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4. Reduction to a quotient space problem

In this section we reduce the problem of constructing coarse moduli schemes for the
functors F%, to one of proving the existence of a good quotient of certain universal
spaces under the action of a full linear group. '

We recall the definition of a good quotient ([22], Definition 1.5, p. 516).

4.1. DEFINITION

Let a:H x T — T be an action of the algebraic group H on the scheme T. A morphism
p: T — Y is called a good quotient of T modulo H if the conditions (i), (ii) and (iii) below
are satisfied.

i) p is surjective, affine and H-invariant.

i) p*(O’T’ )= Oy, where 0% is the sheaf of H -invariant functions on T.

iif) If Z is a closed H-stable subset of T then p(Z) s closed in Y; further ifZ,,Z,aretwo
closed H-stable subsets of T such that Z; Z,= ¢, then p(Z L) np(Z,)= 9.

If in addition the condition (iv) below is also satisfied we call p:T—Y a geometric

quotient.

iv) p(x,) = p(x,)<>orbit of x, = orbit of x, (or equivalently, in view of (iii), all orbits
are closed).

42. Remark. A good quotient is a categorical quotient, ie. given any Ii—invariant

morphism f:T—Z there is a unique morphism f:Y~Z such that f=fop ([[22]

p. 516). :

4.3. Notation. Leta:H x T—T bean action of the algebraic group H on the schcr.ne
T. Then for morphisms h:S—H and +:S—T we denote by h[t] the composite

hxt

S HxTST. For any morphism f:8,—S, we denote by f the product
fxidy:S; x X =8, x X. ‘

This is the second and concluding part of the thesis of late Professor A Ramanathan; the first part was
published in the previous issue.
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If E is a bundle (or more generally a scheme) over a scheme M and m:S — M is

amorphism we denote by E, the pull back m* E. For E' — M x X wewrite E/, instead of
E;.. '

44. DEFINITION

Let S be a set of isomorphism classes of G-bundles on X . Let F* be the sheaf associated
to the functor F5: (Sch) — (Sets) which associates to a scheme T the set of isomorphism
classes of families of G-bundles in S parametrized by T. On morphisms F® is defined to
be pulling back. Let M be a scheme and H an algebraic group acting on M by
a:H x M—M. Let H\M be the sheaf associated to the presheaf H\M(T)= the
quotient set Hom(T, H)\Hom(T, M). We call M a universal space with group H for the
set S if there is an isomorphism of sheaves ®: F S H\M.

4.5. PROPOSITION

Let S be the set of isomorphism classes of semistable G-bundles of topological type .
Suppose there is a universal space M with group H for the set ST and ®: FS" - H\M is the
isomorphism of sheaves. Then a good quotient of M modulo H, if it exists, gives a coarse
moduli scheme for the functor F: (see Definitions 3.2 and 3.9 : in Part I) in a natural way.

Proof. Suppose n:M — Y is a good quotient of M modulo H.

Clearly F¥ = F, (see Definition 3.1). Therefore we have a morphism @: F} - H\M.
Let hy,, hy be the functors represented by M, Y respectively. The morphism h.:hy — hy
induced by n:M—Y gives rise to a morphism ¥: H\M - h, because of the H-
invariance of 7. We claim that the morphism n=Yo0:F; —h, goes down to a mor-
phism #7:F}, — hy making Y the coarse moduli scheme for Fr.

Suppose the family # — S x X in S* has an admissible reduction of structure group
to P = M-U. Then by Proposition 3.5 we have a family #' —(C x $) x X in S such that
P3(F)crxsux ® F levysy - Where Ps: CxSxX—>Sx X is the projection - and
Fo—S x X is isomorphic to F [P,M](G)—S x X. Therefore Ng(FH) CxS-Y
coincides with ns(p¥(F)) on C* x S and hence on the whole of C x S. In particular
Ns(F) =ng(F,): S— Y. It follows that 5 goes down to a morphism 77: FZ, - h,.

That 7 :I_?;s(SpecC)—-»Hom(SpecC, Y) is surjective follows from the fact that
m:M — Y is surjective. To check injectivity we only have to show that if E ;and E, are
two semistable G-bundles of type z on X (considered as a family parametrized by
SpecC) such that n(E,) = 5(E,) then E 1 and E, are equivalent. Let the point m.e M
represent ®.(E;). Then by the property (iii) in the definition of a good quotient
(Definition 4.1), C; and C,, the closures of the H-orbits C , and C, of m, and
m, respectively, intersectin M. LetmeC, n C 2- We take the canonical reduced scheme
structures on C; and C,, i=1,2. Let [id\,JeH\M(M) be the class of the identity
morphism of M. The element ®;,*([id y1)EF (M) then gives for some neighbourhood
U of me M a faithfully flat morphism f:U’— U of schemes and a family of G-bundles
F > U'x X in §. Let C;=f~"(C,) and C,=f~*(C,). Since [ is faithfully flat, C; is
dense open in C;. Since ® is a morphism it follows easily that for the family
F|C;~ C_‘_; X X, F .~ E;¥xeC,. Therefore by Proposition 3-24(i) # . is equivalent to
E;¥m'eC}, and in particular for m'eC’ such that f(n') = m. This proves that E; and
E, are equivalent.
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To verify the condition (ii) for coarse moduli scheme (Definition 3.2) suppose Z is
a scheme and x: %%, —h, a morphism. Then it is easy to see that corresponding to
®,,'([id,,]) the morphism y gives a morphism g: M — Z which is H-invariant. Then
Y being the categorical quotient of M modulo H (Remark 3.2), g induces §: Y — Z such
that g = gom. If h,:hy — h is the corresponding morphism of functors it follows that
h, is the unique morphism which satisfies y = h;°o7.

This proposition reduces the problem of constructing coarse moduli schemes for
F to one of constructing suitable universal spaces and then proving the existence of
quotients. To construct universal spaces for G-bundles we will start with the universal
spaces for vector bundles provided by the Quot schemes ([19], § 6). These spaces have
a stronger universal property (which we have formulated as a definition; see Definition
4-6 below) which is essential for our construction. By taking an embedding of G in some
GL(n,C) we will consider a G-bundle as a vector bundle (or GL(n, C)-bundle) with
a reduction of structure group to G and thus will construct universal spaces for
G-bundles as schemes over the universal spaces for GL(n, C)-bundles.

Wmé S

4.6. DEFINITION

7
Let & be a set of isomorphism classes of G-bundleson X. Let & = T x X be a family of
G-bundles in . Suppose an algebraic group H acts on T by o: H x T — T and also on
& as a group of G-bundle isomorphisms compatible with &, we have the commutative
diagram
a
Hx§ ——> a*(é)
HxTxX
g; where & = o x id, (cf. 4.3). We call & > T x X a universal family with group H for the set

& if the following conditions hold.

1) Given any family of G-bundles # — S x X in & and a point s,€S there exists an open
neighbourhood U of s, in S and a morphism ¢: U — T such that # | .y & &, (cf. §4.3 for
notation). )

i) Given two morphisms t,,t,:S—T and an isomorphism ¢:&, =&, there exists
a unique morphism h:S — H such that t, = hlt,] and p=(hx t))* («) (noting that

(hx t,)* (Hx &)=¢&, and, since t, =h[t,],(hxt)*(@*&)= &)

47. Remark. The condition (ii) in particular implies that the isotropy group H,at xeT
is precisely the automorphism group of &,.

47.1. Remark. 1f & — T x X is a universal family with group H for & itis clear that T'is
a universal space with group H for . ‘

4.8. Let A, A’ be two algebraic groups and p:A’v—+ A a homomorphism.Let & —»T x X
be a family of A bundles. Let T'(p, &):(Sch/T)— (Sets) be the functor defined by
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I'(p, &)(¢:S — T) = the set of isomorphism classes of pairs (&, ¢) where & — S x X isan
A’ bundle and ¢: p, 6 — &, is an isomorphism of A bundles. The pair ((5"’1_,cp1‘) is
- 1somorphic to the pair (&%, ¢,) if there is an 4’ bundle isomorphism y: & 5 &, such
that the diagram

o py
Prby ——— p, &,

va

commutes. Note that if p is injective such a y, if it exists, is unique for, since 4’ acts

faithfullyon 4 p, ¥ = ¢ 'o @, uniquely determines . On morphisms I'(p, &) is defined
as pulling back.

Let  be a topological 4’ bundle on X. Let I'*(p, &) be the subfunctor of L'p, &)
defined by

I(p, 6)(S) = {(é” L 9)eL (p, £)(S)

& 1s topologically -
isomorphic to tVseS.

We then have the following lemma (cf. [17], Proposition 9, § 3-5, p. 18).

4.8.1. Lemma. If p: A'— A is injective the functor T'(p, &) is representable b y a T-scheme
T" > T of locally finite type and a universal pair (U, u)eT (p, £)(T"). The functor T'*(p, &)
is representable by an algebraic subscheme T’ of T" and the restriction of (U, u) to T".

Proof. Since p is injective we identify A’ with its image in A. Let T’ = I(p,&).

Let I':(Sch/T)—(Sets) be the functor such that I'(f:S—T)= Homg, (S x X,
F*(&/A) = Hom,, (S x X, £/A’). We define a morphism of functors ®:I" - T as
follows. ~ ‘

: Let 0eI"(S) = Homyg, ,(S x X, & ,/A"). Define ®y(0) = (c*& > ®,) Where ¢_:p, 0% & —

& is induced by ((S x X),,
aeA. ‘ :
- Wecan also define an inverse morphism ¥:I' - I". Let (¢, @)eI’'(f:S— T). Then the
fiber bundle associated to p, & with fiber 4/4’ is canonically 1somorphic to the fiber
bundle associated to & with fiber A/A4". Since A4’ leaves the coset (A") of A/A’ invariant we
have a canonical section o of (p, ')/A’". Using ¢ this gives a section, again denoted by o,
of &,/A". Define ¥s((€", 0)) = a. ‘

It is easy to check that ®o¥ =id;. and Wo® = id,.. Thus the functors I and I are
isomorphic. We shall show that the functor I" is representable using the results of
([TDTE, IV]).

By Chevalley’s semi-invariants theorem ([2], Theorem 5.1, p. 161) thereis a represen-
tation of 4 on a vector space ¥ with a line ] = V such that A’ is the stabilizer of lin 4. Let
%~ * be the character by which A’ acts on . Then the line bundle L on A/A’ associated to
the A"-bundle A — A/A’ is the ample line bundle corresponding to the embedding of
A/A"in P(V). Then the line bundle % on &/A’ associated to the 4’-bundle & —&/A’ by

X E)X A>E,, (s, x,e,a)—e.a where seS, xeX, eeé, and

#’
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the character y is relatively ample for the morphism &/A'» T x X, forit corresponds to
the embedding &/4’  P(&(V)) induced by A/A’ s P(V). Therefore, we see that £/A4"1s
quasi-projective over T x X and hence /A" — T is also quasi-projective. Therefore it
follows from ([TDTE, IV] §4, C. pp. 19-20) that I'" is representable by a scheme T"
(= HT,(X’,T((S’/A’)/T x X, in the notation of ((TDTE, 117, C.n° 2, pp. 12,13)) of locally
finite type. In fact T" is an open subscheme of Hilb,,,r Whose closed points
correspond to subschemes of &/A' which map isomorphically onto ¢ x X, for some
t x T, under the projection &/A'—T X X (loc. cit). Therefore if a section
ocitx X—&A in ['(ts T) is such that the A'-bundle a*(&,) on t x X =X is of
topological type T then the Hilbert polynomial of the subscheme o(X)=Xof &/A
corresponding to the section ¢ (with respect to the ample line bundle Z, on &,/A") is
determined by 7 since the restriction of Z,toa(X)~X1is topologically isomorphic to
%4(7) so that its degree depends only on . Since subschemes with a fixed Hilbert
polynomial are represented by an algebraic subscheme of Hilb ([TDTE, IV] pp. 17,20)
it follows that I'* is represented by an algebraic subscheme T" of T". : ’

4.8.2. Remark. 1If A" and A are reductive groups then A/A’ is affine and we can take
a representation of Ain V such that the character y is trivial, so that A/A’ is embedded
in V itself. In this case, therefore, it follows that T" is itself already algebraic.

4.8.3. Remark. If P is a parabolic subgroup of G and & — Y is a G-bundle on a scheme
Y then &/P — Y is a projective morphism. Since G/P is projective, this follows as in the
proof of the lemma above (taking A=Gand A" = P).

49 If pisnotaninjectionthe functor I'(p, §) may notbea sheaf. Let I'(p, &) be the sheaf
associated to the functor I'(p,&). The following lemma shows that we can construct
a universal space for A'-bundles starting from a universal family & of A-bundles when
T'(p, &) is representable and if L(p,&) itself is representable, then we can actually
construct a universal family for A'-bundles. So taking an embedding G GL{n,C)and
starting with a universal family for vector bundles we can construct a universal family
for G-bundles. But then to prove the existence of coarse moduli scheme for F, we have
to prove the existence of a good quotient of the parameter scheme. For this it is
convenient to take the adjoint representation. The existence of a good quotient reduces
to proving that a certain morphism is proper and if we take the adjoint representation
this follows from the (local) rigidity of the Lie algebra structure of a semisimple Lie
algebra (see § 5 below). But the adjoint representation is not faithful and hence we
construct universal families in two steps, first from vector bundles to G/Z-bundles and
then from G/Z-bundles to G-bundles. This involves the representability of the functor
I'(p, &) where (essentially) p is the projection G — G/Z. But this functor is not a sheaf
(e.g. C*—1=C*/C*, cf. ([TDTE, V, §1])) and we are forced to take the associated
sheaf T'(p, &) which we can prove to be representable.by identifying it with a suitable
Picard functor (Lemma 4.15.1) If I'(p,&) alone s representable we can construct only
a universal space for G-bundles even starting from a universal family for G/Z-bundles.
But by Proposition 4.5 this is enough to prove the existence of a coarse moduli scheme

for FX,.

4.10. Lemma. Suppose the family & = Tx Xisa universal family with group H for aset
& of A-bundles. Also suppose that the sheaf T(p, &) is representable by a scheme M.

|

[M*%
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(i) The group H can be made to act on M in a natural way and M with this action of
H then becomes a universal space with group H for the set ' of A'-bundles which give
A-bundles in & on extending the structure group by p: A’ — A.

(i) Moreover if p:A'— A is an injection so that T (p, &) itself is representable and we
have a universal pair (U, u)eT (p, &)(M) (Lemma 4.8.1.) the group H can be made to act in
a natural way, on % as a group of A'-bundle isomorphisms compatible with its action on

M ((1) above). With this action of H, % then becomes a universal family with group H for
S

Proof. (i) To give the action of H on M we describe the action of Hom(S, H) on
Hom(S, M) for any scheme S. Let he Hom(S, H) and meHom(S, M). Let n:M — T be
the structural morphism and ¢ = nom. Since M represents the sheaf I'(p, &) correspond-
ing to the morphism m we have an open covering {U,} of S, faithfully flat morphisms
fi:U;=U,, A"-bundles §;— U’ x X and A-bundles isomorphisms @;:py B (tof )*8.
We define h[m] to be the morphism from S to M corresponding to the element (&),
&,,.,°®;)in L, &)(S) where &@,,, = (h x t)*(%) and &:H x & — &*& gives the action of
H on & (Definition 4.6). Then it is easy to see that we have indeed an action of H on
M and that h[t] = moh[m]. To prove that M is a universal space let & — S x XeF¥'(S)
- ie.afamily of A"-bundlesin &#". By extending the structure group by p we get a family of
A-bundles p, & in &. Since T is universal this gives an open covering {U,} of S and
morphisms f;:U,—» T such that & 1, 3 P+€ |y« x- This then gives morphisms
fi:U;— M. Using condition (ii) of Definition 4.6 satisfied by & — T x X these f iareseen
to define an element of H\M(S). It is easy to check that by associating this element of
H\M(S) to &’€F”'(S) we have an isomorphism of sheaves F*" — H\M (see proof of (ii)
below, locally, in the faithfully flat topology, the arguments run on the same lines).

(1) In this case we can define h[m] as the morphisms from S to M corresponding to
the pair (%,,, &, ,°u,). Therefore by definition the pair (%,,, &, ,,ou,,) is isomorphic to
(% > Uygmy)» and hence there is an isomorphism (which is unique since p is injective, cf.
§4.8) By iU, — U, making the diagram

p’zghxm
P by —————> pu Yy

Up ) uh[m]

&, I Eny
ath

commutative. Taking S=H x M and h,m to be the projections py:HxM—H,
PyiH x M — M respectively, in the above we get the action p,[p,, ] = B:H x M — M of
HonMand 8, ., =pB:H x % — p*% which gives the action of H on % .

The condition (1) of Definition 4.6 for % follows immediately from the universal
properties of M and &. To check condition (ii) of Definition 4.6, let m;,m,:S—M and
¢:#,,,—U,, an isomorphism be given. Let t; = mom, and t*> = mom?. Define ¢’ by the
. commutative diagram: ‘




s
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pp

Pty ——— pr g

U, Uy

(%)

&, —— &

¢

By the universal property of & there is a unique morphism h:S — H such thatt, = h[t,]
and @' =4,,,. Now m, is defined by the pair (%, »Um,) and h[m,] by the pair
(U > Gpcs, O, )- But from the diagram () and the observation above, it follows
that @: %, = U, gives an isomorphism of the pairs (%, > @nxt, ou,, ) and (U s n,)-
Therefore m, = h[m, ], as required to be shown.

2

4.11. We shall now construct universal families for semistable vector bundles. This is
essentially contained in ([19],§ 6;[20],8 3). We have made it a little more explicit to suit
Our purposes.

Let & be the set of isomorphism classes of semistable vector bundles of rank r and
degree d. Let L be an ample line bundle on X of degree d,. Since & r4is bounded ie. there s
a family of vector bundles on X parametrized by an algebraic scheme in which every
element of "4 occurs ([ 19], Proposition 3.2, p. 307), we can find an integer m, such that for
any m>m, and every Ve ¥ <r, H(X.V@L")=0 for i>0 and HO(X,V®L™)
generates V@ L™. Then H°(X,V ® L™) has same rank, say n, for all Ves.

4:11.1. Let P = GL(n,C) be the parabolic subgroup defined as the stabilizer of the
subspace C" "< C". The decomposition C"=C"""® C" gives a homomorphism
P—GL(r,C). Given a P-bundle on a scheme Y the representations PG GL(n,C) and
P — GL(r,C) give rise to vector bundles V, and V, (of ranks n and r respectively) on
Y and there is a surjective homomorphism y, -V, induced by the P-equivariant
projection C"—C". Conversely given two vector bundles V, and V, of rank n and
r respectively and a surjective homomorphism V; —V,—0 we can construct a P-
bundle as follows. For any open set U< Y and a faithfully flat morphism f:U"— U
associate the set of all vector bundle isomorphisms @4, @, making the diagram

UxC" ——— UxCT——> 0

o o

N —_— N —>0

commutative. Thus we get a sheafl & for the faithfully flat topology and the trivial
group scheme Y x P over Y given by P acts on F by (¢, 9,)P =(p.°D, P2°D) peP.
Then & is a principal homogeneous space under Y x P and by descent ([SGA, 3]
exposé XXIV)itis representable by a P-bundle over Y. Thus we can consider a P-bundle as
a surjective homomorphism vV, —V,—0 of vector bundles. Then an isomorphism of the
P-bundles V, —» V,—»0and V=V 0 is given by a commutative diagram




428 A Ramanathan

Vi ———V, ——— 0
|

V' >V, — 0

Since GL(n, C)— GL(n, C)/P is locally trivial ([3], Theorem 4.13, p. 90) any P-bundle is
in fact locally trivial ([17], Theorem 2, §4.3, p. 1-24). /
4.11.2. Thetrivialbundle I, = X x C"— X thought of as a family of vector bundles on
X parametrized by a point, with the group GL(n,C)acting in the natural way on I, gives
a universal family with group GL(n, C) for the singleton set {I,}. (Condition (ii) of
Definition 4.6 is obviously satisfied and condition (i) follows from ([11], Lecture 7, p.
51, (i) and (iii)).) So applying Lemma 4.8.1 with 4’ = P GL(n,C) = A and fixing the
topological type of the P-bundle such that we get by the extension of structure group
P — GL(r,C) vector bundles of degree d (since the topological type of a vector bundle on
X is determined by its degree and rank and any extension splits topologically this
condition fixes the topological type of the P-bundle; cf. 4.11.1), we get a universal family
of P-bundles % - M x X with group GL(n,C) for the set of P-bundles of the fixed
topological type which give I, on extending the structure group by P—GL(n,C),
parametrized by an algebraic scheme M. Let @ be the GL(r, C)-bundle obtained from
“ by the extension of structure group P — GL(r,C).

4.11.3. By our constructions in §4.8 it follows that M is an open subscheme of the
locally finite type scheme Hom (X, G,,) which represents the functor I7,
I''(S) = Hom(S x X, G,,) where G, ,= GL(n,C)/P is the Grassmannian of r-dimen-
sional quotients of C". Then % is the pull back of the P-bundle GL(n,C)-GL(n,C)/P
by the universal section in Hom(M x X, G,,) and O is the pull back of the GL(r, C)-
bundle* Q0 - G,, obtained from GL(n, C)—G,, by the extension of structure group
P — GL(r,C). The P-bundle % corresponds to the surjection I, —» ¢ —0 which is the pull
back of the surjection G,,, x €"—Q—0induced by C"—C’. (Note that GL(n,C)—G,,
becomes trivial when we extend the structure group by P g GL(n,C).)

4.11.4. Let

R={qu

0, is semistable and the canonical map
I,~»H%(X,0,) is an isomorphism

It follows from the semi-continuity theorem and the fact that the points corresponding
to semistable bundles form an open subset of the parameter scheme in any family of
vector bundles ([19], Corollary 7.2, p. 332) that R is an open subset of M. We take
" R with the open subscheme structure induced from M. Clearly R is stable under the
action of GL(n,C). We denote the restriction of @ to Rx X also by 0. Let
O(—m)=0®py(L™") where py:R x X - X is the projection. Let GL(n, C) act on
O(— m) by its action on ¢ and the trivial action on px(L™™).

*Editor’s Note: For the definition of Q see Introduction, in part I, It is the principal GL(r) bundle associated
to the universal quotient bundle on G, . .
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4.11.5. PROPOSITION

The family O(— m)—R x X with this action of GL(n, C) gives a universal family with
group GL(n,C) for the set 54 of semistable vector bundles of rank and degree d.

Proof. Let # —S x X be a family in %4 and s,€S. The direct image ps (¥ (m)) is
locally free ([11], Lecture 7, p. 51). Choose a trivialization Pg (¥ M)y ~UxC"in ‘
a neighbourhood U of s,. Then we have a surjection p¥(U x C") =1, F (m)ly, x—0.
This gives a reduction of structure group of the trivial GL(n, C) bundle I to P(cf.4.11.1).
Then by the universal property of the P-bundle % on R x X we get a morphism
f:U —=R,s5,eU' = U, inducing the P-bundle I" — % (m) |- — 0. Extending the structure
group by P— GL(r,C) and tensoring by L™ we get (O(—m) =~ Flyox-

To check condition (ii) of Definition 4.6,let r,,7,:S—>R and ¢:0, (—m)—0, (— m)
be given. Let ¢":0, =0, be the isomorphism induced by ¢.

Then ¢’ induces an isomorphism ¢": ps,(C,) 5 ps,(0,,). But by commutativity under

base change (since H (X, 0,) = 0Vg&R([11], Lecture 7, p. 51)), ps (0,) is canonically
isomorphic to r¥(pg 0), i = 1,2. Since pg O is canonically isomorphic to the trivial
bundle we have the commutative diagram ‘

r*«(In) > & — 0
¢I! (pl
r*u(1,) > 4. — 0

2
Now use the universal property for the P-bundle U (cf, 4.11.1).

4.11.6. Remark. If % is any universal family of vector bundles with group H for a set
< of vector bundles then % ® L, is a universal family with group H(H acting trivially
on L;) for the set ¥ @ L, = (V®L,|Ves}, L, being any line bundle. Therefore it
follows from Proposition 4.11.5 that 0'(g) is a universal family for 574" %m0 the set of
isomorphism classes of semistable vector bundles of rank r and degree d +rdy(m + q),
qeZ.

4.11.7. Remark. It is easy to see that the scheme R above is the same as scheme R®®
which Seshadri constructs in ([20], §3; [191, § 6).

4.12. PROPOSITION

The set of isomorphism classes of semistable G-bundles of a fixed topological type T is '
bounded, i.e. there exists a family § » M x X of G-bundles such that given any semistable
G-bundle E of type t there is an meM suchthat Ex§&,,.

Proof. Let p:G— GL(V) be a faithful representation. Let V=V,® - @ ¥, bea decom-
position into irreducible subspaces. Let r, be the rank of V; and d, be the degree of the
vector bundle p; () where p;: G — GL(V,) gives the action of GonV,. Letu;—M; x X be
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the universal family for the set #*%and U = U, X X UM, x--xM,)x X Let

&—M x X represent the functor ['(p',U) (§§4.8, 4.8.1), where pr=pL X X P

G—GL(V,) x -+ x GL(V,); use Proposition 3.17 to see that this p satisfies what we
require. '

4.13. Let Aut %' be the group of Lie algebra automorphisms of 4. Let dim %' = r. The
group Aut 4" may not be connected and Ad G = G/Z is the connected component of
identity of Aut %'. Let p:C* x Aut ¢’ ¢, GL(¥’) be the natural inclusion. Note that, in
GL(¥'), C*n Aut &' is trivial. Applying Lemma 4.8.1. for this p and the universal family
0> R x X for "™ to get a universal family & — R} x X with group GL(n,C) for
C* x Aut@’-bundles which under the extension of structure group p give semistable
vector bundles of degree rmd,,. Since any Aut%’-bundle gives a vector bundle of degree
zero on extension of structure group by Aut¥’ ¢, GL(#) (Aut¥' is contained in the
orthogonal group corresponding to the Killing form) it follows that for the extension of
structure group C* x Aut%’ — C*, £ gives a family of line bundles & (C*) of degree md,,
on X. Let J™% be the Jacobian of X ofline bundles of degree md,,. Then by the universal
property of J™® we have a morphism R — J"® corresponding to &'(C*)— R} x X. Let
R, be the fiber over L™eJ™ under this morphism. Restricting &' to R, x X and
extending the structure group by C* x Aut% —»Aut¥ we get an Aut%'-bundle
€, —~R, x X. The action of GL(n,C) on & — R’ x X gives an action of GL(n,C) on
&, —-R, xX.

4.13.1. PROPOSITION

The Aut%'-bundle & — R x X, with the natural action of GL(n, C), constructed above is
a universal family with group GL(n,C) for the set of isomorphism classes of Aut%'-
bundles which give semistable vector bundles of degree zero on extension of structure

group by the inclusion Aut%' <, GL(¥'). Moreover the parametrizing scheme R, is
non-singular.

Proof. The universal property of &, is clear from the above discussion. The non
singularity of R, is proved in the following two lemmas (4.13.3 and 4.13.4).

4.13.2. Remark. The elements of the tensor space H# =94*R%*R®% = Hom
(9 ®9',%') give algebra structures on ¢'. Those elements of # which give algebra
structures which satisfy the Jacobi identity and skew symmetry form a closed sub-
variety of # and give Lie algebra structures on %'. The points of the variety
Y =GL(%)/C* x Aut¥' < P(+#°) then give Lie algebra structures on ¢, determined up
to ascalar and isomorphic to the original Lie algebra structure of 4. If 0 % he # is such
that {h}eY and the Lie algebra structure of &' given by h is semisimple then {h}eY
([16], Corollary 4.3, p. 514). This fact will be crucial for us in proving the existence of
quotient space in the next section (cf. proof of Lemma 5.6) and is the reason why we
have chosen the adjoint representation for constructing universal families.

Let r,eR; = R) and reR its image. Then the C* x Aut%-bundle &, gives the
vector bundle O, under the extension of structure group C* x Aut¥%’ — GL(%) and
the Aut%’-bundle £’n gives the vector bundle @,(— m) under Aut¥' ¢, GL(¥). If we
take the embedding Y < P(#'), r, gives a section r,;:X -»Q (Y) < PO*Q@0*®0,)
such that rf(A)= L™" where A is the tautological line bundle on POr@O0*®0,)




i WS

T R

Moduli for principal bundles over algebraic curves: 11 431

corresponding to the vector bundle ¢} ® 0*®0,. Since P(0F @O ®0,) = P(O,(—m)*
RO, (—m*®0,(—m)), r, also gives a section r:X »POF®0F®0, ®L™), and
r,(A)=L""®L" =1, where A = A®ptL" Thereforer, givesa section s, determined up
\ to a scalar, in HO(X, 0(—m*® O, (—m*®0,(— m)) such that s(x) # 0 VxeX and s(x) 1s
/ a Lie algebra structure on the fiber of @,(— m) over x, isomorphic to the natural Lie algebra
structure of 4. '
Since Y is embedded in the projective space P(#) it is easy to see that the scalars in
GL(n, C)act trivially on R, . This is a reason why we have constructed a universal family
for Aut%-bundles first working with C* x Aut%’ instead of directly using the inclu-
sion Aut¥%’ ¢, GL(%’).

4133, Lemma. The schemes R and R} are nonsingular and dim R=n*+r*(g—1)and
dimR,=n*+(r+1)g—1).

Proof. We use the notation of §4.11.3. Let Y= GL(%')/C* x Aut¥ and Q(Y) be the
fiber bundle with fiber Y associated to Q considered as a GL(%')(= GL{(r, C))-bundle.
' The scheme R is an open subscheme of Hom(X, G,,) and R, is an open subscheme of
Hom(X,Q(Y)). The morphism R, R is induced by ¢:Q(Y)—G,,. By associating
amorphism f:X — Q(Y)toits graphI ;in X x Q(Y), Hom(X, Q(Y)) becomes an open
subscheme of Hilb(X x Q(Y))([TDTE,IV],§4,pp- 19, 20). The graph T, = X of feR]
is a nonsingular complete subvariety of the non-singular variety X x Q(Y). Therefore
the obstruction to the smoothness of the Hilbert scheme at I', is an element of
H'(T',,Np,)where Ny, is the normal bundle of ' ;in X X Q(Y)([TDTE,IV].§5; cf. also
[9]). Identifying I, with X by the projection X x Q(Y)— X, Ny, = f*(T,) where T, is
the tangent bundle of Q(Y). We shall show that H*(X,f*(T,))=0 from which it will
follow that R} is nonsingular.
We have the following diagram of vector bundles on X, which is commutative and
exact (in the obvious sense) '

0 0

3 d
0>K > (gH*(AdQ)— j*(fg) -0

d

0K (g)* M) -—*f’(fq) -0
¥

(@h* (T) —> (@)*T) 0 (1)
! ol
0 0

where T, (respectively T,) is the tangent bundle of Q(Y) (resp. G, ) and T is the tangent
bundle along fibers of ¢:Q(Y)— G, the canonical map. ,

The first column is the pull back by ¢f of the Atiyah exact sequence ofQ—G,,. The
horizontal arrows from the first to the second column are induced by the differential qf
the projection Q —» Q(Y) = Q/C* x Aut¥".

Let f R correspond to the quotient

0-—>Hf->l,,—f>Ff->0, ' ‘ 2
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ie. F*(Q)=F,. Then (¢f)(T,) = H*® F, ([TDTE] IV, § 5).
It is easy to check the following identifications:

0- (¢)* (AdQ)—> (N M) —> (@)* (T9 > 0

~ ~ ~

0> F¥®F —— 5L®F —> HYQF, -0 R
where the second row is obtained from (2) by dualizing and tensoring by F e ,

Also, K is the adjoint bundle of the C* x Aut %’ bundle obtained from the reduction
of structure group of F s t0 C* x Aut %’ corresponding to f.

From the cohomology exact sequence of the bottom row of (3) we get HY(X,
(of)*M)=H"(X,1,®F,;)=n-copies of H(X, Fy). But F,e#" ™% and hence
HY(X,F,)=0. Therefore HY(X,(pf)*M)=0. Also H(X, H}® F ;) =0 and therefore
HY(X,(of )*(T;)) =0.- This proves that R is nonsingular (for the same reason that
H'(X,f*(T,)) =0 proves R/, is nonsingular).

From diagram (1), taking cohomology, we have

H ((of J* M) — H*(f* T,) 0.

(All cohomologies over X). This proves that H* (X, f*T,) =0 as claimed.

By ([TDTE, IV], § 5) the Zariski tangent space to R (resp. R) at ¢f (resp. f) can be
canonically identified with H(X, H*® F s)(resp. H°(X, f*T,)). From the bottom row
of (3) we get that deg H}®F;=ndegF r=nrmd,. Applying Riemann--Roch:
dim H°(X, H} ®F )=nrmdy+r(n—r)(l—g). Since n=dimH°(X, F )=rmd, +
r(1 —g) we have dim R = dim H°(X, H* QF;)=n*+r’(g—1).

From the exact sequence :

0—HO(f*T,)»H(f*T,)— H°(f* L)—~>H(f*T,)—0
(all cohomologies over X) we get
dimHo(f*T;)zdimHO(f* T,) +dim HO(f* T,)—dim H'(f* T)).

We apply Riemann-Roch to f* T, noting that deg /* T, =0 (since in the first row of
(1) both K and (¢f)*Ad Q being adjoint bundles have degree zero) and rk f* T,=
r’—r—1(=dim?Y), to get dimR, = dim HO(X, f*T)=n*+r¥g— 1)+ (> —r — 1)
I=g=r’+{F+1)(g-1).

4.13.4. Lemma. The scheme R, is nonsingular and dim R, =n” + (r + 1)(g — 1) — g.

Proof. Since R and J™- are non-singular and R, 1s the fiber over L™eJ™%, it is enough to
check that the differential of YR, —>J™ is surjective at any point reR,. Let
t:Spec C[e] —J™> be a tangent to J™ at L™ We have to show that we can lift this
morphism to R} such that the unique closed point of Spec C[¢] goes to r. For this we use
the universal properties of R and R. Let reR] correspond to the C* x Aut#'-bundle
M x E where M is aline bundle on X and E - X is an Aut @'-bundle. Let 2 — J™o x X
be the Poincaré bundle. Consider the C* x Aut %'-bundle r*2 X E,—~SpecCle] x X

‘where E,=SpecC[e] x E. Then H(X; (f*(@)@Ea(g’))‘,)=H1(X,L’"®E(€9’)) =0,
where o denotes the closed point of SpecC[e]. Therefore the direct image
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pa*(i—*y X E (%)= on Spec C[e] is locally free and hence free and the natural map

pE(A) PV E (D) 1s surjective ([11], pp- 51-52). If we choose a trivialization of
# we get a morphism SpecC [¢]— R by the universal property of R, and a lift of this to

" by the universal property of Rj. It is easy to sce that for a suitably chosen
trivialization of .# the latter gives the required lift of SpecCle] —Jm to R . Since
dim R, = dim R} —dim Jmdo we get, by lemma 4.13.3, dimR, =n*+(r+1)(g— 1)—g.

4.14. PROPOSITION

Let &,—R,x X be the Ad G-bundle representing the functor T(p,&,) where
p:Ad G~ Aut %' is the inclusion and &, —~R, x X is the universal Aut%'-bundle con-
structed in the preceding article. Then &, is a universal family with group GL(n, C) (for
the action of GL(n,C) provided by Lemma 4.10) for the set of all isomorphism classes of
semistable Ad G-bundles.

The natural morphism 7,: R, — R, is étale and finite and hence R, is nonsingular.

Proof. Since Ad G is semisimple there are only finitely many isomorphism classes of
topological Ad G-bundles (z,(Ad G) is finite, cf. [14], § 5). Therefore, by Lemma 3.8.1,
R, is a scheme of finite type. The universal property for &, follows from Lemma 4.10.
We note that &, is universal for all semistable Ad G-bundles because by Corollary 3.18
for any Ad G-bundle E,E (¢') is semistable if and only if E is semistable. (Note that
E(%') is semistable if and only if E(%) is semistable.)

Since AdG is the connected component of identity of Aut%’ the morphism
GL(%')/Ad G— GL(%)/Aut @ is an étale covering. Therefore it follows that
&, /AdG—R, x X isan stale covering. Taking Y =R, x X, ¥'= &,/AdGand T=R,
in the following lemma we see that 7,:R, — R, is étale and finite.

4.14.1. Lemma. Let Y — T and ¥ s T be schemes over a scheme T and Y — Y a T-morphism
which is an étale (surjective) covering. Suppose Y is flat and projective over T and Yis
quasi-projective over T 50 that the functor n:(locally noetherian schemes/T)—(Sets) defined

by
n(f:S— T)=Homg,y (S % Y,S % ¥)=Homy(S ¥ Y, Y)
T

is represéntable by alocally finitetype T.scheme n:T1— T([TDTE,1V], §4). Assume also
that Y— T is faithfully flat. Then 7 is étale and finite.

Proof. To prove m:I1—»T is étale, let A be a scheme, 4, 2 subscheme of 4 defined by
a nilpotent ideal and ‘

_
Ao E 11

A ——T

a commutative diagram. We only have to show that the morphism correspoqding to
the broken arrow exists uniquely ([EGAIV], Definitions 17.1.1, 17.3.1). Consider the

commutative diagram
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AoxY ——— ¥
ey

A>T<Y —_— Y

where the morphism A, x Y — Y is induced by 4, — I1. Since 4, X Yin 4 X Y is also

defined by a nilpotent ideal and Y~ Y is étale the broken arrow in the dlagram can be
realized uniquely and hence by the universal property of IT the broken arrow in the
preceding diagram can also be realized.

It follows from ([SGA I, Expos¢ I, § 5, Corollary 5.3) that 7:IT — T is quasi finite (i.e.
has finite fibers). Since a proper and quasi finite morphism is finite ([EGA III],
Corollary 4.4.11) it now suffices to show that n is proper. We use the valuation criterion
for this.

Let A be a discrete valuation ring over C with residue field C and quotient field K.
Suppose we are given morphisms

Spec K ——— 17
A

SpecA —— > T
Again by the universal property of IT this gives

Spec Kx ¥ ———— )4
A

SpecA>T<Y —>Y

By taking the base change of the étale covering Y— Y by Spec A X Y — Y we get an étale
covering over Spec A X Y which, by the above diagram, has a section over the open subset
Spec K X Y which is dense (Y — T being faithfully flat) and hence is trivial. This proves that
the broken arrow in this diagram, and hence in the preceding diagram, can be realized.

4.15. Let G’ be the commutator subgroup [G, G] of G. Let 7 be a topological G-bundle
on X. The group G/G' is a torus isomorphic to C*4. Therefore fixing an isomorphism
G/G' =~ C%a G/G'-bundle can be considered as a g-tuple of line bundles. Let d,, ... ., d,be
the degrees of the topological line bundles L, ..., L, corresponding to the G/G’-bundle
obtained from t by the extension of structure group G—G/G’. Let J_ =J% x --- x J%
where J% is the Jacobian of X of line bundles of degree d;. Let U,—J% x X be the
Poincaré bundle and U,—J,xX be (id, xAy)* (U;x---xU,) where
Ay:X — X x --- x X is the diagonal embedding and U, x --- x U=»J . xXx--xXis
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the external product of U;— J; x X. Then U, isa G/G'-bundle and making G/G’ act trivially
on J. and in the natural way on U, (since G/G' 18 abelian this action gives G/G'-bundle
automorphisms) it is easy 10 see, using the universal property of the Jacobian, that U, 18
- 2 universal family with group G/G’ for the set of isomorphism classes of G/ G'-bundles of the
; topological type determined by the degrees dy,...s d,. The G/G' x G/Z-bundle

é&,="U, X §,»J xRy xX is then a universal family with group G/G' x GL{n,C) for
semistable G/G' x G/Z- bundles of suitable topological type, in the obvious way.

4.15.1. Lemma. The sheaf (p,8%) corresponding to the natural projection
p:G—G/G' xG/Z and the family &, = R, % X,R,=J,xR;, (§§4.8,49) is representa-
ble by a scheme R, étale and finite over R5. : .

Proof. We will prove the lemma by identifying '(p, &) with a product of Picard
functors and using the representability theorems for Picard functors. The idea is simply
to generalize the fact that given a projective bundle P — X to give a vector bundle
V — X such that P(V) = P is equivalent to giving a tautological line bundle on P.For
this purpose we construct an algebraic group H which is related to Ad G similar to the
way in which GL(n,C) is related to PGL(n,C) = Ad SL(n,C).

Let T be a maximal torus of G =[G, G]. Then 7-T is a maximal torus for G and
7 ~ Tis the finite group Z' = Z[G']. Let x> X be a set of characters of Z- T such that
the homomorphism r(}(£), .- - 7 (t)from Z-T to C*'is injectiveon Z". Let F be the
finite subgroup {(xl(t),...,xl(t),t'l)lteZ'} of C*! x G. Define H to be the quotient
group (C* x G)/F. Let A be the quotient group (C*' x Z')/F. Then we have the
diagram which is commutative and exact. ‘

1 1
J I p
1272 —>G—>GIG*GIZ -1
\’ I p "
1—> A —> H—> GIGXGIZ— 1
R ' (1)
AIZ——-HIG
$ J
1 1

Note that both 4 and A/Z" are isomorphic to C*! since Z' is a finite subgroup of 4 and
we can choose isomorphisms such that we have the commutative diagram

1———)2’-———>A————>A/Z'———+1

~
=~ ~

R

)

| —5C, —> CH— C¥—>1
xn

wheren=(n,,-..,m) n.eN,
Hom— 1 Yl
C,= f(zy,---,2,)ECT |2 = 1,Vij

and X n is the homomorphism (Zg,-- > 2 (215 SZp)
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Let B be a Borel subgroup of G containing Z-T. The characters Kis--s X
extend to B and give a homomorphism B— 4 &~ (C*! x Z')/F by sending beB to
(£1(b),-..,x,(b),1)-F. Clearly H is a connected reductive algebraic group and
By =(C* x B)/FisaBorel sub- group of H. Again the characters y,, ..., y,extend to By
by defining x,((z;,...,2,,b)' F)~ z,.3,(b) and we have a homomorphism By — A
defined by (z,,...,2,b) F>(z,%,(b),..., z,3,(b), 1)- F. We then have the commutative

diagram
. / B\

By ——— 4

)

HIG ————4/7

o~
~

The image B=B/Z of G=G/Z is a Borel subgroup of G and G/B— G/B is an
isomorphism. The projection C*! x G — G induces an isomorphism H/By — G/B which
is the inverse of the isomorphism G/B — H/By, induced by the inclusion G ¢, H. We then
have the commutative diagram

He>G—G

L] ] B

HBy ~ GIB~ G/B

Let M — G/B be the A-bundle obtained from the B-bundle G — G/B by the extension
of structure group B— A. Note that M is also the A-bundle obtained from the
By-bundle H — H/By, by the extension of structure group By — A as follows from the
diagrams (3) and (4). The group H operates on G/G’ (by left multiplication through p’)
and on G/B~ H/By. Since M — G/B ~ H/By, is a bundle associated to H—-H/Bg,H
operates on M also, compatibly with its action on H/By,. Further H is precisely the
automorphism group of the ‘structure’ consisting of G/G’ x G/B and M, ie., to put it
more precisely, given an isomorphism ¢:G/G’ x G/B—G/G' x G/B induced by an
element of G and an 4-bundle isomorphism ¢,,: M — M over ¢,, where ¢,:G/B— G/B
1s given by ¢, then there exists an unique he H whose action gives ¢ and ¢,,. The
existence of such an 4 is clear and for uniqueness note that since N sec 9Bg~ 1 =Z, only
Z' acts trivially on G/G' x G/B and the action of Z' on M is faithful since it is given by
the characters y,,..., ;. '

Let P,, be the sheaf associated to the functor P - (Sch/R}) — (Sets) which associates
to f:S—R) the set of isomorphism classes of A-bundles on f*(&,/B), where
f=f xidy:S x X —R5 x X, such that for every point. (s,x)eS x X, and for any
trivialization (p(s’x,:éaz,(s.x)/B-i G/B there exists an isomorphism @s.x) Of A-bundles
OVer @ .

—‘j
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We define P\, on morphisms to be pull back. We shall show that T'(p’, &3) s isofnorphic

to Py,

Let AeP,,(f:S—R,). Consider the functor F:(Sch/S x X)— (Sets) which associ-
ates to f:8' = S x X the set of pairs (¢, (¢,) where ¢ is an isomorphism of the trivial
(G/G' x G/Z)-bundle on S’ with f*(f*(£3)) and @, is an isomorphism of A-bundles

such that

(/%%
§'xM —— > f"*(N)

S A

§'xG/B ————> f"*( [ *(&/B))
[

commutes. On morphisms F is defined to be pull back. Let H=1S5 x X x H be the
constant group scheme over S x X (considered as a functor) defined by H. Since H is the
automorphism group of the structure consisting of G/G' x G/B and M —G/B, as
explained above, it is easy to see that F is a principal homogeneous space under H.
Since H is an affine algebraic group scheme over S x X it follows by descent ([SGA 3],
exposé XXIV)that Fis representable. Thus we getan H-bundle &, on $" x X and, from
the construction, there is a natural isomorphism @:p, &, f*(&,). We define the

morphism ®:P,, — (0, &) by setting ®5(A) = (64 ®)-

~

.

a subfunctor of P.

which associates to f:S—R) the set of isomorphism classes 0

We now construct an inverse W:L'(p’,6%) P, for @ Let (&.9)el'(p, &)
(f:§—>R’2). Thus & — S x X is an H-bundle and @:p 6 — f*(&,)1s an isomorphism.
Now ¢ induces an isomorphism &/By = [*(£,(G/B)) (see diagrams (3) and (4)). Note
that &,(G/B)= &' /B. Define A — f(&,/B) to be the A-bundle obtained from the
By-bundle & — &/By by the extension of structure group By — 4 (see diagram (3)). Define
Wy((&,0) =A. Thenit is straightforward to check that ¥ is a morphism invers

Let P be the sheaf associated to the functor P:(Sch/R})— (Sets) which associates t0
f:8— R, the set of isomorphism classes of A-bundles on f*(&5(G/B)). Since A4 = C*
(diagram (2)) an A-bundleis just an I-tuple of line bundles and hence P = Pic X --- X Pic
the I-fold product of the relative Picard functor of &5(G/B)/R5 ([TDTE. V].§1). Since
the morphism &5(G/B)=&,/B—R5 is projective (Remark 4.8.3), flat and smooth with
irreducible fibers, Pic is representable by alocally finite type scheme P over ~R’2 ([TDTE V],
Theorem 3.1; [TDTE VI], Theorem 4.1, Corollary 4.2) and hence so is P. Clearly P, is

e to @.

Let F, (resp. ') be the sheaf associated to the functor F, (resp. F,):(Sch R5)—(Sets)
f H G-bundles on
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S x X (resp. on f*(6,(G/B))). The morphism &5(G/B)= R, x X induces a morphism
F,—F,. Since &5(G/B)->R), x X is projective and flat with irreducible fibers by
([TDTE, V], Proposition 2.1 and [EGA, I11], Corollary 7.8.8) it follows that F,—>F,is
a monomorphism.

The exact sequence 1 —» G — H —H/G — 1 gives morphisms ['(p, &) - T'(¢’, 5,)—F,
and an exact sequence (part of which is)

H(S x X,H/G)-»H*(S x X,G)—>H'(S x X,H)— H'(S x X, H/G)

([17],§3.6, Propositions 11 and 12; see also [SGA I], exposé X1, §4). Since H = Z[H]-G
it follows that H®(Sx X, H/G) operates trivially on H'(S x X, G). Therefore
H'(S x X,G)—H'(S % X, H) is an injection. This means that [(p,&,)-T(p,&,)is
a monomorphism.

We use the isomorphism H/G= A/Z' of diagram (1) and the isomorphism

A/Z' =~ C* of diagram (2) to get an isomorphism of F, with P. We have the com-
mutative diagram

E,
)

r(pa g:!)(___) r(p,: lgﬂZ) — F2

Pys—— P — P

where P — P is induced by x n: of diagram (2).
It follows from ([TDTE VI], Theorem 2.5) that the morphism P — P corresponding

to P — P is étale. Corresponding to the trivial H/G-bundle on R}, x X we get a mor-
phism R, = P. Let R} be the fiber product '

Ry —— P

Ry—— P

Then it follows from ([TDTE VIJ, Corollary 4.2 and [EGA 1II], Corollary 5.4.3) that
R} is proper over R;. Also R}, is étale over R),. '

Using the fact that an H-bundle & comes from a G-bundle if and only if & (H/G) is
trivial, it is straight forward to check that R represents the sheaf I'(p, &%). Let R s bethe
subscheme of R}, corresponding to G-bundles of type t. Then clearly R ;— R} 1s again
etale and finite (since topological type is a discrete invariant)

4.15.2. PROPOSITION

The scheme Ry with the action of GL(n, C) < G/G' x GL{n, C) (given by Lemma 4.10) is
a universal space with group GL(n,C) for semistable G-bundles of topological type t.

The GL(n,C)-equivariant morphism Ry;—R; is étale and finite and hence R, is
nonsingular.
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Pfoof. This follows immediately from the preceding lemma and Lemma 4.10 noting
that G/G' acts trivially on R, and hence trivially on R;.

5. Existence of a quotient space

5.1. Lemma. Suppose a reductive algebraic group H acts on the schemes Y and Z. If
f:Y — Z is an affine H-equivariant morphism and Z has a good quotient p:Z — Z modulo
H then Y has a good quotient q:Y — Y modulo H and the induced morphism f:Y—Z is
affine.

If moreover f is finite then fis also finite. When f is finite and p:Z - Z is a geometric
quotient then q.Y — Yis also a geometric quotient.

Proof. Let{U,} beacovering of Z by affine open sets. Let U; = (pof)~ L(U,). Then {U;}

is a covering of Y by affine H-invariant open sets. Since U is affine there exists a good
quotient g;:U;— U; of U; modulo H, with U} affine ([22], Theorem 1.1(A)). We shall
now give a patching up data for {U;}. Let F:0!— U, be the morphism induced by f. Let
U, =f7'(U;nU,). Then g; YU =(pof)” YU,;nU;)=U;nUj. Since, being a good

~ quotientis local with respect to the base ([20],§ 3, Property 1, p. 356) g;: UinU;—~ U”ij 1s

a good quotient of U;nUj modulo H. Interchanging i and j, ¢:U;nU;— U’; is also
a good quotientof U;n Uj modulo H. A good quotient, being a categorical quotient, is

“unique. Therefore we have natural isomorphisms h,: Uy~ U The hyjs satisfy the

cocycle condition and we can patch up the U’ by h;;along U;; to geta preécheme Y. The
g; patch up to give a morphism g: Y - Yand the f;a morphism f:Y — Z. Clearly fis
affine and Z being a (separated) scheme Yis also a (separated) scheme ([EGA I1],
Proposition 1.2.4). Again since being a good quotient is local with respect to the base
q:Y - Yis a good quotient.

To show that f is finite if f is finite we can assume that Y and Z are affine. So let
Y = Spec A and Z = Spec B and f be given by the homomorphism f:B— A making
4 into a finite B-module. Then Z = Spec B¥ and Y= Spec A¥ ([22], Theorem 1.1(A))
and 7 is given by B¥ — A¥ the restriction of f (where A¥, B are the rings of invariants
under H). We have to show that A4H is a finite B¥-module. Since A is a finite B-module
there exists a,,...,a,6A” such that any a€ AH can be written as a = Zi., f(b;)a; with
b,eB. Applying Reynold’s operator P on both sides we get a=Zf(P(b))a; by
Reynold’s identity and functoriality (cf. [107, Chapter 1, Theorem 1.19). Since P(b,)eB"
this proves that A" is a finite B¥-module. The last assertion of the lemma is easily

verified.

59 It follows immediately from the preceding lemma and the results of section 4 that to
prove the existence of a good quotient for R; modulo GL{n, C) it is enough to prove the
existence of a good quotient of R, modulo GL(n, C) (or equivalently, modulo SL(n,C)
since the scalars act trivially on R,. See Remark 4.13.2). We shall prove this by using
Mumford’s theory of stable and semistable points for actions of reductive groups ([107)-

53 Letude@*R%*®% =Hom(¥%'® @' 4"y = A be the tensor which gives the Lie
algebra structure of ¢, i.e.for x, ye¥',ad(x,y) = [x, y]. For the natural actionof GL(¥4")
on the tensor space # the stabilizer of the line (ad) generated by ad is C* x Aut g,
where Aut®@ is the group of Lie algebra automorphisms of %'. Therefore
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GL(9)/C* x Aut %' =Y gets embedded as a locally closed subscheme of P(#). Let Ybe
the closure of Y in P(#). We take on Y the canonical reduced subscheme structure.

Now by our constructions we have the ‘universal morphisms’ f:R x X -G, , and
S1:R; x X = Q(Y) such that

S

RixX ———— 0()

RX—— 3 G,,
S

commutes.

Now the morphisms Yo Y P(#) give rise to the morphisms Q(Y)c<
Q(Y) = Q(P(s#)). Since Y < Y is an open immersion Q(Y)= Q(Y) is an open immer-
sion and since Y = P(#) is a closed immersion Q(Y)< P(Q(#)) is also a closed
immersion (§2.4). Let R=Q(#)=0*® 0*® Q. Let A be the relatively ample line
bundle O 4, (1) on P(R). Let A denote also its restriction to Q(Y). Consider the functor
I':(Sch/R) — (Sets) defined by

I'(S—R) = {seHom,; (S x X,0(Y))|o*(A)|;xx ~ L™ ™, seS}.

This is representable by an algebraic scheme S, over R. Let g,:S, x X —Q(Y) be the
universal section. It is easy to see that the functor represented by R, is a subfunctor of
I' (Remark 4.13.2). Since Q(Y) is open in Q(Y) it follows that R, = S, is an open
immersion. We have the commutative diagram
-
1
SixX ——> or)
S
RXX——'——)-Gn,r

5.3.1. Lemma. The morphism S, — R is proper.

Proof. We make use of the valuative criterion for properness. Let 4 be a discrete

valuation ring over C with residue field C and quotient field K. Suppose we have
morphisms

Pk
Spec K —3 S

(1)

Spec4 ——— R
@

By the universal properties of R and R, (recall that R and R, represent the

corresponding functors of sections over the category of locally noetherian schemes
([TDTE IV])). We have
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Px
Spec KxX ——— > O(Y )= P(R)
o"ﬂ
| a |
@

Spec AxX —————> Gh.»

p

On Spec K x X, we have the exact sequenée
0— GE(A) — PER) ~ GER/ A) = Vg 0.

We can extend the quotient vector bundle Vi to SpecA x X as a quotient coherent
sheaf V of ¢*(R) flat over Spec A(cf. [EGA 1V], Proposition 2.8.1). Let V¥, be the
restriction of ¥ to SpecC x X =~ X corresponding to the closed point of Spec 4. We
then have the surjection ¢¥(R)— V, -0 of coherent sheaves on X. Note that ¢§(R) is
a semistable vector bundle (by Proposition 3.17 since PE(Q) 1s semistable) of degree
—1*md, and therefore u( §3(R)) = — md,,. From the definition of S, and the flatness of
V over Spec A it follows that deg ¥, = — r®md, —md,. Since X is a curve we can write
Vo=V, ®T where Vj is locally free and T is torsion. Since @¥*(R) is semistable,
V', being a quotient u(Vy) = —md,. Therefore deg Vo = — (r* + 1)md,. On the other

“hand T being a torsion sheaf deg T >0 and since degV, = —(® + )md,, we have
deg Vi, < — (r* + 1)md,. This shows that deg Vi = — (r> + 1) md,. Therefore T =0
and V|, = V,. Hence V, is locally free. Then V is a vector bundle on Spec A X X (cf.[19],
Lemma 6.17). By the universal property of P(R),V determines a morphism
Spec4 x X —P(R)(cf. [EGA 1I], Theorem 4.2.4; note that in our notation P stands for
the dual of what P stands for in this reference). But since Q(Y) is closed in P(R) this
morphism goes into Q(Y) proving that the broken arrow in diagram (2) can be realized.
This immediately implies that the broken arrow in diagram (1) can be realized.

3 5.4. We now recall briefly some definitions and results from Mumford’s ‘geometric
' invariant theory’ ([10]; see also [22]): Let a reductive group H act on a projective
algebraic scheme Y. Let A—>Y be an ample line bundle on Y and H act on A also as
a group of line bundle isomorphisms compatible with its action on Y ie. A has
a H-linearization ([10], Chapter I,§ 3). Then a point ye T is called semistable if for some
m > 0 there is a H-invariant section s€H o(Y, A™) such that s(y) # 0. If moreover every
E orbit of Hin Y, = {xe Y|s(x) # 0} is closed and of the same dimension as H,yis called
a (properly) stable point ([10], Chapter L, §4).

a good quotient p: Y, — ¥ modulo H such that Y, is projective.

é Thereis an open subscheme Y.c Y, suchthatp:p™ "Y)— Y, isa ‘geometric quotient’
([10], Chapter I, Theorem 1.10 and the remark on p. 40; [22], Theorem 1.1 (B)).

5.4.1, Theset Y, (resp. Y,) of semistable (resp. stable) points isopenin Y and there exists

542 Let ,:C*—G be a 1-PS (ie. [-parameter subgroup) and yeY. Then
lim,_, 4 /(t)y = Y, €Xists (since Y is projective) and y, is fixed by 4 . Let t—t" be the
character by which 7 operates on A, - Then we define p*(y,4) = —r.(In this definition
A canbe an arbitrary line bundle not necessarily ample.) Thena pointyeYis semistable
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(resp. stable) if and only if u*(y, 1) 2 0 (resp. > 0) for every 1-PS A of G ([10], Chapter 2,
§ 1, Theorem 2.1).

5.4.3. Let H act on the projective algebraic scheme Y’ and f: Y’ — Yan H-equivariant
morphism. Then p/* Ay, 1) = p*(f ('), 1.y’ e Y’ ([10], p.49).

544. Given a 1-PS 1 of G there is a parabolic subgroup P(2)> 1 such that
1 (v, A) = p(y,gAg 1) for every ge P(A). This P(/) depends only on 4 and not on the

- scheme Yor A ([10], Chapter 2, §2, [22], Lemma 3.1, Proposition 3.1).

5.5. Now by the usual ‘diagonal argument’ we can choose an N-tuple (x,,...,xy) of
pointsin X for N sufficiently large such that the morphism R, » Q(Y)¥ = Q(¥) x --- x

Q(Y), N factors, given by evaluating f; at the points x,, i.e. R, 3r—>(f,(r,x,),...,
Si(r,xy)), is an injection ([19], p. 326). It is proved in ([20], § 3, Lemma 2) that we can
choose the N-tuple(x,,...,xy) such that under the morphism R — GY, = Z (defined by
Ror—(f(r,xy),...,f(r,xy))) R goes into the open subscheme of semistable points Z__ of
Z for the action of SL(n,C) (and the natural polarization of the Grassmannian) and
moreover such that the morphism R— Z__ is proper.

We have the commutative diagram

Ry ———— o(v)"

Sy Q(?)N = PR
J $
R— Gf;r

We shall give a suitable ample line bundle on Q(Y)" and prove that R, goes into the
semistable points of Q(Y)" for the natural action of SL(n,C) on oM.

Let M be the very ample line bundle on the Grassmannian G, , corresponding to the
natural embedding of G, , in P(A"""C"). There is a natural SL(n, C) linearization of
M given by the action of SL(n, C) on A" ~"C". As defined in § 5.3, let A be the tautological
line bundle on P(R) corresponding to the vector bundle R. Then A is relatively ample
for the morphism p:Q(Y)— G, ,. Therefore the line bundle p*(M)* @ A’ is ample on
Q(Y) for a> b ([EGA 117 §4.6, [22],§5).

Theaction of SL(n, C)on G, hasa natural lift to an action on the bundle Q and hence
on the associated bundle R = 0*® 0* ® Q. This gives an SL(n, C)-linearization of A.
By ([22], Proposition 5.1) we can choose the positive integers a, b with b/a sufficiently
small such that p(Q(Y)]]) = Z,, where Q(Y)Y is the set of semistable points of Q( ¥} for
the action of SL(n, C) and the ample line bundle on Q(Y)" which is the product of the
line bundles p*(M)*® A® on each factor Q(Y).

5.5.1. Lemma. The point (ad)eP(9"*®¢* @%') (cf. §5.3) is semistable for the natural
action of SL(%") and the line bundle O(1) on P(9* Q4 * R ¥').
Proof. Let p:(9*®%*®%')=Hom(¥%,End 4 )» ¥*Q%'* = (9" ® 9')* be defined
by ¢(f)(x®y)=trace(f(x)o f(y)), feHom(¥', End¥’) and x,ye¥". Then ¢ is an
SL(%')-equivariant morphism. Choose an arbitrary linear space isomorphism of ¥"*
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with @'. Then we get an isomorphism 4'*Q%* ~End(¥'). Let det:9*R%* =
End(%’') - C be the determinant map. Then det< ¢ is an SL(%')-invariant polynomial
on ¥*®%*®% and (detop)(ad) is the determinant of the Killing form of 4’ and
hence is non-zero, ¢’ being semisimple.

'5.5.2. Lemma. The point (X,,...,xy)eQY) < QY)Y is semistable if and only if
(p(x,)s-.., p(xy)) is semistable in Gy ,.

Proof. Let (p(xy)s-..,p(xx)) = (V155 In)- If (x,,...,Xy) is semistable then by our
choice of p*(MY* @ A®, (y,-..,¥n) 18 semistable ([22] Proposition 5.1).

Suppose (V;,---,yy) is semistable. Let ; be a 1-PS of SL(n,C). Let P(2) be the
canonical parabolic subgroup associated to 4 (§ 5.4.4). Let xeQ(Y)and y = p(x)eG,,.
Then yis anr-dimensional quotient of C". Let P, be the maximal parabolic subgroup of
SL(n,C) which is the stabilizer of yeG,,. By Bruhat’s lemma P,nP(%) contains
a maximal torus T of SL(n,C). Since 4 < P(4) there is a geP(4) such that gig~tcT
Then

u(x, i) = p(x, 949~ 1), (1)

where u stands for up*™"®" (§5.4.4). Since T = P, we can choose a basis e,,...,e,

€ p1se--re,for C” such that theimages g;,of g;in y, 1 = 1,...,rformabasisfory and such
that T becomes the group of diagonal matices with respect to ey,...,e,. NOW

u(x, 1) = ap™(y, ) + bt (e, 2) = ap" (. gAg ") + but(x, 979~ "). (2)
We shall first calculate pi(x, 2) = ut(x, 2,,) where hy=04g "~ 1 Note that
UG, ) = Tt (x, ) 3)

([22], Proposition 2.1). Let igl2)= e, zeC* si€Z,i=1,...,T. Define the 1-PS 2" of the
center of GL(y) by /'(2)é; = 2°¢;, zeC¥, s =5, + S,
Since 4, leaves y invariant it follows easily from definitions (cf. §5.4.3) that for
“calculating pu(x, 4,) we can restrict our attention to y or equivalently the subspace
generated by ey,...,e,. For the action on the quotient space y we have Jgy= 20 where
A'(z)e,=z""%e;, zeC*,i=1,....1. Note that 2" = SL(y). Since /' is in the center of GL())
it is easy to see that

P, 20) = (A7) + (%, A") (4)
and that

M x, M) =s. (3)
Moreover we get from ([10], Chap. 4, §4, eq.(x), p- 67) that

My, A,)=s. (6)
Therefore

.

a 1 ~ ”
i (x, A) = - (M, 2,) + 1M A7)}

il

1 ) ~rr
-;{pM (. A) + M, A1)
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with 2" a 1-PS of SL(y), by (1), (4), (5) and (6). This gives
u(x, 2) = apM(y, 2) + bu(x, 2)

- (a+f—f> R+, 1), ©

Writing x; for x in (7) and summing through i we get

b L)
UXg,o Xy A= (a—l——}:) (15w A)

b N
+0 3 N A, ®
i=1

Since (yy,..., yy) was assumed to be semistable u™((y;,...,yy),4) =0. Since x,eQ(Y) it
follows from Lemma 5.5.1 that p*(x,, 1) > 0 Vi (cf. 5.4.3). Therefore u((x,,. .. s Xy); =0
which proves (x,,...,xy) is semistable (§ 5.4.2).

553. Lemma Under the morphzsm R =MV < Q)" R, maps into the open sub-
scheme Q(Y)Y and hence R, > Q(Y factors as Ry = Q)N e, Q(Y).

Proof. Since under the morphism R — G, , = Z, R maps into Z__ this follows immediately
from the preceding lemma.

5.6. Lemma. The injective morphism R, —Q(Y) is proper.
Progf. We use the valuation criterion. Let 4 be a discrete valuation ring over C with

residue field C and quotient field K. Suppose we are given

SpecK ————— R

1

Spec A ——— (7).

We have to complete the broken arrow.

From (1) and the diagram in §5.5, using the facts that p(Q(Y)N)=Z_, and the
morphism R - Z_and S, — R are proper([20], § 3, Lemma 2 and Lemma 5.3. 1) itfollows
that we can get a lift Spec A—§, giving the commutative diagram

Spec K ——— R,
N
AN

Spec A —— O(7 )Y

We will be through if we show that the closed point of Spec A maps into R, under this
morphism Spec 4 — S, o R,.

Let V= (y(— m)be the vector bundle (semistable of degree zero) corresponding to the
image of the closed pomt of Spec A in R under the composite Spec 4 — §, — R. The image
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of the closed point of Spec A in S, then gives a section of Qo(V) = P(V*@V*®V)—>X
which actually comes from a section s€ H OX,V*@V*® V) with s(x) #0 VxeX. This
section s, since its image 1S in 0,(Y), gives a Lie algebra structure on the fibers of V (cf.
Remark 4.13.2). Let §e HO(X, V*® V*) correspond to the Killing form of the Lie algebra -
structure given by s. We shall show that §is nondegenerate on all fibers.

Suppose § is not nondegenerate on all fibers. Then the homomorphism V—V*
induced by § has a non-trivial kernel sheaf. Since both V and V* are semistable vector
bundles of degree zero the kernel is actually a subbundle V,, semistable and of degree
zero ([19], Proposition 3.1). Then ¥, is a solvable ideal in V; ie. the fibers of V, are
solvable ideals in the fibers of ¥ ([18], Chapter VI, proof of Theorem 2.1). Again since
V,®V, and V, are semistable vector bundles of degree zero the image [V;,V;] of the
morphism ¥, ® V; =V}, x®@ y—1[x, y], given by the Lie bracket operation, is a subbundle
¥, of V; of degree zero and semistable. Similarly V, = [V5, V] etc. are all semistable vector
bundles of degree zero. Since V; is solvable we arrive after a certain stage at a non-zero
subbundle V7, of degree zero and semistable, which is an abelian idealin V. )

The inclusion V'® L™ ¢ V® L™ induces W = H(X,V'® L™ o HY(X,V® L™) =
I,.Let W’ be a supplement for Winl, sothatl,=W@® W' Letibe the 1-PS of SL(n, C)
which acts on W by the character A(z) =z*" and on W' by the character A(z) =z~ ™,
zeC*. Let (x,,...,xy) be the image of the closed point of SpecA in 0(Y)Y and
Gyseee ) =015 p(xy)). We shall now compute p((xy,-- . Xy) A) and show that
itis < 0 contradicting semistability of (X, ,...,Xy)-

It follows from ([10], Chapter 4, §4, equation (% %)y» D- 88; cf. also [19], p. 309) that
(Y15 b A = n-Z_ k(W) —r-N@kW) where W, is the image of Win y;. (In [10]
the calculation is made for the Grassmannian of subspaces. It is easy to translate it to the
Grassmannian of quotient spaces which we need here) Since W=H °X,V'® L™
generates V' (by our choice of m, cf. §3.11), tk W, = rk(V')Vi. Therefore

LM ((p15-- > Yy 4) = e N(tkV") = r- Ntk W). (1)
Applying Riemann-Roch we get

tk W=rk HOX, V' ® L") = (tk V')(md, + 1 —9)
and
n=rk H'(X,V®L™) =r(mdy+1—9)

Therefore (tk W)/n = (tk V')/r. Hence from (1) we have

/"'M((ylavyN)v'l)=0 (2)

To calculate p((xy,...,Xy)A) let X=X; and y=y, and let geP(2) such that
ig=gig~t <P, (cf. Proof of Lemma 5.5.2). Then u*(x, 1) = ut(x, 2,). It follows from
([10] Chapter 2, §2, pp. 55-56) that P(l) = Py, the stabilizer of W in SL(n, C).'
Therefore I, = gW @ gW' = W@ gW' and A, acts on W by the character A,(z) = el
and on gW' by A,(z)=z""™*", zeC*. Since A, < Py, A, leaves invariant ker(I,— y) and
‘hence we can find a set of linearly independent elements ey, ...,€4,€54 15+ e, such that
ey,...,e,eWand €yr1s---»€EGW and g,,...,e, the images of e,,...,e, under I, =y
form 2 basis for the fiber V', = y of V" over x'e X (where y is the fiber of V over x') and

él,...,éq,éqﬂ,...,é, form a basis for y. Then

7(2)e 7@  for 1<i<q
28 =2 _ wn- ,
g e T ) ek W for g+ 1 <IST.
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For the action of /, on y we then have Ay =A-2" where A'(z)é;=z'¢;; t = q(rkW) —
(r—q)rkW" and

As in Lemma 5.5.2, eq. (6)
P A) = My, 4,) = 1M (v, A).

To calculate u®(x, ") we shall use ([10] Proposition 2.3; cf. also [22], §2). Let X be
a point in y* ® y* ® y which lies above xeQ (Y) cP(y*® y* ® y). Let

r
. o ok o 5
= Y x;&Q8&08,
k=1

where &f form the dual basis to ¢,. If we think of £ as a Lie algebra structure on y then
the x,;, are the ‘structure constants’ and we have

.
[éiaéj]: Z ijkék-
k=1

From the fact that ¢,,...,¢, span an abelian ideal in y we get that x,; =0 whenever
I,J, k satisfy any one of the following three conditions: (1) both i and j are <g and
k arbitrary (abelian) (2) i < g,j arbitrary and k > ¢ + 1 (ideal) (3) i arbitrary, j < g and
k>=gq+ 1 (symmetri¢ to (2)). Therefore X; may not be zero only in the following
cases:

Casei. i<gq,jzq+1landk<gq.

Caseil. izqg+1,j<qand k<gq.
Casenia. izq+1,j2g+1and k<q.
Caseiiib. izq+1,j>qg+1andk>q+ 1.

Let
A(Z)(EF® e’;“ ®e,)=z"e¥® é}“ ®e,a,,€Z.

Then it is easy to see that a,; = q in cases (i), (ii), and (iiib) and a,;, = g + r in case (iiia).
Therefore in every case when x;ix #0,4"(2) acts by a strictly positive power, viz. g or
q +r, of z. It follows by ([10], Proposition 2.3) that u*(x, A”) < 0. Now using eq. (8) of
Lemma 5.5.2 and (2) above, we get u((x,,...,xy), 4) < 0 contradicting the semistability
of(x,,..., xy). Therefore we conclude that the Killing form & must be nondegenerate on
all fibers. Then the Lie algebra structure of all fibers is semisimple. But the Lie algebra
structure of a semisimple Lie algebra is (locally) rigid, i.e., interpreting Y as Lie algebra
structures on y, if xe Y gives a semisimple Lie algebra structure on y then xe Y ([16],
§§3,4, Corollary 4.3, pp. 413-415). This shows that the image of s lies in Q,(Y).
Therefore the image of the closed point of Spec 4 under Spec 4 — S, lies in R, as was to
be shown.

5.7. Lemma. Let n:Ry—Q(Y)Y be the composite R, 5J, x R,—»R, 3R, - Q(¥)Y.

Then for ryeRy, n(ry) is a stable point of Q(Y)Y if and only if the G-bundle E— X
corresponding to r is stable. ‘
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Proof. Let my(rs) =(j,r,). Then the Ad G-bundle E' corresponding to r,€R, 18
obtained from the G-bundle E by the extension of structure group G—Ad G = G/Z.
Therefore E' is stabie if and only if E is stable ([14], Proposition 7.1, p. 146).

Then point n(ry) in O(Y) is stable if and only if the orbit of 7(r,) under SL(n,C) is
closed and the isotropy of ©(r;) in SL{n, C)1s finite ([10], Amplification 1.11; [121,§2,
Theorem 2(a), p. 193).

The morphism R, — 0(Y)Y is an SL{n, C)-equivariant finite morphism. Moreover it
is easy to see that if two Ad G-bundies E} and E; give rise to isomorphic Aut ¢'-bundles
under the extension of structure group Ad G ¢, Aut &' then E/ isstable ifand onlyif E;
is stable. [t then follows that it is enough to show that the Ad G-bundle E' is stable if and
only if the SL(n, C) orbit of r, in R, is closed and the isotropy of 7, in SL(n, C) is finite.

Suppose £ is a stable Ad G-bundle. Then gr E' = E' (Proposition 3.12) and it follows
from Proposition 3.24(i) that the SL{x, C) orbit of r, is closed (cf. proof of Proposition
4.5). Since the group AutE’ of Ad G-bundle automorphisms of E' is finite ([14],
Proposition 3.2, p. 136) it follows from Remark 4.7 that the isotropy of 7, In SL(n,C)1is
finite.

Conversely suppose that the SL(n,C) orbit of r, is closed and the isotropy of r, finite.
From Proposition 3.24(ii) it follows that the closure of the orbit of r, always contains
a point 7, which is isomorphic to gr E'(cf. proof of Proposition 3.5). Therefore if the
orbit of r, is closed then E' ~ gr E. By Proposition 3.15 this implies that E' is a unitary
bundle E, corresponding to a unitary representation p:m; (X)— K, where K is a maxi-
mal compact subgroup of Ad G. If p is not irreducible then there is a subgroup S = K,
with dim S > 0, which commutes with p ([14], Definition 1.2, cf. also §2, p. 131). Then
the group S gives rise to a group of automorphisms of E/, = E' of dimension > 0. This
contradicts the finiteness of the isotropy atr, (Remark 4.7). Therefore p is irreducible.
Then E' = E|, is stable by ([ 147, Proposition 2.2, p. 133).

5.8. PROPOSITION

Let &S % X be an arbitrary family of G-bundles on X parametrized by a scheme S.
Then the set S, (resp. S,) of poinis s€S such that &, is semistable (resp. stable) is an open
subset of S. '

Proof. Since a G-bundle E is semistable (resp. stable) if and only if the Ad G-bundle E'
obtained from E by the extension of structure group G — Ad G is so ([14], Proposition
7.1, p. 147), we can assume that G = Ad G. Let &(%) be the vector bundle associated to
& by the adjoint representation G ¢ GL(%). Since the question is local on S we can
assume that for m>0, &#@pi(L") is a quotient of I, for 2 suitable
n I, — &%) piL")—0. This then gives a morphism f:5 X X — G, , the Grassman-
nian of r dimensional quotients of I, and the G-bundle & — S x X gives a morphism
f:iSxX-0(Y)c Q(Y) in the obvious way. By choosing an N-tuple (x;,...,%y) Of
points of X we get

o) = Yy

/
f
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We can choose the N-tuple (x,...,xy), N> 0, such that f(s) is a semistable (resp.
stable) point of GY  if and only if & (%) is a semistable (resp. stable) vector bundle ([19],
Theorem 7.1(3), also Corollary 7.2). It follows then from Corollary 3.18 and Lemma
5.5.2 that the set S__ is f ~*(Q(Y)Y). Since Q(Y)Y is open in Q(Y)" this proves that S, is
openis S.

Again making S smaller if necessary we can assume that the family &S, is induced
byamorphism S — R,.Itfollowsfrom Lemma 5.7 that the pointsin R, corresponding
to stable bundles is open since it is the inverse image of the open subset @ (Y)Y of 9(Y)Y
under the morphism R, —Q(Y)X. Therefore S, is open in S.

59. Theorem. The functor F*, (Definition 3.9) has a coarse moduli scheme M*. The
scheme M" is irreducible, projective, normal and Cohen-Macaulay. The dimension of M*
isdim Z + (g — 1)-dim G. The set M: of points in M* corresponding to stable G-bundles is
an open (and hence dense) subset of M".

Proof. By Propositions 4.5 and 4.15.2 it follows that to prove the existence of a coarse
~modulischeme for F it is enough to prove that a good quotient of R; modulo GL(n, C)
exists. Since Ry —J, x R,, R, » R, and R, —» Q(Y)Y are all finite GL(n, C)-equivariant
morphisms it follows from Lemma 5.1 that a good quotient of R; modulo GL(n, C)
exists if a good quotient of Q(Y)Y modulo GL(n, C) (or SL(n, C), since the scalars act
trivially on Q(Y)Y) exists. We know that a good quotient of Q(Y_)Qé exists and is
projective ([10], Theorem 1.10; [22], Theorem 1.1(B)). Therefore F:, has a coarse
moduli scheme M*. Moreover since R, —J, x R, etc. are finite morphisms it follows
from Lemma 5.1 that M" is projective (noting that a scheme finite over a projective
scheme is projective).

.Since M* is a categorical quotient of the non-singular (and hence normal) scheme R,
it follows that M® is normal ([10], Chapter 0, §2, p. 5). Since q:R;— M" is a good
quotient Ry can be covered by G-invariant affine open subsets Spec 4, such that the
corresponding quotients Spec A form an affine open covering for M".

Since R; is nonsingular the C-algebras A, are regular and hence by ([8], Main
theorem) it follows that A¢ are Cohen-Macaulay. Therefore M® is Cohen-Macaulay.

It follows easily from §5.4.1 and Lemmas 5.7 and 5.1 that M; is open in M" and
q:R = q~ (M) — M is a geometric quotient. '

Since R — M7 is a geometric quotient modulo SL(n, C)wehave dim M*=dim R, —
dim SL(n,C). Since R; —J_x R, and R, —R, are étale and finite dim Ry=dimJ_ +
dim R,. Therefore using Lemma 4.13.4, dim M* = (g-dim Z) + (n® + (r + 1)(g — 1) —
g)—(n* —1). Noting that r = dim G — dim Z, we get dim M* = dim Z + (g — 1)dim G.

We need the following lemma to complete the proof of the theorem.

59.1. Lemma. Let S be a complex analytic spaceand £ »S x X be a complex analytic
family of semistable G-bundles of topological type T parametrized by S. Then there is an
analytic morphism f,:S — M® such that for any seS, 12(s) is the equivalence class of &,.

Proof. This follows easily from the fact that the functors Pic and ‘T'(p, &) etc. used in
our construction of universal families are representable in the analytic category also
and are represented by the same universal spaces as in the algebraic category (cf. [5]).

We will now continue with the proof of Theorem 5.9. Since we have shown that M*is
normal, to show that it is irreducible it is enough to show that it is connected. Let
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m,,myeM andlet E,, E; be semistable G-bundles belonging to the equivalence classes
m, ,m, respectively. Then by ([14], Proposition 4.2 p. 142) there is a complex analytic
family of semistable G-bundles & — S x X parametrized by an open connected subspace °
S of the complex plane C such that for some s, ,s,€S we have &,=E;,i=12.(In [14],
Proposition 4.2 this is stated only for stable bundles but the same proof goes through
for semistable bundles also, noting that the proof of ([14], Proposition 4.1,p. 138) with
a little modification gives that for a complex analytic family # — S x X the set of seS
such that & is semistable is an analytic open subset of S.) Now applying Lemma 5.9.1
we get that M* is connected and hence irreducible.

Editor’s Note:  An acknowledgement by Professor Ramanathan was included at the
end of Part L

References

[1] Artin M, Grothendieck Topologies Notes on a seminar by M Artin (Spring 1962), Harvard University
[2] Borel A, Linear Algebraic Groups (1969) (New York: WA Benjamin Inc:)
[3] Borel A and Tits J, Groupes Reductifs, Pub. Math. LH.E.S. No. 27 (1965) 55-150
[4] Grothendieck A, Technique de descente et théorémes d’existence en géométrie algébrique, 1 to IV
(Bourbabi exposés No. 190, 195, 212, 221, 232 and 236). Also in: Fondements de la géométrie
algébrique. Secrétariat Mathematique Paris (1962). Cited as TDTEL,..., VI
[5] Grothendieck A, Techniques de construction on géométrie analytic IX: Quelques problémes de modules.
Exposé 16 in Séminaire Henri Cartan 1960/61, Fascicule 2, Secrétariat Mathematique, Paris (1962)
[6] Grothendieck A and Dieudonné J, Elements de géométrie algébriques, 11, 111, and IV,. Pub. Math.
LH.ES. No. 8, 11 and 24. Cited EGA 11
7 Grothendieck A et al, Séminaire de géométrie algébrique, 1 and 3, Springer Verlag. Cited SGA 1
[8] Hochster M and Roberts J L, Rings of invariants of reductive groups acting on regular rings are
Cohen-Macaulay. Adv. Math. 13 (1974) 115-175
[97 Kodaira K, A theorem of completeness of characteristic systems for analytic families of compact
submanifolds of complex manifolds, Ann. Math. 75 (1962) 146-162
[10] Mumford D, Geometric invariant theory (1965) (Berlin-Heidelberg-New York: Springer)
[11] Mumford D, Lectures on curves on an algebraic surface (1966) (Princeton, New Jersey: Princeton
University Press) ‘
, [12] Mumford D and Suominen K, Introduction to the theory of Moduli, in: Algebraic geometry, Oslo 1970,
& (F. Oort. editor) 171-222. Wolters-Noordhoff Publishing Groningen, The Netherlands, 1972
[13] Narasimhan M S and Seshadri C S, Stable and unitary vector bundles on a compact Riemann surface.
Ann. Math. 82 (1965) 540567
[14] Ramanathan A, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975)
129-152 )
[15] Raynaud M, Families de fibrés vectoriels sur une surface de Riemann (D'aprés C S Seshadri,
M S Narasimhan et D Mumford). Séminaire Bourbaki, Exposé 316 (1966)
[16] Richardson R, Compact real forms of a complex semi-simple Lie algebra. J. Differ. Geo. 2(4) (1968)
411-419
[17] SerreJ P, Espaces fibrés algébriques. in: Anneaux de Chow et Applications (1958) Séminaire Chevalley
[18] SerreJ P, Lie algebras and Lie groups. 1964 Lectures given at Harvard University (1965) (New York,
Amsterdam: W A Benjamin Inc))
[19] Seshadri C S, Space of unitary vector bundles on a compact Riemann surface. Ann. Math. 85 (1967)
303-336
[20] Seshadri C S, Mumford’s conjecture for GL(2) and applications; in: Proceedings of the Bombay
Colloquium on Algebraic geometry (1968) 347-371
[217 Seshadri CS, Moduli of n-vector bundles on an algebraic curve, in: Questions on algebraic varieties,
C.1.M.E Varenna 1969, 141-260, Edizioni Gremonese, Roma 1970
[22] Seshadri C S, Quotient spaces modulo reductive algebraic groups. Ann. Math. 95 (1972) 51 1—556
[23) Steinberg R, Regular elements of semisimple algebraic'groups. Pub. Math. H.E.S. No. 25 (1965)49-80

-




