITION 2.8

Let (E,Z,«) be a GPB. Let o+ =1, ol = oc{j—— 1. For real number o with 0 <a <1,
define E) = Fi_,(E)ifof_  <a<of,i=1,....r;+ 1

A morphism of GPBs is a homomorphism f:E— M of underlying vector bundles
such that f(E))s Ml for0<a<landj=1,....J.

PROPOSITION 2.9

(1) If I —K is a generic isomorphism of GPBs which is not an isomorphism, then
par u(I) < par u(K). '

(2) If f:E,— E, is amorphism of semistable GPBs of the same rank and same parabolic
degree (the divisors D, being fixed for all j), then f is of constant rank.

(3) If,in addition, one of E{, E; isa stable GPB then f is either zero or an isomorphism.

Proof. Since (2) and (3) follow from (1) by standard arguments, we only prove (1). For
1<j<J, let N; denote the kernel of h|D;:I|D;—K|D;. One has degK >degl +
Y h°(N;), because h is a generic isomorphism, with equality if and only if h is an
isomorphism away from the union of D;. Define
-1 . .
wtN; = > oc{(dirn(Ho(Nj)r\FJi(I)/HO(Nj)r\F{H(I)).
i=0

1

Since of < 1 for all i, j one has

wiN, < ¥ (dim H(N ) 0 FilD — dim HO(N)) nFl 1)) = h°(N).

Thus wtN =3 wiN jszjhO(N ;) with equality if and only if all N .=0. Since h 1s

J

" a morphism of GPBs and h|D; induces an injection (I|D;)/N;—K|D; it follows

that wtl — wtN < wtK. Thus, par degl=degl+ wtl < deg I+ wiN + wtK <deg
I+3% jho (N;) + wtK < par deg K. The last two inequalities cannot be equalities unless
h is an isomorphism. Since I and K have the same rank, (1) follows.

PROPOSITION 2.10

Let € denote the category of semistable GPBs (E,#,%) on an irreducible non-
singular curve X with parabolic structures over fixed divisors Dy,...,D; on X and
with fixed par y=m. Then € is an abelian category whose simple objects are stable
GPBs.

By the Jordan—Holder theorem, for any (E,Z,q) in %, there exists a filtration of
(E, &%) in ¢ with successive quotients stable GPBs with par y=m. The associated
graded object for this filtration is. unique up to isomorphism. Denote this object by

gr(E, Z, 0.
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DEFINITION 2.11

We define an equivalence relation in 4 by (E, %, ) and (E, &', &) are equivalent if
gr(E, #, o) and gr(E', #',¢/) are isomorphic in .

2B Existence and properties of the moduli space

Our aim is to construct a moduli space for equivalence classes of semistable GPBs of
a ‘fixed type’.

Theorem 1. Let X be an irreducible nonsingular projective curve of genus glg=0)
defined over an algebraically closed field. '

Let Dy,...,D; be finitely many (fixed) divisors on X such that their supports are
mutually disjoint. Consider the set of semistable GPBs(E, Z., o) on X of fixed rank n and
fixed degree with #7: F}(E)= HY(E® 0p, ) > --- o F{(E) =0 flags of lengthr (v indepen-
dent of j) and weights o’ = (0., ..., 0,) ﬁxled independent of j. For each j, we assume the
flag type of 7 fixed (varying with j). Denote this set modulo the equivalence relation
(2.11) by M. Then M has the structure of a normal projective variety of dimension
n*(g—1)+ 1+ ¥,;dim G, where G, is the flag variety of flags of type F',j=1,...,J.
The subset of M corresponding to stable GPBs is a nonsingular open subvariety.

Proof. The construction of the moduli space M is done using geometric invariant
theory generalizing [B3]. We only sketch the proof as it is very similar to that in [B3].
We first construct a universal space R for GPBs of the above type with an action of
PGL(N) on it. Then we show that there exists a good quotient M of R by PGL(N )in the
sense of geometric invariant theory. We denote by S the set of all semistable GPBs
(E,Z.,%) of the above type. Without loss of generality, we may assume that
—n<degE<0.LetC;=degD,,j=1,...,J. For (E,Z,0)eS, let b = par deg(E). Since
the GPB’s (E, &, a)eS are semistable, there exists m, such that for m > mg, W' (E(m)) =0
and the canonical map H°(E(m)) - @], H°(E(m)® 0, ) is surjective. Given an integer
by, one can choose m > g such that for Fe§ (i.e. F such that (F,Z,0)eS)orfor F cE,EeS
and pardegF>b, one has H'(F(m))=0 and the canonical map H°(F(m))—
@H Fm®O p,) 18 surjective. This can be done by arguments similar to those on p. 226
[SM]. We shall choose b, suitably later (depending only on g:band C;,j=1,...,J).
Choose m> g, m > m,. Let n = h°(E(m)). Let P be the Hilbert polynomial of E(m) in S.
Let Q= Quot, (0}, P) be the Hilbert scheme of coherent sheaves on X which are
quotients of 0§ and have Hilbert polynomial equal to P. There is a universal sheaf U on
Q x X. Let R be the subscheme of Q consisting of points gin Q corresponding to sheaves
U, which are vector bundles generically generated by sections and satisfy H °(Uq) ~ 0%
(by the Riemann Roch theorem, H* (U,) =0for geR). By our choice of m, R contains the
subset of Q determined by E(m) with (E, £, «)eS. It is well known that R is a nonsingular
variety. Let p,:R x X — R be the projection. Define Vi=(p1)4(UIR x D;). Let G(V;) be
the flag bundle over R of the type determined by the parabolic structure over D;.Let G(V)
be the fibre product of {G(V})}, j=1,...,J over R. We denote the total space of G(V)
by R. Obviously R has the local universal property for GPBs. It is the universal space for
GPBs which we wanted to construct. Let R* (respectively R®) denote the subset of
R corresponding to semistable (resp. stable) GPBs. ' ‘
The group PGL(N) acts naturally on 0% and hence on R, R®, R**. We shall construct
a projective variety ¥ with PGL(N)-action such that a good quotient of Y modulo
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PGL(N) exists. We shall give an affine injective morphism from R to Y which is
PGL(N)-equivariant. The existence of a good quotient of R modulo PGL(N) then follows
(Proposition 3.12, [N]). Following Gieseker [G2], let us define a ‘good pair’ (F, @) to be
a flat family F — T x X of vector bundles on X such that F, is generated by its global
sections at the generic point of # x X and @:0% - p,(F) is an isomorphism, p being the
projection T x X —T. Let A denote the Jacobian of X corresponding to line bundles
on X of degree equal to deg E(m), E€S. Let M be the Poincaré bundle on X x 4 and
g:X x A— A the projection. Define Z=P (Hom(A"0%,g,M)"). Given a good pair
(F, ) one defines a morphism T(F,):T—Z as follows. Fix teT. One has a natural
map ¥: A"HO(F,)—H(A"F,) given by ¥(s; A --- As,) =5, $(0) =55 (X) A -+ Asy(x).
Also, ¢ gives amap A"¢: A"k — ARHO (F,). Define T(F, @)(t) = o A"@. It is easy to
see that this defines a morphism [G2]. Via the action on 0%, PGL(N) acts naturally on
Z preserving the fibres over A. Note that the fibre of Z over LeA is
P(Hom(A"KN, H°(X, L))Y). If we are given a good pair (F, @) where F =(F, %, ) is
a family of GPBs of fixed type considered in the theorem, parametrized by T, then for
every t in T, F,| D; has flag

FIFi(F,)=H(F,®0y)= Fi(F)=> > Fi(F)=0.
Let e;: HO(F,) > H°(F,® Up,) be the natural map. Via e; (by pulling back) the flag #/
induces a flag on H(F,). Identifying H°(F,) with k¥ by ¢, we get a flag (of fixed type) on k™:
FIN):KN = FL (%) > Fi (k") > - > FI(kY),

with Fi(kV) = kernel of e;. Let fi=dimension of F},i=0,...,r,j= 1,....,J. Let Gi
denote the Grassmannian of subspaces of k¥ of dimension f7. Let G = neGl,i=1,...,
r—1, j=1,...,J. Thus (F,¢) determines a morphism f:T—G. Define a morphism
T(F,p):T—Z x Gby T(F, @)= T(F,¢) x f. Thus we get a morphism T:R—Z x G. The
space Y we wanted to define is the product Zx G and T is the required PGL(N)-
equivariant morphism. Let Jd,=Db+ [m+1—g—0,%;,C)1,8=nt — ;) for
i=1,...,r— 1. Let L, = 0,(1), L;;= generator of Pic G/for all ;, j. Let N, be an integer
such that N, 8, is an integer for all i. Let g;:Z X G—Z,4; #Z x G—Glbethe projections.
Define a line bundle L on Z x G by

L=(g,)* LN ®(®2] ®]=1(a;)* Lij")-

On Y = Z x G we take the linearlization of the PGL(N )-action given by L. Let Y*, (Y®)
denote the set of semistable (stable) points of Y.

PROPOSITION 2.12

() geR==T(g)e V™.

(b) qeR°*=T(g)eY".

() qeR, T(q)e Y, q¢R*=T(q)¢ Y™
(d) geR*—R°= T(q)¢ Y".

Proof. Similar to 3.12 [B3].

PROPOSITION 2.13

The morphism T is a proper injective morphism.

Proof. Similar to 3.13 [B3] or 3 [B1].
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Since T is affine and a good quotient of ¥ modulo PGL{N) exists (well known), it
follows that a good quotient M of R* modulo PGL(N ) exists (Proposition 3.12 [N]).
Risa nonsmoular projective variety of dimension n*(g — 1) + N> + >.;dim G;, G; being
the flag variety of flags of type #7, j=1,...,J. Hence M is a normal proj ectlve variety
of dimensionn?(g — 1)+ 1 + ¥,dim G;. Also, if R = R* and Aut(E, &, z) = k (scalars),

then M is a geometric quotient and is nonsingular. We end the proof of existence of
M with this remark.

PROPOSITION 2.14

Let h denote the canonical morphism: from R onto the quotient M. Let & denote the
universal family of GPBs on R* x X. Then for p, g€ R*, one has h(p) = h(q) if and only if
gr(€p) = gr(é,).

Proof. Similar to 3.15, [B3].

3. Interesting special cases of the moduli spaces of GPBs
3A o-stability, a-semistability of QPBs

Notation 3.1. In this section we study QPBs (E, F)F =(F,....F7) with
FI.F{(E)> F{(E)>0.Letdim F{(E)=a,,a=Y; a;, ] , J.IfJ = 1, then we may
often denote (E, #) by (E,F,(E)). The results of this sect1on are also needed later for
applications.

DEFINITION 3.2

Let o be a real number with 0 <u<1. A QPB(E, £) with #/:Fi(E)> F{(E)>0 is
called a-semistable (respectively a-stable) if for any proper subbundle F of E with
induced quasiparabolic structure, one has

deg F + Y o dim F/ (F) - (<)degE + 3 ;o dim F/ (E)
rank F = rank E '

Note that for 0 <« < 1, a-semistability (or a-stability) is the same as semistability (or
stability) of the GPB(E, Z,«) with o/ = (0, ) for all j.

PROPOSITION 33
Let (E, Z) be a QPB with #3: F}(E) > F{(E) > 0, a =Y, dim F} (E).

(1) Suppose that 1 —1/[a(n—1)]<a<1. Then if (E,&F) is a-semistable, it is also
1-semistable. If (E,Z) is 1-stable, it is also a-stable.

(2) Suppose thatrank and degree of E are coprime and ais an integral multiple of rank E.
Then (E, &) is 1-stable if and only if it is 1-semistable.

(3) If the conditions of (1) and (2) are satisfied then o-stability is equwalent to o-
semistability and the moduli space M is nonsingular.

Proof. (1) Let F be a proper subbundle of E of rank r with induced (quasi)parabolic
structure. Define

B(F) = ndeg(F)— r deg(E), A(F) = ra — ¥, dim F(P)
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The .condition for o-stability (x-semistability) can then be written as
B(F) <(<)aA(F), for all subbundles F of E. Define 6 =1—o. If A(F)=0 then
B(F)<aA(F)=B(F)< A(F) since a<l If A(F)<0, then [B(F)<A(F)—
S0A(F)]=>B(F)< A(F) if and only if —§A(F)< 1. Since ¥ dim F/(F) < a, one has
— A(F)< a(n—7). Thus — A(F)<a(n— 1) for any F. Hence if § < 1/a(n — 1), for
0 <1—6=ua<1,a-semistability implies 1-semistability. Suppose now (E, #) is
1-stable. For A(F) <0, if B(F) < A(F), then B(F) <o A(F) as o> 0. For A(F)>0,
B(F) < A(F)=B(F) < 0A(F) = A(F)—06A(F) if and only if 64(F)<1. Since
dim Fi(F) = 0,A(F)<ra<a(n—1) for all F. Thus for 1/6>a(n—1), 0<a=
1 — 6 <1,1-stability implies a-stability.
(2) Proof as in the vector bundle case.

(3) The first assertion is clear from (1) and (2). The second assertion follows from
Theorem 1. :

Theorem 2. Let M (n,d) denote the moduli spuce of stable GPBs (E,Z,%) of rank n and
degree d on a nonsingular curve X of genus g satisfying the following conditions.

(1) # =(F1,...,77), FI:F)(E)> F{(E) = 0, dim Fi(E)=a,isa fixed integer depend-
ing on j,a =3 ;dim F1 (E). ,

Q) a=(@',...,a) withoe =(0,0) for all j,1 —1/a(n—1)<a<1.

(3) The rank n and degree d are coprime and a=73;a; is an integral multiple of n.

Then M (n,d) is a fine moduli space.
Proof. Similar to 3.16 [B3].

3B Operations on QPBs

In this section we assume that D; = x; + z;, for all j and the QPBs are of the type defined
in 3.1. We denote such a QPB by (M, F{(M)).

3.4. Direct. sum and tensor product of two QPBs. The direct sum of two QPBs
(M, Fi(M)) and (N, F{(N))is the QPB(M & N, Fi(M)® F{(N)). The tensor product of
the two QPBs is the QPB(M @ N,Fi(M ®N)) where F{(M®N) is the image of
Fi(M)®F](N) under the projection map (ij(-Bsz) ®(ij®sz)—+(M(J§9 N), @
(M® N),. We remark that if the projections from F7j (M).(respectwely F I(N)) to
M, and M 2 (resp. N, and N, ) are isomorphisms then a similar statement is true for
Fi(M®N). |

3.5. Let T denote an operation on vector spaces such that for V; < V,, TVy) = T(V3)
and for any two vector spaces Vi, V, there is. a map pr: TV, @ V)~ TV)® TV, )I./Fgr
example, T(V) = End(V), ®™(V), S™(V), A™(V) etc. In these examples T_( V)@ T( 2.) is
a direct summand of T(V;® V,) (characteristic Zero), k}cnce there 1s a canomfza;
projectionmap pr.T which induces a corresponding operation on vector bundk:s wlftx;lc )
we again denote by T We want to extend T tO QPB’;j ENOE: o Ea)
pr T(Fi(E)) = T(E,)® T(E;). For a QPB (E,F(E), define T(E,Fi(E))= )

pr(T(F}(E)))-

i =A" i hen T(E, F}(E))is arank 1
3.6. In particular when T = A", the top exterior prod}lct, t ( |
QBP calfled the determinant. Let (E, &, z) bea GPBwith E, Z asin 3.1. Then we define




410 ' Usha N Bhosle

the determinant of (E, Z,4), denoted by det(E, Z,a), to be the rank one GPB (det
E:;?:.Osg.)'

PROPOSITION 3.7

Let p; and q; be the projections F/, (E)—»Exj and FI (E)— E, respectively. Let M' be the
subset of the moduli space M (n, d) corresponding to GPBs satisfying the condition that at
least one of p; or q; is an isomorphism for every j=1,...,J. Then det:M'— M(1,d)
defined by (E, Z, a)—det(E, &, a) is a morphism.

Prdof. Let (£,Z,4)— T x X be a (flat) family of GPBs. It suffices to show that
we can globalize the construction in 3.6 to (&, Z, &) replacing (E, &, o). By definition,

& gives a rank n subbundle Fi (&) of & ;=pr(8|T xD;)forallj. Let A"8=%. We
have

(1) (Z|T x D))= (pr) (ZIT x X;)® (p1)y (LT x z;) -
= A pr,(EIT X x;))® A"(P (8| T x z;)).

Letp: A" ;— NP1 (81T x x;))® A"(py, (€] T x z;)) be the natural projection. The
rank n bundle Fj (&) determines a rank 1 subbundle F’ of A"& ;- Then p(F/)is a rank
1 subbundle of (p;),(£|T x D ;) giving the parabolic structure over D ;on 2. Thus we

get a family (¥, Z ,,a) of rank one GPBson T x X.

Notation 3.8. Fix a GPBL=(L, #,,a) of rank 1 and degree d. Let M7 denote the
~subset of M’ consisting of GPBs (E, %, ) such that det (E, %, )= (L, Z,,q). Let
M, denote the closure of M in M(n, d). Notice that M} is closed in M’

3.9. Let V;, ¥, be two vector spaces of dimension n. Let G be the Grassmannian of
n-dimensionalsubspacesof V; @ V,. Lete,,..., e, be a basis of Vyandlete,, ,...,e,,be
abasis of V. Gisembeddedin P(A™(V; @ V,)) by the Plucker embedding, Let {P. ..}
1<i; < -+ <1, < 2n be the Plucker coordinates. Let H be the hyperplane defined by

a.Py ,—b.P,. . (,=0(abbothnonzero and fixed). The following Lemma seems to
be known. <

Lemma 3.10. Gn H is nonsingular.

Remark.3.11. The result of the lemma does not hold if one of a or b is zero as can be

seen by taking n=2. In that case Gn H becomes a cone with base a nonsingular
~ quadricin P2, '

Theorem3. Suppose that L= (L, & ,,a)is suchthat p J(F(L) #0,q H{FL(L)) # 0 for allj.
Then one has the following.

(1) Mj; is normal. , :
@ If md)y=1,00=(0,0) with 1 —1/nJ(n—1) <« < 1, then M is nonsingular.

Proof. Lét (b, a;),b;eL,,,a;eL, be a generator of Fi{(L),j=1,...,J. By our assump-
- tion, a; and b; are both nonzero for all j. Consider a GPB(E,#,2) (as in 3.1). Let

Vipp = Eyjs Vay=E,;, G;=Gr(n, V@V, ) ~ G. We identify Fi (E) with the element of
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G, determined byit. Then a semistable (E, &, &) corresponds to an element of M7 ifand
only if for all j, Fi (E) belongs to the subset of G; defined by

{ajpl..‘n = 0P y.omy = 0, Ppity.on®0 P n# 05.

The closure of this set is the hyperplane section G;n H; of G;; where H; is defined by
a;Py = biPus1y. an= 0. Thus a semistable GPB(E, Z, z) corresponds to an element
of My if and only if F{ (E)eG;n Hforallj.Let R, R be the spaces defined in the proof of
Theorem 1. R is a bundle over R with fibres I1;G, a J-fold product of G. Let R, denote
the subset of R corresponding to vector bundles E with fixed determinant L. Ry is
known to be nonsingular. Let R; be the fibre bundle over Ry, with fibres I1,GN H},
which is a subbundle of R|g,. By Lemma 3.10, R; is nonsingular. My is the quotient of
R by PGL(N) (in the sense of geometric invariant theory), hence M; is normal. If the
conditions of (2) are satisfied, then by Proposition 3.3 M is a geometric quotient and
hence is nonsingular.

3C Moduli spaces for rank 2

3.12. Throughout this subsection, we assume thatJ=1,D=x+zr(E)=20<a<l
Let (e,,¢,) and (e, e,) denote bases of E, and E, respctively, these will be chosen
suitably in different cases. Let G, denote the Grassmannian of 2-dimensional subspaces
of V=E,®E,,G,cP(A?V). Any element in A 2y can be written in the form
X.e,Ney+YiesNeg+X e, Ney+Yoe, Nes +X.esNey +Yie, Aey. G, ds de-
fined by X, Y, + X, Y, + X, Y, =0. F,(E) defines a point in G,. The subset of G,
corresponding to stable (resp. semistable) QPS (E, F(E)) will be denoted by G: (resp.
G®). Let H denote the hyperplane hX, — Y, =0,h#0.

Lemma 3.13. Let the assumptions be as above.

(i) A QPB(E,F,(E))of degree 1 is a-stable (= 1-stable) for 1/2<a<1if and only if one
of the conditions (a), (b) is satisfied, (a) Eis a stable vector bundle and F{(E)# M, @M,
for any line subbundle M of E of degree zero. (b) E has a subbundle M of degree 1 with
E/M, = M, deg(M,)=1, deg(M)=0 and F,(E)n((M,),®M),) =0, Fi(E)#L.®L,
for any line subbundle L of E isomorphic to M. ‘

(i) A QPB(E,F,(E)) of degree zero is a-semistable for 0 <o <1 if and only if Eis
a semistable vector bundle and for any line subbundle Lof E of degree0,F,(E)# L, ®L,.
Further, it is o-stable if and only if it satisfies the additional condition F {(E)n
(L,®L,)=0 for L as above.

Proof. This follows from straightforward computations.

PROPOSITION 3.14

Assumptions as in 3.12. Assume further that degreeE=1,g=1,1/2<a< 1.(1) The open
subset of My corresponding to QPBs with underlying vector bundle E stable is isomorphic
to G,nH — X. (2) The closed subset of M corresponding to QPBs with E not stable is
a fibration over X with fibres isomorphic to |

Proof. (1) On the elliptic curve X there is 2 unique vector bundle E of rank 2, degree
1 with a fixed determinant. By Lemma 3.13(i)(a), (G,nHy*=G,nH - Pic X. Since
X ~ Pic X, the result follows.
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(2) By 3.13, E= M, ® M. Fix MePic°X, since det E is fixed, this fixes E too. Choose
nonzero elements ¢,e(M,),,e,eM,,e;e(M,),,e,eM,. Any automorphism of E is of
the form f =g ] with Aek* = Aut M, uek* = Aut M, vek, se[ (M* ® M, ) — {0}.
There are two cases depending on zeroes of s.

Case (1).- Assume s(x) and s(y) are both nonzero. By suitable choice of the basis elements,
one can have (G,NH*={Y;#0}-{X;=0=X,-Y,} (by 313) and
fley)=1ley.f(ey) = pe, +vey,f(es) = ey, fe,) = pie, + ve,. Then Aut (E) acts on P* by

JX 4,1, X,, Y, X, Y3)=(AMX1,/1/,LY1,/1#X2
+ Y, Y, + WYy, 2 X, — X, — Y, — V2 Y, 12 Ys).

For the normal subgroup G, defined by A=p=1 acting on the cone C (Hy~k?
(coordinates (X,,X,,Y,,X;,Y;)) the ring of invariants is generated by
X, X,— Y, %, U=X,Y, + X, Y,. The affine cone C(G,~ H) is given by U = —hX%.
Hence the quotient of (G,nH)* by G, is (A2—0)<P?, it is given by the map
(X1, X5, Y, X5, Y5)—(X,,X,—Y,,%). On this quotient the induced action of
G, = P(Aut E)/G, is given by multiplication of coordinates by 1,1,t respectively
(t=pA™1). The quotient is P*, it is given by mapping to (X ,, X ,—5).

- Case (ii). Suppose s(x)=0,s(z) #0. By 3.13, (G,nHf* = {Y;#0} —{X,=0=X,=
X} Asin case (i), one has f(e,) = ley,f(e;) = pe,, fles) = ey, f(e,) = e, + vey. The
action of Aut E on P* is given by '

JX LY, X0, 0, X4, Y)
=(ApX y, Yy, ApX o dn Yy + pv ¥y, A2 X5 — AvX,, 12 V).
The normal subgroup G, acts on H = k° by
WX X Y, X B) = (X0, X, Ty + 95, Xy — 0K, T,

- The ring of invariants is generated by X,,X,,Y; and U=X, Y, + X.,Y,,G,nH is
-defined by U = —hX?. The quotient of (G,n H)* by G, is (A% — 0) = P2, it is given by
- projection to (X;,X,,Y;) coordinates, yl~! =teG, =P (AutE)/G, acts on it by
1(X,, X5, Y3)=(X,,X,,tY;). The (required) quotient is P* given by projection to
coordinates (X, X,). ' '

_Remark 3.15. The above calculations indicate that M is obtained by blowing up an
7 elliptic curve (isomorphic to X) in a nonsingular quadric (G,n H above) in P4,

PROPOSITION 3.16

. With the notations of 3.12, assume that g=1,0 <a <1 and the determinant of Eis
trivial. Then My is a P*-bundle over P. :

- Proof. Lemma 3.13 (ii) implies that either (a) E= M@ M~ M ePi_cO'X or (b) E comes

in a nontrivial extension 0 — M, LES M,—-0,M, =M, =MePic°X, M*= 0. Upto
_isomorphism there are four vector bundles of type (b) corresponding to four roots of ¢.
- The vector bundles of type (a) are parametrized by (Pic® X W(Z/2) ~ P2,

7
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(a) If M =M~ 1, then(E, F((E))is equivalent to a GPB with E of type (b). Therefore, we -
may assume that M # M ™. Lete;,e,,e3,e, be basis of M, M *, M,, M * respective-
ly. Since any line subbundle of E of degree zero is either M or M ™1, by 3.13(ii) the only
nonsemistable points in G, H are (0,0,0, 0,1,0) and (0,0,0,0,0, 1). Stable points are
given by X;Y;#0. P(AutE)= P(G, x G,) = G,.teG,, acts by (X, Y, X5, Yo,
X5, Y) = (X1, V1, X5, Ya,tX,,t7 1 Y;). Projections to (X,,X,,Y,) coordinates show
that the quotient of G,nH under G,, is P2, The semistable but nonstable GPBs
correspond to the quadric hX3 =X, Y, in P2, ' :
(b) Let e,,e,,e5,€, be the basis elements of (M,),»(M3)es(My),,(M3), respectively.
Any automorphism of E is of the form Ald+ ugoh.P(AutE)~ G,. Taking
pA~t=teG,, it acts by te; = e, te3 =es,te, =€, + te, ,te, = e, + te,. Hence one has
HX,, Y, X5, Y, X3, Vo) =(X,, 1y, 1 + tY,, X, + 1Y, Xy —t(X, + Y,)—t*Y;, Ys)
The ring of invariants for G,-action on kS is generated by X, ¥,, Uy =X, = Y5, 13 and
U,=X,Y,+ X, Y,. Hence the quotient of the cone C(G,n H)* is the affine quadric
hX2=U, in (k* — {0}) x k, where the latter k has U, as coordinate, while coordinates
ink®are X,, Y;, U,. Notethat the nonsemistable pointsfor G are {X; = Y3 =U, = 0}.
The quotient of C(G,n H)* by scalar multiplication is P?, given by projection to (X4, Y3,
U, ) coordinates. The nonstable GPBs correspond to Y, =0 in this P2. It is not difficult to
see that in case E = M @ M, M? = 0, there are no stable GPBs and the semistable GPBs
give a P* (in the moduli space M), which is the same as {Y, =0} in P* above.

These calculations show that there is a surjective map h: M —P* with fibres P?and
over P! — {4 points} this fibration is locally trivial The result now follows from Tsen’s
theorem (p. 108, case (d), [M].

4. Applications to curves with nodes and ordinary cusps

4A Preliminaries

Let Y be an integral projective curve over an algebraically closed field k.Letm:X—Y
be the normalization map. Let (4,m) be the Jocal ring at a singular point y of Y. We
assume that Y has only nodes and ordinary cusps as singularities.

PROPOSITION 4.1

Let F be a torsionfree A-module of rankn. Then F ~ rA@ (n — r)m(rA denotes the direct
sum of r copies of A).

Proof. We assume that y is an ordinary cusp, the nodal case being proved in
Proposition 2, Part 8 [S]. By Corollary 6.2 [B], every indecomposable torsion-free
A-module is isomorphic to an ideal. Any ideal is isomorphic either to 4 orm [1.4[D]].
The result follows by induction on rank. ‘ '

PROPOSITION 4.2

Let A be the local ring at a node. Let my, m, be the two maximum ideals of the semilocal

ring A, k, = Ajm;,i=1,2; k; =k, =k. Let p:A—k, @k, be the canonical surjection,
g=®,p,n>0. Let V be a subspace of K} ®k5 of dimension n. Let p;:V — k] be the
projection, a; = dimension of the kernel of p;. Then F=q '(V)~(n—ay—a,)
A®(a, +a,)m. ' N ‘
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Progf. Weassert that there is an automorphism of A" such that the induced automorphism
hy of (A/my maps V onto the subspace V,=ki@D" % “@k%c(k, ® k)@
(ki @k,)'" %@ (k, Dk,), D is the diagonal of k; @k,. Since p~'D = A,p~'k,~m,
one has p~'(V,)~ (n—a, —a,)A ®(a, + a,)m, hence the result.

We now prove our assertion. Let K, I, denote respectively the kernel and image of
pi,i=1,2. Write V=K, @W®K,. Let 15058y (resp. enwzﬂ,...,en) be a basis of
K, (resp. K,). Lete, . ,...,e,_, be a basis of W. For e,e W, write e, = e1te €
being the component in k7, j = 1,2. Complete the basis e, ,.. .. 3€4,5€4 41,25+ +2€yg 5 Of
I,toabasis{e ,},i=1,...,nof k3 wheree, , = ¢,,i< a,. Similarly choose a basis €1}
of k' extending a basis of I, withe, , =e,,i=n—a, +1,...,n. Letbh, = e, +e; ,foralli
Since ¢ is a surjection there exist M;;in A,i, j=1,...,n, such that qMy ;... M, )= b,
for all i. The matrix M = = (M ;;) 1s the matrix of an endomorphism f of A” which induces an
endomorphism h, of (4/m)". h; maps the canonical basis of (4/m)" to the basis {b;}.
M modulo m is the matrix of the base change. Hence the determinant of M modulo m is
aunitand thereforedet M isa unit. Thus f is an automorphism, sois h .- Withrespect to
the basis {b;}, h,(V,)=V.

4.3. We now assume that 4 is the local ring at an ordinary cusp y. Then (4,m_) is a
local ring. One has Anm, =m=m2,m™* = 4. There is a canonical A-splitting of the
exact sequence 0 —m, /m— A/m— Afm_—0 as follows. 4 is a k-algebra, we consider
A/m_=k embedded in A. If f(x) denotes the element of k determined by f, then
Jf —f(x)em,. This induces a map s: 4/m — m,/m. It is A-linear (as m, N A = m) but not
A-linear. Using the splitting given by s we write 4/m = ki @®ky,k,=A/m_k,=m,/m,
kixk,=~k

Lemmad.4. Letp:A—k, @k, be the canonicalmap. Let V be a one dimensional subspace
of ky @k,, p;:V —k; projections, F = p~ (V). Then one has

() If V=k,then F=m_.
(2) If p, isnonzero then F ~ A.

Proof. It is easy to check (1) and that if V = k,, F = A. For (2) it suffices to show that
there is a unit be 4 such that multiplication by b induces a linear automorphism & of
k @k, with h(¥') = k. Let t be a uniformizing parameter in 4, m, = t4, m = ¢ 4. For
fed, f=fo+fit mod m, f,.f ek ie. p(f)= (fo.f1)€k, ®k,. Then h(f,,f,)=
p(bf)=(byfo,fob, + f1b,). Choose b with bo=1,b, = —v, Jv, where (v,,v, ) is a gen-
erator of V.

PROPOSITION 4.5
With A as above let V,q, p,, F be as in 4.2. Let a be the rank of p,. Then F ~ aA®(n—aym.

Proof. As m Proposition 4.2 we can find f, hy, Vi =h(V) (use M mod m, is a unit).
Thus we may assume that ¥ =V, . Consider the automorphism of A" whose matrix is
adiagonal matrix with first a, (diagonal)entries 1, nextn —a, — a, entries be 4 and the
last a, entries 1. Choose b with p(b) = (1, — 1)eA/m. 1t follows from the proof of
Lemma 4.4 that the induced automorphism h, of (4/m)" is identity on the first a, and
last a, factors and maps each D in the middle n—a, —a, factors onto k,. Thus
hy (V) =Ky @ k™% =k " @ k%, hence F x g~ 1(V,) = (n— a)ym D aA.
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4B Relation between torsionfree sheaves and QPBs

Notation 4.6. Let y,,...,y, be the singular points of Y. Define divisors Dj=rc‘1(yj),
D;=x;+z; if y; is a node, D;=2x; if y, is an ordinary cusp. Let 0 denote the set of

¥ isomorphism classes of QPBs(E, #) of rank n, degree d on X with #/:F I(E)> F{(E)>0,
dim FJ(E)=n for all j. If y; is a node let p;,q; be the projections from Fi(E) to Exj,EzJ_
respectively and a;, b; be the dimensions of their kernels. If y;is a cusp let p;, a; be defined as
in 4.5. For F = (ry,...,r;) 0 <r;<n,define 0, = ((E.#)la;+bj=n—r,ify;isa node and
a;=n—r; if y;is a cusp}. Let (4;,m;) be the Jocal ring at y;. Let S denote the set of
isomorphism classes of torsion-free sheaves of rank n and degree d on Y. Let S; = {FeS]|
stalk F, ~1;4;® (n—r;)m;}. Then S (resp. Q) is a disjoint union of S, (resp. 0.),0<r;<n
Let Q,=Q, S, =S,y The latter is the set of locally free sheaves in S.

,,,,, n)> ~n peees

PROPOSITION 4.7

There exists a map f:Q — S with the following properties.

() fQ) =S
# () flg,:Q,—S,isa bijection.
(3) (E,&) is 1-stable (resp. 1-semistable) if and only if its image F under f is a stable
(resp. semistable) torsionfree sheaf.

Proof. Let (E,#)eQ. By 42,43, n, (E)®k(y;) = (k, @k, = H"_(EIDJ). Tl_len fE,#)=F
is defined by the exact sequence 0—F - (E)-®nE® k(y))/Fy (E)— 0. Since
1(04) = x(Ox) — J, deg: F = x(F) —rank F-x(0y), deg. E = y(E)—ny (Ox), F and E have

the same degree.

(1) In view of Propositions 4.2, 4.5 we have only to show that for F €Q,, there is (E, %)
mapping to F under f. Let E, =n* F/torsion. E is given by an extension 0—E,—
E—@®,T,~0,where T;= k(x;)"® k(z;\',a;+bj=n— rify;,isanodeand T;= k(x,y' it
y; is a cusp. The composite of sheaf inclusions F »m.(E,)— 7, (E) induces a linear map
FQky;)—»nE® k(y;). Define Fi (E) to be the image of this linear map.

# (2) The inverse f~' of fls 18 defined as follows. For FeS,, define E= n*F,

| Fi(B)=F®ky,) c(F®n_0y)®k(y)= (n, (E)® k(y;))- Since the above inclusionis a
induced by 0y = Oy and ¢y maps onto k, (resp. onto each of k,,k,)in k, @k, if y; is i
a cusp (resp. a node), it follows that p; (resp. each of p;,g;) is of maximum rank forallj. ‘
(3) Similar to 4.2 [B3].

Theorem 4. Let M = M(n,d) denote the moduli space of semistable GPBs of rank n,
degreed on X satisfying 4.6 and weights (0,a), 1 — 1/[nJ(n— N]<a<1l.LetU=U(n, d)
denote the moduli space of semistable torsionfree sheaves of rank n, degreedon Y.

(1) The map f(see 4.7) induces a morphism f:M—U.
@) flagy: (M) —(U,) isan isomorphism, where the superscript § denotes stable points.
In particular f is birational.
-~ (3) f is surjective.
@) If (n,d)=1, then M(n,d)is a desingularization of U(n,d).

TR "‘%@2‘, e

Proof. Note first that semistable GPBs are also 1-semistable QPBs and hence map to
semistable torsionfree sheaves under f. (1) and (2) now follow since the above




416 Usha N Bhosle

constructions globalize easily to families of bundles. (4) follows from Proposition 3.3.
(3) Weshow that the image of f contains the set US of stable pointsin U.If F is a stable
torsionfree sheaf on Y sheaf then by 4.7 there exists a 1-stable QPB and hence a stable
GPBmapping to F. Since Y has only planar singularities, U is irreducible [R]and U®is
an open dense subset. Since f is proper if follows that £ is a surjection.

Theorem S. Assume that Y has only J nodes as singularities. Let L be a fixed line bundle
on Y. Let UL denote the closed subset of U, corresponding to vector bundles with fixed
determinant L. Let U, be the closure of UXin U. Let L = f{Y(L), f, being the map f in
case n=1. Let M; be as in Theorem 3. Then f induces a birational surjective morphism

- My- U, If (n,d)=1, then M is a desingularization of U,.

Proof. First note that detof = fodet where the latter f is the map f in case n=1.
Hencef(M}) = Uy, the subset corresponding to vector bundles with fixed determinant

L. Since f is proper it follows that f (M )= U;. The rest of the assertions follow from
Theorems 3 and 4. )

Remark 4.8. Relation with singular intersection of quadrics. Assume that g=1,J =1,
Y is a hyperelliptic curve with Weierstrass points Wos Wy, Wy, Wa, w5 W, being the
unique node of Y. The desingularization X is an elliptic curve. Let L be a line bundle on
Y of degree 5. The linear system |L| gives an embedding of ¥ in P3. The linear system
|n*L| gives an embedding of X in P*. The inclusion HO(L)— H O(r,n*L)= H(n*L)
induces a projection from P* to P mapping X onto ¥ (isomorphically outside w,,).
Thereexists a Cartier divisor W, of degree two supported at w,,. Let W = Wo+ s oW
On P°=P(L® Ow)*) there is a singular pencil of quadrics of the form
Q=X X, + X3+ Xi+Xi+XZ, 0,=X24+2aX,X,+a, X2+ a, X2 +a X2+
asX?, a; being distinct scalars [B6]. Q = 0, N Q, s a 3-fold with a unique singular point g.
Q is a normalization of U, (2, 1) and is bijective with it (Main theorem, [NE]). The blow
up of Q at g is isomorphic to the blow up of a nonsingular quadric Q, in P* along X.
Qo is the base of the unique quadric cone in the singular pencil with vertex ¢ and
X =00 {X,=X,=0}. The latter is isomorphic to M .L being the generalized
parabolic line bundle on X corresponding to L on Y (Remark 3.15). The injective
evaluation map H%(L) - L® Oy, induces a projection to P* mapping Q to a surface
containing Y. The space of maximum isotropic spaces of one system for Q . s
isomorphic to P*. There is a bijective morphism from this space to U,(2,0) whichis an
isomorphism outside the singular set (a P*) corresponding to nonlocally free sheaves,
while the singular set is isomorphic to UX(2,0). M,(2,0) is a P*>-bundle over P’
(see 3.16). The latter is isomorphic to the blow up of P? along a line.

Generalizations of these results to hyperelliptic curves of higher genera are possible
[B6].

4.9 Variation of . Let M(x;n,d) (respectively M (@ n,d)) denote the moduli spaces

M(n,d) (resp. M 1(n, d)) for weights (0, ).

(A) o =0. In this case the semistability, stability of a QPB is the same as that of the
underlying vector bundle. Hence M (0;n,d) ~ U, (n,d) x Gr(n,2n).

B) n=2,d=1,0<a<l.

/
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(1) Let 0 <o <1/2. Then «-semistability is equivalent to the stability of the underlying
bundle and hence there is a surjective morphism from M (2;2,1) = Uy(2,1). a-stability
coincides with a-semistability but it does not imply 1-stability. Consequently there is
only a rational map f:M(x2,1)— Uy(2,1). M(052,1). s nonsingular.

¢ (2) a=4%. The o-stability is equivalent to the stability of the underlying bundle.
But «-semistability does not imply stability of the underlying bundle, so his only a rational
map. It is defined on a-stable bundles and is surjective. a-semistability does not imply
1-semistability, but 1-stability implies s-semistability. Hence f is also a rational surjective
map. As a-semistability does not imply o-stability, M(3;2, 1) could be singular.
(3) Let1/2 <o < 1. The undering bundle of a semistable QPB can be non-stable. Hence
there is only a rational map h:M(x2,1)— Uy(2,1). However the morphism f is
surjective and birational. M («; 2, 1) is nonsingular (Theorem 4).
(4) Let «=1. Then M(1;2,1) is not nonsingular since it includes sheaves which have
torsion over D;,s [RN]. The maps f,hhavethe same properties as in case (2). Under the.
assumptions of 3.8, one can see that M 1(1;2,1)is a blow up (possibly a double blow up)
of P? along Y, where Y is embedded in P* by thelinear system |L|,deg L=5.M(%2,1)
for case (3) has been described in 4.8.

(C) n=2,d=0,0<a<1

(1) Let0 < o < 1. Then a-stability implies a-semistability, the converse is not true. Also
s-semistability implies 1-semistability. Hence there is a morphism f:M(%2,0)
— U, (2,0), it is surjective and birational. Since the underlying bundle is semistable,
there is a surjective morphism h: M (o; 2, 0)— Uy(2,0).

(2) Let o= 1. Then the morphism f is as in (1) above, but k is only a rational map, the
underlying bundle of a 1-semistable QPB may not be semistable.

5. Generalized parabolic orthogonal bundles

5.1. Let the base field be algebraically closed and of characteristic different from 2. For
simplicity of exposition, we assume that Y has a single node y, as its only singularity.
Let n™ ! (y,) =X, + X,. For a vector bundle E, we denote the rank and degree of E by
r(E) and d(E) respectively. We indentify an orthogonal bundle with a pair (E, q) where
E is a vector bundle and g a nondegenerate quadratic form on E (with values in the
trivial line bundle @). For a closed point x, let g, denote the induced quadratic form on
the fibre E,.. Let g, = 3(dy, @ g, ) 42 =4, ®(— 4,

Lemma5.2. Leto:E, =~ E, bea quadratic isomorphism (i.e. preserving q, ,4y,)- T henthe
following holds. ;

(a) The graph T, of o is isotropic for q,.

(b) ppT,—E,,(i=12)isan isotropy for g, on T and g, on E (ie. q,,(p;(v)) = g;(v) for
vel,). In particular, q, is nondegenerate on T,

Proof. Easy.

Remark 5.3. T isin facta maximum isotropic space for . The space S of maximum
isotropic spaces for a nondegenerate quadratic form Q on a vector space of dimension
2n has two components, each being a smooth variety of dimension n(n — 1)/2 = dim
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O(n). The above lemma means that S may be regarded as a compactification of O(n).
This suggests the following.

DEFINITION 5.4

A generalized quasiparabolic orthogonal bundle (orthogonal QPBin short) on X is an
orthogonal bundle (E, q) of rank n together with an n-dimensional vector subspace
F\(E)of E, ®E, which is isotropic for 4,=4, ®(—4q,).

For a subbundle N of E define F/(N)=F, (E)r\(le (Bsz:) and f, (N) = dimF (N).
DEFINITION 5.5

Let « be a real number, «€[0,1]. An orthogonal QPB (E,F((E),q) is a-stable (resp.

a-semistable) if for every isotropic proper subbundle N of E, one has (d(N) + af, (N))/
r(N) < (resp. <)o

Remark 5.6. If one considers special orthogonal QPBs, one should take the underlying
bundle an SO(n)-bundle and F, (E) belonging to the unique component of S (see 5.3)
which contains the graphs of isomorphisms 0:E, —»E, which preserve the SO(n)-
Structure modulo a maximum parabolic subgroup. Recall that an SO(n)-bundle can be
identified with a vector bundle E of rank n with a nondegenerate quadratic form g and
a given trivialization of A" E whose square is the trivialization of (A" E)®2 given by A” q.

Example 5.7. Generalized parabolic SO(2)-bundles on X are in bijective correspon-
dence with generalized parabolic line bundles on X (recall that the latter give
a desingularization of the compactified Jacobian of Y).

Proof. Since SO(2), = k*, every SO(2)-bundle is of the form E= L@ L- 1, LePic® (X)
with the natural quadratic map g=LAL '>LRL '=0. L, L™ are isotropic
subbundles. Each system S of lines in the quadricg, in P* = P(E, @E, )isisomorphic
to P'. We can choose nonzero elements ¢,€L,, e;el, fieLl;Y, f,eL;* such that
B, (e..f;)=1,i=1,2; where B is the bilinear form associated to q,,- With respect to
(ordered) bases (e, f ) of E, and (e,,f,) of E., any isomorphism ¢:F R
preserving the SO(2)-structures is of the form ole;)=ae,,0(f,)=a"? fs, agk*. So
I', = span of {e, +ae,, f, + a~'f,}. Thus

(E,Fy(E))=(L F,(L))® (L%, F,(L™Y)),
where F, (L) is spanned by Ae, + He; and F (L™ by uf, + Af,, (4, wePl.
DEFINITION 5.8 .

An orthogonal sheaf on Yis a pair (F, g5) where F is a torsionfree sheaf on Y and Q. is
a nondegenerate quadratic form on F with values in Oy. An orthogonal sheaf (F, ¢,) is

semistable (resp. stable) if for every nonzero proper (totally) isotropic subsheaf N of F ,
d(N)/r(N) < (resp. <) 0.

DEFINITION 5.9

An isomorphism of orthogonal sheaves is a sheaf isomorphism which preserves the
quadratic forms. In case of orthogonal QPBs we also demand (in addition) that the
quasiparabolic structures F 1(E) should be preserved.
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PROPOSITION 5.10

(a) There is a map f from the set of isomorphism classes of orthogonal QPBs on X
to the set of isomorphism classes of orthogonal sheaves on Y. Let f(E,F [E), 9=
(Fa qF)

(b) If p;, i=1,2 are both isomorphisms, then (F,qy) is an orthogonal bundle. f gives
a bijection between orthogonal QPBs on X with p,,p, isomorphisms and orthogonal
bundles on Y.

() (E,F,(E),q) is 1-semistable (resp. 1-stable) if and only if (F,qg) is semistable (resp.
stable).

Proof. (2) To a QPB (E, F,(E)) one can associate a torsionfree sheaf F given by the
exact sequence 0> F>mE—-mE® k(yo)/m, F1(E)—0. The quadratic form g on
E induces one on 7, E and on F. The quadratic form g on F is nondegenerate outside
v, and a priori has valuesinz, Oy. Consider g, @4, asaformon E, ®E,, withvalues
k(x,)@k(x,). Since F, (E) is isotropic for g,, one sees that g, @4g,, maps F,(E) into
k(y,) contained diagonally in k(x,)@®k(x,). This means that the form g, on F has
values in 0, =m0y and (F, gp) is an orthogonal sheaf (5.8).

(b) F is locally free if and only if p; are both isomorphisms. Moreover, E =*F and
hence gets a nondegenerate quadraticform with values in 0. Since the correspondence
(E,F,(E))—F, is bijective for F locally free (4.7) the result follows. .

(¢) This can be checked similarly in 4.2 [B3]. One has only to notice that a subsheafis
totally isotropic if and only if it is generically totally isotropic.

PROPOSITION 5.11
An orthogonal QPB is a-semistable if and only if the underlying QPB is so.

Proof. We only have to check that if (E,F,(E),q) 1s a-semistable, then (E, F,(E)) is
«-semistable. Let F be a subbundle of E. We may assume F is nonisotropic. By the proof
of Proposition 4.2 [RS] we have an exact sequence 0—N—F@®F+— N*+—0 where
N is the isotropic subbundle generated by F' F*, 1 denoting orthogonal complement.
Also, d(F) = d(F*) = d(N).

Case (i) When N =0. Then E=F @ F*, d(F)=0. Since q| F 1s nondegenerate 8o is
4,=4, D(— q,,)- Since F,(F)=F,(E) is isotropic for q,, fi(F)< r(F). Thus
@(F) + of , (FY)r <o

Case (i) When N #0. We need to show d(F) + a(f, (F) —r(F)) < 0. Since N is isotropic,
orthogonal a-semistability implies d(N)+ a(f (N)—r(N)) < 0. Since d(F)=d(N), it
suffices to check that (x) f; (F) —r(F) < fi(N) — r(N): Now F/N is a vector bundle of
degree 0 with induced nondegenerate quadratic form 4. The image of F,(F) in
(F/N), @ (F/N),, 1s isomorphic to F,(F)/F ((N) and is an isotropic subspace for
q,, ®(—4q,,)- Hence dim F,(F)/F,(N)<r(F/N), ie., fiF)—r(F)< fL(N)— r(N). This
finishes the proof.
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