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Principal bundles on the affine line
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' Abstra‘ct. We prove that any principal bundle on the affine line over a perfect field with a
reductive group as structure group comes from the base field by base change.

Keywords. Affine line; reductive algebraic group; principal bundle.

i. Introduction

Let k be an arbitrary field and G a linear algebraic group over k. Let A denote the affine

line Spec k[ 7], where k[ 7] is the polynominal ring in one variable over k. We prove the
following result in this paper.

THeEOREM 1.1. Assume that G is connected and reductive. Let B —» A be a principal G-

bundle on A such that B S X kSpec k,is trivial over Spec k[ 7] where ks the separable
closure of k. Then thergccis a principal G-bundle B, over Spec k such that B is
k-isomorphic to the pull back of B, by the structure morphism A — Spec k.

If k is algebraically closed it follows from a theorem of Steinberg [16] that all G-
bundles on A, with G connected, are trivial (cf. [13]). Thus if k is perfect (in particular if
the characteristic of k is zero) the assumption of triviality over k, is always satisfied. On
the other hand Knus et al [11] have shown that for separably closed non-perfect fields k
there exist non-trivial PGL(n)-bundles on A. However it seems likely that for simply
connected groups G such a phenomenon does not occur.

If the base field k is of positive characteristic the connectedness assumption on G is
essential even if k is algebraically closed, for Artin-Schrier extensions of k(T') provide
non-trivial finite Galois coverings of A [12, III §4].

Thus all the assumptions made in the theorem are essential.

The situation regarding non-reductive groups seems rather complicated and we
make no efforts to examine it here. The result for many special cases is known: (i) for
GL(n) and inner forms of GL(n) it is a reinterpretation of the fact that projective
modules over D[ X ], D a division algebra, are free (i) for G = Sp{n)it is the same as the
classification of non-degenerate alternating forms over k[ X] and (iii) for G = SO(n),
char k # 2, it is due to Harder (see [10]). He used the method of extending from A to
the projective line P which idea we have followed here.

2. Preliminary reductions

Throughout this paper k will denote an arbitrary field, k, its separable closure and kits
algebraic closure. For any scheme X over Spec k and a k-algebra R we denote the base
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change X >< Spec R by X and the R-valued points of X, i.e. the set of k-morphisms
Spec R — X by X (R).

2.1 Bya (principal) G-bundle over X we mean a scheme E — X over X together with
an action of G (on the right) on E such that the morphism

ExG—-EXE
k X
given by (e,g) > (e,eg) where ¢,g are R-valued points of E,G respectively, is an
isomorphism (cf. [12], Chapter III §4 and [14]).

2.2 It is known ([14] or [12] Chapter III §4.2) that for a smooth G any G-bundle is
locally trivial in the étale topology, i.e. X is covered by étale morphisms f: U — X such
that f*E is isomorphic to the trivial bundle U x G on U.

2.3 A section o: X — E canonically gives rise to a trivialisation : X x G — E defined
by &(x,g) = o(x)g where x, g are R-valued points of X, G and o(x)g is the translate of
a(x) by g given by the action of G on X.

2.4 If F is a quasi-projective scheme and the smooth group G acts on F we can then
form, using étale descent, the associated bundle E(F) — X with fibre F. Recall, [14],

that E(F) is the quotient of E x F by equivalence (e,f) ~ (eg,g~ ' f) where ¢, f, g are R-
f ‘
valued points of E, F, G respectively.

2.5 A section ¢:X — E also gives a trivialisation X x F — E(F) of any associated
bundle E(F) defined by sending (x, f) to the equivalence class of (¢ (x), f)in E x F where
x, e, f are R-valued points X, E, F. We call an isomorphism X x F — E(F) an allowable
trivialisation if it comes from a section of E as above.

2.6 Let n be the Galois group of k, over k. Then a standard argument ([12], Ex. 2.6
p. 93 and Chapter III §4) shows that the isomorphism classes of G-bundles on the affine
line A = Spec k[7] which become trivial on A, are in natural one to one correspon-

dence with the Galois cohomology set H! (, G (k,[7])), (see [15]). Thus our theorem

can be interpreted as saying that the natural map H* (n, G (k,)) = H Y, G (k[T]))isa
bijection when G is a connected reductive group. (The injectivity of this map is clear
since it has a section given by restriction to a k-rational point).

_ ProposiTioN2.7. Let S bea torusover k. Then any S-bundle on A becomes trivial on
A, and is obtained from an S-bundle on Spec k by base change.

Proof. The torus S, over k; splits into a product of, say n copies of, the multipli-
cative group G,.. Now a G,-bundle is equivalent to a line bundle or again a projective
module of rank 1 over k[T]. Since k[T] is a principal ideal domain any projective
module is trivial. Hence the first assertion. To see that the S-bundle comes from k
we observe that S(kJ[T]) =S, (k[T]) = Gn(k,[T])" = S(k,). Therefore
H'(n, S(k,[T])) = H' (m, §(k)).

Suppose now G is a connected reductive group and B — A a G-bundle. Let p: Spec k
— A be a k-rational point of A. Then the pull back p*B is a G-bundle on Spec k.
Twisting G by this principal homogeneous space, i.e. forming the associated bundle of
p* B for the adjoint action of G on itself ([15]1 §5.3) we obtain a new connected
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reductive k-group G', a k-form of G. We can also twist the bundle B by the pull back of
p* Bby the structure morphism A — Spec k thereby obtaining a G'-bundle B' on A. Itis
easy to see that the restriction of B’ to the point p is trivial and that B comes from Spec k
if and only if B’ does. Thus we have proved the following claim.

CramM 2.8. To prove Theorem 1.1 we can assume without loss of generality that the
bundle B is trivial when restricted to a given k-rational point of A.

Next let G, B—~> A be as above and H = G/[G,G]. Let ¢:G—H be the natural
projection. We then obtain from B by extension of structure group a H-bundle B, — A
which is trivial over a k-rational point of A. Since the theorem holds for tori
(Proposition 2.7) and H is a torus, By is trivial. This means that B admits a reduction of
structure group to [G,G] (cf. [14], [13]). This proves the following claim.

Cramm 2.9. It is enough to prove theorem 1.1 for G-bundles B such that G is
semisimple and B restricted to a k-rational point of A is trivial.

Our method of proof of the theorem will be to show that G-bundles satisfying the
assumptions of the above claim and the theorem admit a reduction of structure group
to a suitable maximal torus T of G. Then we can appeal to Proposition 2.7 to conclude
the theorem. For this purpose we will need the following lemma (2.10 below).

Let G — X be a semisimple group scheme over X. A subgroup scheme S = G is
called a maximal torus subgroup scheme (or a maximal subtorus) if for any xe X (k) the
fibre S, is a maximal torus of the fibre G, of G. v

Let G be a semisimple group over k and G — G a covering group (a central isogeny).
Let E — X be a G-bundle. Let T be a maximal torus of G and T the maximal torus of G
which is the inverse image of T. Let E(G)— X be the group scheme given by the
associated bundle with fibre G for the adjoint action of G on G.

LemMa 2.10. With the above notation suppose that there is an embedding ¢ : X x T
k

- E(G) of the constant torus scheme X x T as a maximal sub-torus of E(G) with
property that X is covered by étale m;rphisms f:U - X such that there is an
allowable trivialisation (see §2.5) ¥:U x G — f*E(G) whose restriction to U x T
coincides with f*@. Then ¢ givesrise toa nkatural reduction of structure group of E tok T.

Proof. Let f,:U;— X be a covering of X by étale morphisms and o;: U,—~ffE be
sections giving allowable trivialisations, again denoted by o, 0;:U; x G - f,E(G)

extending f*¢. Let &,:U; > f;*E(G/T) be the composite of o; with the projectiml
f*E(G) — f,(E(G/T)). Since any inner automorphism of Gk, which is identity on T

comes from T, it follows that in the fibre product U; x U; the pull backs of 6; and g,
X

coincide locally in the étale topology and hence by étale descent on the whole of

U, x U;. Again by étale descent the & patch up to give a section 7:X — E(G/T)

X
= E/T which is the required reduction of structure group to 7.

DEerINITION 2.11. Let X be a k-scheme and X = X7. Let J = @xbe the ideal sheaf of
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nilpotent elements. Let I = ¢, be the intersection of all the ideal sheaves of 0y whose
extensions to ¢z contain J. We then call the closed k-subscheme X, of X corresponding
to I the separably reduced of X. (Leema 2.13 below offers some justification for this
terminology).

Remarks 2.12. Note that the extension of I to 03 contains J and hence X is an
absolutely reduced scheme. Further if Yis an absolutely reduced scheme then any
k-morphism Y— X factors through X . If the base field k is perfect any reduced scheme
is absolutely reduced and the separably reduced of X coincides with the reduced of X.

LemMA 2.13. With the above notation, X, (k,) = X (k;)and X, is characterised by the

property that X, (k) is the Zariski closure of X (k,) in X (k).

Proof. This follows from the fact that a reduced k-scheme Y is absolutely reduced if
and only if Y(k,) is dense in Y(k) (see [1], theorem 14.4 Chap. AG).

3. Construction of a group scheme over P

Let G be a connected semisimple group over k and G its simply connected covering.
Let B— A be a G-bundle which becomes trivial on A,. Let H = E(G G) - A be the
associated group scheme for the adjoint action of G on G. We will now extend the group
scheme H to a smooth group scheme H — P over the projective line P = A U {0},
though H_; the fibre at co may not be reductive.

Let R be the local ring of P at the point co and R its completion with respect to the
maximal ideal. Let K be the quotient field of R and K its completion (with respect to the
valuation corresponding to o0). Note that K is the quotient field of R.

LemMa 3.1. Suppose M — Spec R is a smooth affine group scheme and ¢: Mz — H
an isomorphism of K-groups where M g is the base change of M by R — K and H ¢ that
of Hby R g K K. Then thereis a smooth group scheme H — P, such that there are
isomorphisms of group scheme ¢': H — H|A and ¢”: M — H; making the diagram

commutative.
PR _
Hyg > H,
Mg

Proof. Consider the morphisms A P and Spec R — P. Since R is flat over R these
two morphisms give a covering of P in the faithfully flat quasi-compact topology. The

fibre product A x Spec Ris Spec K. Since M — A and N — Spec R are affine the lemma
P
is an immediate consequence of faithfully flat descent ([12] I, theorem 2.23 p. 19).

-
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‘PROPOSITION 3.12. There is a smooth affine group scheme H — P extending H — A
with the following properties.

(a) There is a finite Galois extension L of k such that the base change H, —» P, admits

a constant torus subgroup scheme ¢: P, x S —» H, where S is a maximal torus of G,
L

which is split.

(b) On A, there is an allowable trivialisation (see §2.5) A, x G — H, extending
(P‘ AL x S- ¢

L

The rest of this section will be devoted to proving this proposition. We will obtain the
extension H ; by making use of the theory of Bruhat-Tits for groups over local fields
([5] §5, also [3],[4]). To get the constant subtorus we will also make use of the
theorem of Grothendieck-Harder ([6], [9], [13]) on G-bundles over P.

By assumption By — A, is trivial. Since all the schemes involved are of finite type
over k we can find a finite Galois extension L over k such that (i) B, - A, is trivial and
(ii) G has a maximal torus S defined and split over L.

Let R" = R® L be the local ring of P, at oo and K’ = K ® L be its quotient field. Let
N k k
R’ and K’ be the respective completions with respect to the valuation corresponding to
0. Note that R = RQL and K’ = K ®L and the Galois group of K’ over K is the
k k

same as the Galois group = of L over k.

It follows from Lemma 3.1 that to get an extension of H, to P, it is enough to
construct a smooth affine group scheme M — Spec R’ together with an isomorphism
@ : Hg — My of the generic fibres.

Consider the semisimple simply connected split group H ¢ over the complete local
field R'. Let P < Hy (K’) bea parahoricsubgroup of H (see [3] §2). Thenaccording to
Bruhat-Tits if A is the subring of the coordinate ring of Hg consisting of functions
which take values in R’ on P then M’ = Spec A — Spec R’ is a smooth affine group

scheme such that the natural map A®K’ into the coordinate ring of Hg is an

R
isomorphism. Thus the generic fibre of M’ is canonically isomorphic to Hy and
therefore M’ gives an extension H' — P, of H, (Lemma 3.1).

If moreover the parahoric subgroup P is invariant under the natural action of the
Galois group non H «(K’) then macts on M’ compatibly with its action on H. Hence
= then acts on H'. By Galois descent it then follows that M’ and H’ descend to
M — Spec R and H — P respectively. V

The fixed point theorem of Bruhat-Tits ([5], §5) guarantees the existence of a
n-invariant parahoric subgroup P,. Let Hy—P, and Ho—> P be the extensions
corresponding to Po.

Now fix a section ¢: A, — B;. Then ¢ gives an allowable trivialisation & AL>: G

—» H,. Its restriction &| A X S gives a constant subtorus of H,. Let I be the apartment

L - ~ . .
of the Bruhat-Tits building corresponding to the split torus g (Sg)- Ther} if Pisa
parahoric subgroup belonging to I by [4] we have a canonical embedding of the

constant torus: S = Spec R’ x S in M’ such that the diagram below commutes.
L
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Sg C > M’

L

Sg—9 S Hp=Myg

As in 3.1 this implies that the subtorus 32 A, x S - H extends to ¢: P, x § — H'
L L

Now by the conjugacy theorem for parahoric subgroups ([3] §3) we can find a
parahoric subgroup P, belonging to I such that P, = Int g (P,) where g € H z.(K’). Since
parahoric subgroups are open and H ,.(K’) is dense in H z, (K') we can take g in H (K.
Then there exist sections a: A, — H 1 d€S,.and Be P, such that g = . df. Thls is
essentially a consequence of thc theorem of Grothendieck~Harder that any G ,-bundle
on P, admits a reduction of structure group to a split maximal torus (see [13],
theorem 4.2).

Let P, = Intd(P,). Then P, belongs to I and hence we have the constant subtorus -

@,:P, x S — H’, where the latter is the extension of H L corresponding to P,. Since P,,
L — _
= Inta(P,)itis easily seen that Int a: H, — H , extends to ¥ : H), — HY,. It now follows
that the extension H, — P and the constant subtorus @ =V 0,:P, x S — H, satisfy
L

the conditions (a) and (b) of the proposition. This completes the proof of
Proposition 3.2.

In §4 we shall show how to pass from ¢, which is defined only over L, to a subtorus
defined over k using the group of global section of H.

4. Sections of H

4.1 Let X be a projective scheme over k and f:G — X be a group scheme of finite
type, affine over X. Consider the functor which associates to each k-scheme Ythe group
of global sections of the product group scheme ¢ x id: G x Y- X xY. By [9] §1.4 or

[7] we know that this functor is representable by a group schemc F(G) of finite type
over k. We also have the evaluation morphism (the universal global section) ev:

F(G)xX -——-—————»——«4—0

NS

42 If N <= G is a subgroup scheme then the global section functor of N is a
subfunctor of that of G. Therefore I'(N) is a subgroup scheme of I'(G).
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4.3 If N is an affine k-group scheme then the global sections functor of the constant

group scheme N >: X — X is clearly represented by N itself, since X is projective.

44 qu we apply the above discussions to the group scheme H — P constructed in
the previous section (Proposition 3.2). Let I" be the group of global sections of H.LetT
be the sepa.rably reduced of I'" (see §2.11). Since I’ is a group scheme and is absolutely
reduced it is a smooth group scheme.

By the rank of a k-group scheme we mean the dimension of a maximal subtorus
defined over the algebraic closure k of k.

By Proposition 3.2 H has the constant maximal torus subgroup scheme P, x S

Therefore by the remarks in §§4.2 and 4.3 (and §2.12) S is naturally embedded inLI" -

This shows that rank T > rank G. In fact we prove that rank I’ = rank G in the
proposition below.

ProposITION 4.5. § < I} is a maximal torus of I’

Proof. Consider the Lie algebra bundle V — P of the smooth group scheme H-P.
The fibres of V are of constant rank and V - P is a vector bundle with Lie algebra
structures on fibres. Let o € T'(k) be a k-rational point of I'. Then ¢ gives a section Py
— H; and by the adjoint action gives a section Ado:Pg— End V4. Since the ith
coefficient of the characteristic polynominal of an endomorphism is invariant under
inner conjugation it gives rise to a function a;: End V;— k. Composing with Ad g we
then get a regular function g; Ado:Py— %. This must be a constant since Py is
complete. Thus the characteristic polynominal of Ad ¢(x) is the same for all xe P (k).

Now let § = I';be a maximal torus of I'zand x€ A(K). We then have the evaluation
morphism ev, : S;— H,. Suppose for some 6 €S (k) we have ev, (0) = o (x)is the identity.
Then Ad o(x) = id. for any y€ P! (k), Ad o (y) is semisimple since it is the image of the
semisimple element o € S(k). Further it has the same characteristic polynominal as
Ad ¢ (x). Therefore it must be the identity. This shows that on A the section o:Ag
- BE(G) factors through the kernel By (F) = By (G) where F is the kernel of G~ G.
Since F is a finite group scheme the reduced of its identity component is the trivial
group {1}. Therefore the reduced of the identity component of By (F)is B ({1}). Since
Ay is reduced and connected the morphism o:A;— B (F) then factors through
B;({1}) which shows that ¢ = id. _ ‘

Thus we have proved that ev,: S;— By (G) is injective on k-valued points. Hence 1t
must be an isogeny and in particular the image of ev, is a torus of the same dimension as
S. This shows that rank I' < rank G and hence § < T, must be a maximal torus.

PRrOPOSITION 4.6. Suppose B — A is such that for a k-rational point x, of A the
restriction B, — Spec kis trivial. Then there is a maximal torus T of G defined over k

such that B _ -
(a) We have an embedding ¥ : P X T — H (where H is the extension constructed in
k

Proposition 3.2).
(b) When base changed to 2 suitable finite Galois extension L of k, ;. A, x T—His

the restriction of an allowable trivialisation A, >: G-H,.
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Proof. The separably reduced I' of the group of global sections of B is a smooth
group scheme over k. Hence by Grothendieck’s theorem ([2] or [8] Expose XIV) it
has a maximal torus T defined over k. By making the field L considered earlier in
Proprosition 3.2 larger if necessary we can assume that T, and the maximal torus § of
Proposition 4.5 are conjugate by an element ¢ of I'(L). Let  denote the section of P L
—~H; corresponding to {. We then have the commutative diagram.

. idx Int &
X X
& z
ev! . J ev
a Int & _
H H

Since the second vertical arrow is an embedding and the horizontal arrows are
isomorphism it follows that the first vertical arrow is also an isomorphism. Since it is the

pull back to L of P x T— H we have proved that the latter is an embedding.
k

On A, letd:A; x G~ H, be the allowable trivialisation extendingev: A, x§— H,

k
given by Proposition 3.2. Since by assumption B, — Speck is trivial there is an
allowable trivialisation B, (G) ~ G. We make this identification of B, (G) with G. We
then have the commutative diagram

A xT———— " oA xS§

A
\on evx/
JInt E(x -
5 é( o)A

(24 AL >/§

L),fG ev
AN
Int & ~H,

Hy

where 7 is defined to be Int ¢! o6 olInt &(x,). Thus n provides the allowable
trivialisation extending A, x T-H .- The point in this is that the torus 7" which a priori
k .

sits in I gets identified as a subtorus of G by evaluation at X0 and the morphism of tori
Int &:7— S, when T'and § are considered as subtori of G coincides with the restriction
of the inner automorphism Int & (x,) of G. This completes the proof of Proposition 4.6.

We can now quickly run through the argument needed to finish the proof of
theorem 1.1.

Let B — A be a G-bundle which becomes trivial on A k,» With G connected reductive.
By Claim 2.9 we can assume that G is semisimple and B restricted to some k-rational
point of A is trivial. Then Proposition 4.6 and Lemma 2.10 show that B admits a
reduction of structure group to a maximal torus 7 of G. Since by Proposition 2.7 any 7-
bundle on A is the pull back of a T-bundle on Spec k this completes the proof of
theorem 1.1.
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