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§1. Introduction

§1. 1. Bicompact spaces form a very important class of topological
spaces; the principal properties relating to them will be found in Alexandroff
and Hopf, Topologie, Kap. II. Among the bicompact spaces, the Hausdorff
bicompact spaces occupy, as is well known, a special position; their
characteristic property has been stated in the following form by Dr. R.
Vaidyanathaswamy in his Treatise on Set Topology, p. 104 (in the press):

A Hausdorff bicompact space is both minimal-bicompact and maximal-
Hausdorff.

The Author further adds:

It is not known whether there exist topologies on an infinite set R which

are minimal-bicompact without being Hausdorff or maximal-Hausdor[f without
being bicompact.

The purpose of the present paper is to supply a partial answer to this

question by proving that a maximal-Hausdorff space need not necessarily
be bicompact.

The first important result obtained is that a maximal-Hausdorff space
is necessarily H-closed. That the only regular maximal-Hausdorff spaces
are the Hausdorfl bicompact spaces follows from a well-known theorem
of Alexandroff and Hopf, namely that a H-closed regular space is bicompact.
A method of strengthening a Hausdorff space at an irregular point is shown
in Theorem IV, which leads to some negative results. In this connection
it is remarkable that a space constructed by Urysohn for a different purpose
happens to be maximal-Hausdorff without being bicompact. This is
proved by the necessary and sufficient condition enunciated and proved
for a Hausdorfl space to be maximal-Hausdorff, namely that every neigh-
bourhood of every point of the space should contain an open domain
neighbourhood of the point whose complement is H-closed.

I am under a permanent debt of gratitude to Dr. R. Vaidyanathaswamy,
Reader in Mathematics, University of Madras, for having indefatigably
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helped me during the arduous discussions I have had with him on the subject
and particularly in the enunciation and proof of the last mentioned theorem.

§1. 2. Strength of Topologies.

We are concerned only with topological spaces R of any sort of elements
defined by neighbourhood systems satisfying the well-known postulates
of Hausdorff, viz.,

H,. Each point of R has at least one neighbourhood and is contained
in every one of its neighbourhoods.

H,. If U(p), V(p) are any two neighbourhoods of p then there exists
a neighbourhood of p which is contained in U(p). V (p).

H;. To each neighbourhood U(p) of p there exists a neighbourhood
V(p) of p such that U(p) contains a neighbourhood of each point of V (p).
It is well known that any neighbourhood system satisfying H,, H,, H, intro-
duced in the set R defines uniquely a topological structure in R. In this
structure

(i) for any set X < R we have X is the set of points of R every neigh-
bourhood of each of which has non-null intersection with X;

(ii) a set is open if it contains a neighbourhood of each of its points;
(iif) any point is an interior point of every ome of its neighbourhoods.

Let there be two neighbourhood systems the U-system and the V-
system introduced in R, both of course satisfying H;, H,, H;. The two sys-
tems are said to be equivalent if and only if they define the same topological
structure in R. The necessary and sufficient condition for this is that for each
point p of R, every U (p) contains a V (p) and every V (p) contains a U (p).

The totality of open sets of a topological space R, when each of them
is considered as a neighbourhood of each of its points, form a neighbourhood
system of the space equivalent to the given neighbourhood system and will
be conveniently used to replace the given system.

A topological space R is said to be (a) a Ty-space if every point peR
has a neighbourhood not containing any other assigned point ¢; (b) a Ty~
or Hausdorff space if every pair of distinct points are H-separable, i.e., have
disjoint neighbourhoods; (c) a Urysohn space if every pair of distinct points
are U-separable, ie., have neighbourhoods whose closures are disjoint.
Two distinct points of R are said to be U-inseparable if they possess no
neighbourhoods whose closures are disjoint. A point p of R is said to be
regular if every neighbourhood of the point contains the closure of another
neighbourhood of the point; the space itself is called regular if every point
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of the space is regular. An irregular point of R is called, after M. H. Stone,
semi-regular if every neighbourhood of the point contains the interior of
the closure of another neighbourhood of the point. It is obvious that every
Urysohn space is a Hausdorff space and that every regular space is a Urysohn
space; whereas, not all Urysohn spaces are regular spaces.

Let there be two systems of neighbourhoods the U-system and the V-
system introduced in a set R both satisfying H,, H,, H,. (i) We say, after
Dr. R. Vaidyanathaswamy, that the V-system is stronger than the U-system
at a point peR, if every V (p) contains a U (p) and if there is at least one
U (p) which contains no V(p). Suppose two different topological structures
f, ¢ are defined in a set R. Let us denote by (R; f) the topological space R
whose topological structure is f. (i) The topology ¢ is said to be stronger
than f, if every open set of (R; ¢) is also an open set of (R; f) and if there is
at least one open set of (R; f) which is not openin (R; ¢). (iii)) A Hausdorff
space (R; f) is said to be maximal-Hausdorff if any topology on R which is
stronger than f renders the space non-Hausdorff.

Let the U-system and the V-system define respectively the topological
structures f and ¢ in a set R. We may suppose that {U} and {V'} represent
the absolute neighbourhood systems of the topologies f and ¢ respectively.
Then we have

Theorem I.

If ¢ is stronger than f, then there is at least one point at which the V-
system of neighbourhoods is stronger than the U-system.

Since ¢ is stronger than f, there is at least one set A which is open in f
but not open in ¢. Let p be a boundary point of 4 in ¢-topology. Now
any neighbourhood V (p) of p in ¢ is open in ¢, therefore also open in f and
hence is a U (p). But since 4 is open in f there is a U (p), say U, (p), which
is contained in A. Since p is a boundary point of 4 in ¢ there is no ¥V (p)
which is contained in 4. Hence U, (p) contains no ¥V (p). So {V} is stronger
than {U} at the point p.

Theorem II.

If ¢ is stronger than f, then there exists a topology  which is equivalent
to ¢ at just one point peR and equivalent to f at all other points of R (it
being assumed that f is a T,-topology).

For, there is a set G which is open in f but not open in ¢ and hence it

has a boundary point p in ¢. Take the ¢-neighbourhoods for. the point p
and the fneighbourhoods: for all other points of R. The system of
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neighbourhoods thus defined satisfy evidently H,, H,. To show that it satis-
fies also H,, let us observe that a ¢ (p) contains a ¢-neighbourhood of every
one of its points. But a ¢-neighbourhood of any point other than p is also a
J-neighbourhood of that point. Hence any ¢ (p) contains a y-ncighbour-
hood of every one of its points. Thus H; is satisfied by { (p)). If ¢ is
any point other than p, then the neighbourhoods of g which are disjoint with
p by themselves form a system of neighbourhoods of the point equivalent
to the given system, since the topology fis T,. We see immediately that the
g-system for points other than p also satisfies H,. The topology defined
by the new system of neighbourhoods satisfies the conditions of ths theorem.

Corollary.

It follows from this theorem that, in order to show that the Hausdorff
space (R;f) is maximal-Hausdorff, it is sufficient to show that the neigh-
bourhood system of the space cannot be strengthened at any point without
destroying the Hausdorff character of the space. For, if there exists a
Hausdorff topology ¢ stronger than £, then there would exist a topology
¢ which is equivalent to f at all points except at a single point at which it is
equivalent to ¢. Then ¢ will also be Hausdorff and would be obtained
from f by strengthening at a single point.

§2. Regular Maximal-Hausdorff Spaces
§2-1. H-closed spaces.

We say that a topological space R can be topologically imbedded in
another topological space S if R is homeomorphic to a subset of §. We
say that a Hausdorff space R is H-closed if it is closed in every Hausdorff
space in which it can be topologically imbedded. It is obvious that a finite
set of R is always H-closed; the set (1, 2, 3,....) of the real number space
is not H-closed. Alexandroff and Hopf (loc. cit., p. 90) have proved

§2:2. A necessary and sufficient condition for a Hausdorff space R te
be H-closed is that from every open covering {G) of R, it should be possible to
select a finite number of elements G, G.,. ... G, say, such that

2"] é,‘ = R
§2-3. Theorem III ’

A Maximal-Hausdorff space is necessarily H-closed.

If the Hausdorff space R is not H-closed then we shall show that its
topology can be strengthened at any point p, without derogation to the

. Hausdorff character of the space. Now by §2.2 there exists an open cover-

ing {G} of R such that for every choice of the finitely-many elements
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G, Gosee - G,, of {G} the open set F = (R— ;E'G,) is non-null. Now the

family of open sets F are such that the intersection of any two F’s is a F.
Moreover, if we choose for a neighourhood U (p) of any point p, an ele-
ment of {G} which contains p then U (p) is disjoint with {R— U (p)} which
by definition is a F. Hence there is at least one F which is disjoint with a
U(p). Since the intersection of any two F’s is non-null it follows that if
a U(p) is disjoint with a F then that U (p) can contain no F. Let us now
define a sysiem of neighbourhoods {V (p)} for p where the V (p)’s are sets of
the form {U(p) + a set F}. Now the V (p)’s are open sets of the space R
which contain p. Since the intersection of any two U (p)’s is a U (p) and the
intersection of any two F’s is a F, it follows that the intersection of any two
V(p)s is a V(p). Turther there is at least one U(p) which contains no
V(p). Hence the system {V(p)} is stronger than the system {U(p)}. Let
now ¢q be any point of R other than p. Then there exists a U(p) disjoint
with a U (g) and there exists a F disjoint with a U(g). Hence there exists
a ¥V (p) disjoint with a U(g). Thus the V-topology is a Hausdorff topology
which is stronger than the U-topology. Hence the U-topology is not
maximal-Ha usdorff. Q.E.D.

§2-4. The condition of Theorem III is not sﬁfﬁcient. The following
example of Alexandroff and Hopf (loc. cit., p. 31), constructed for a differ-
ent purpose, exhibits a H-closed space which is not maximal-Hausdorff.

Example 1.—Let R be the unit length 0 < p <1 of the Arithmetical
continuum, D the set of all points 1/n, n=1,2,3,..... If0< p< 1, then
let J(p) be an arbitrary open interval of R which contains p; if p =0 or
1, let J(p) be a half-interval 0 <t < a or @ < t < 1 respectively, where g
lies between 0 and 1 and is otherwise arbitrary. When p = 0, let J(p) be
a neighbourhood of p. Let the sets of the form {J (0)— D} be the neigh-
bourhoods of the point 0.

The space R thus constructed is a Hausdorff space in which 0 is an
irregular point. It is H-closed. For, consider any open covering {G} of
R. Evidently the G’s may be open intervals of the form J (p) if they do not
contain 0 and of the form {J (0)— D} if they contain 0. We see that G (0)
is always an open interval of the form J (0). The subspace {R— G (U)} can
always be covered by the closures of a finite number of G’s. Hence R itself
can be covered by the closures of a finite number of G’s.

Evidently the given neighbourhood system is weaker at the point 0
than, and equivalent at all other points to, the neighbourhood system of
the space R under its usual topology where the neighbourhoods of the
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point 0 are the half-open intervals J(0). The usual topology of R is
a Hausdorff topology and hence the given topology of R is not maximal-
Hausdorff. Q.E.D.

§2-5. Corollary

The only regular maximal-Hausdorff spaces are the Hausdorff bicompact
spaces.

This follows from Theorem III and the following theorem due to
Alexandroff and Hopf (loc. cit., p. 91) viz.,

A H-closed regular space is bicompact.
§ 3. Irregular Maximal-Hausdorff Spaces

§3:1. The following method of strengthening a Hausdorff space at
an irregular point is often useful.

Theorem IV

The topology of a Hausdorff irregular space can be strengthened at any
irregular point p by choosing the regular neighbourhoods of p as its new
- neighbourhoods; the strengthened topology is necessarily T, and would be
Hausdorff if p is U-separable from every other point of the space.

The intersection of two regular neighbourhoods of p is evidently a
regular neighbourhood of p. Since we are not altering the neighbourhoods
at other points, it follows that the regular neighbourhoods of p satisfy
H,, H,, H; and can be taken as new neighbourhood system at p.

Let g be any other point and U (p), U(g) disjoint neighbourhoods of
p, g9 (which exist as the space is Hausdorff); as (R— gq)> U (p), it
follows that (R—gq) is a regular neighbourhood of p disjoint with g. Thus
the strengthened topology is T,. If every point ¢ other than p is U-separable
from g, there are neighbourhoods U(p), U(g) of p and g such that
T(p)-U(g) =0. Hence Ext. U(g), which contains U .p) is a regular
neighbourhood of p disjoint with the neighbourhood U(g) of g. Thus
p, q are H-separable in the strengthened topology.

§3-2. Corollary I

A Hausdorff space with only one irregular point cannot be maximal-
Hausdorff,

If p be the only irregular point of a Hausdorff space R, then p is
U-separable from every other point of R. For, if r be any point of R
other than p, then there exist neighbourhoods U(p), U(r) such that

0= U(p),U(r)z U(p).U(r). But r is a regular point of R. Hence
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there exists a neighbourhood U, (r) of r whose closure is contained in U (r).
It follows that U(p). U; (=0, i.e, p and r are U-separable. The given
space can be strengthened as explained in Theorem IV and the strengthened
topology is Hausdorff by the same Theorem.

Example 1 given above, illustrates the present corollary. As further
illustration we may consider the following space constructed by Dr. R.
Vaidyanathaswamy (loc. cit., p. 99) for a different purpose; the space is
regular except at the point O, which is semi-regular.

Example 2.—Take the Cartesian plane with the rectangular axes X'0X,
Y’0Y. Consider the semi-circles POP'S lying to the right of Y-axis.
Define the neighbourhoods of O to be the union of O with the open semi-
circles POP’s. The neighbourhoods of the other points are the usual ones.
The space thus constructed is a Hausdorff space for which, as can be easily
seen, O is a semi-regular point. Replacing the given neighbourhoods of O
by its usual ones, which.form a stronger system than the given system, the

space still remains Hausdorff. Hence the given space is not maximal-
Hausdorff.

§3-3. Corollary II

If, in a Hausdorff irregular space, there exists at least one irregular point
which is U-separable from every other point of the space, then the space cannot
be maximal-Hausdorff.

For, if p be an irregular point of the Hausdorff space R, which is U-
separable from every other point of the space, on replacing the given neigh-
bourhood system at p by the system of regular neighbourhoods of p, we
see, by Theorem IV, that p is H-separable from every other point of R and
so R is Hausdorff in the strengthened topology. Hence the given space
is not maximal-Hausdorff. Q.E.D.

§3-4. Corollary III

If every pair of distinct irregular points of a Hausdorff space are U-separa-
able, then the space cannot be maximal-Hausdorff.

This is only a case with much stronger hypothesis than Corollary II.
As an illustration of the present Corollary, let us consider the following
example.

Example 3.—The set R of real numbers is topologised by ascribing
to each number x as its neighbourhoods, the sets (I, — §) if x is irrational
and the sets {x + (I,— S)} if x is rational, where I, is any open interval
containing x and S is the set of rational numbers,
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The space thus defined is a Hausdorff space in which every point is
irregular. Any pair of distinct points, however, are U-separable. The
space, therefore, by Corollary III, is not maximal-Hausdorff and this may
also be verified by the fact that the given neighbourhood system is weaker
at every point than the neighbourhood system of the usual topology of the
real number space which is a Hausdorff topology.

§3.5. An open set g of a topological space is an open domain of the
space if and only if it satisfies any one of the following equivalent condi-
tions: (i) g is the exterior of some open set; (ii) g is the exterior of its
own exterior; (iii) g is the interior of its closure; (iv) g is the interior of
some closed set. For fuller information vide Dr. R. Vaidyanathaswamy,
loc. cit., p. 91. A family of open sets {G} of a topological space is called,
after Dr. R. Vaidyanathaswamy, a proximate covering of the space if it
covers the whole of the space with the possible exception of a non-dense set.
It follows that the union of all sets of a progimate open covering is a dense
open set.

3-6. Theorem V
A maximal-Hausdorff space is necessarily semiregular.

Any two distinct points p, ¢ of the Hausdorff space have neighbourhoods
U(p), U(g) such that 0 = U(p). U(q) = U (p).U(q) = U(p). U (g). Hence
Int U (p) is disjoint with U (g) and similarly Int U (g) is disjoint with U (p).
Now if U, (p), U:(p) be any two neighbourhoods of p, then T (p). T, (p)
> U, 7)-U, (p)sothat Int Uy (p).Int Uy (p) D Int Ty (p). Uy (p). It follows
that the system of open domains {Int U (p)} satisfy H;, H,, H; and if these
be taken to form a new system of neighbourhoods for p then the system
Int {U (p)} will be stronger than the system {U (p)} if the point p is not semi-
regular. Hence if a Hausdorff space R contains at least one irregular point
which is not semiregular then the topology of the space can be strengthened
by replacing its neighbourhoods by the system of open domains containing
the point as its new neighbourhoods without destroying the Hausdorff
character of the space and so the given space would not be maximal-
Hausdorff. If in the above argument the point p is a semiregular point
so that its neighbourhoods are already open domains then {Int U{p)} will
be equivalent to {U(p)}. We see therefore that, in order that a Hausdorff
irregular space may be maximal-Hausdorff, the space should necessarily
be semiregular. Q.E.D.

- §3.7. We are now in a position to prove the necessary and sufficient
condition for a Hausdorff space to be maximal-Hausdorff,
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Theorem VI

The necessary and sufficient condition for a Hausdorff semiregular space
R to be maximal-Hausdorff is that every meighbourhood of every point of
the space should contain an open domain neighbourhood of the point whose
complement is H-closed.

The condition is necessary.

For, suppose the condition is not satisfied. Then there exists a point p
such that it has a neighhourhood U, (p)* which contains no open domain-
neighbourhood whose complement is H-closed. We shall prove that the
topology can be strengthened at the point p without destroying the Hausdorff
character of the space. In the first place, (R— p) cannot be H-closed, for, if
it were H-closed p would be an isolated point and would therefore be an open
domain-neighbourhood contained in every neighbourhood of p contrary
to hypothesis. We will now find an open covering of (R — p) which contains
no finite proximate covering of (R— p). Now by hypothesis, [S= R— U, (p)]
is not H-closed. Hence there is a covering of S by relative open sets {g,}
which contains no finite proximate covering of S. Let G, be an open set
of R such that G,.S = g,. Now for any point geS there is a U () c g,
and disjoint with a neighbourhood of p. This is possible since R is Hausdorff.
For any point reU, (p) choose an open set U (r) < U,(p) which is disjoint
with a neighbourhood of p, which is again possible since R is HausdorfT,
Consider the covering of (R — p) constituted by the family of open sets con-
sisting of the U (g)’s and the U (r)’s. No finite number of U (g)’s can cover
S for, otherwise the corresponding g,’s would constitute a finite proximate

covering of S. But S— 2 U (g) is a relative open domain of § and there-
1
fore will have an interior. This interior can never be covered by any finite

number of U (r)’s since every U (r) ¢ U (p). Hence F = (R— p)— b3 U(q)
1

~X U (r) is never null; since each U (¢g) and U (r) is disjoint with a U (p),

a finite number of U(q)’s and U (r)’s are always disjoint with a U (p), it
follows that every F contains an open set containing p. Evidently the inter-
section of two F’sis a F. Further U, (p) contains no F, for otherwise the
closures of a finite number of U(g)’s and U(r)’s would cover S. Now the open
sets (p + F) satisfy the conditions for being taken for a new system of neigh-
bourhoods for p. As each p + F contains a U(p) we see that p + F is

* We may assume, without loss of generality, that U, (p) is an open domain neighbour-
hood of p.
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stronger than or equivalent to the original system of neighbourhoods of p.
But it is not equivalent to the original system since U, (p) contains no p+F.
Hence the new system of neighbourhoods of p is stronger than the original
system and so the V-topology is stronger than the given topology of R.
Further the point p is H-separable from every point of the space under its
new neighbourhood system for from the formation of the F’s it is clear that
there is a F disjoint with a U () for any point geS and also a F disjoint with a
U (r) for any point reU, (p). Hence the strengthened topology is Hausdorff
and the given topology of R is not maximal-Hausdorff. Q.E.D.

The condition is sufficient. Suppose there exists a system {V(p)} for a
point p which is stronger than {U(p)} so that there is a U(p), say U, (p),
which contains no ¥ (p). Then p would be a boundary point of U, (p) in
the V-topology i.e., a contact point of [R — U, (p)]. But [R — U, (p)] is
H-closed. Hence [R — Uy (p)] + p cannot be a Hausdorff space; so that
in the V-topology, p fails to satisfy the H-separability axiom with points in
{R—Uy(p)y. QED.

The theorem is evidently verified in the case of Hausdorff bicompact
spaces, where, as is well known, every closed subset is H-closed.

We now proceed to illustrate the theorem by consideration of a Hausdorff-
space constructed by Urysohn for a different purpose (vide Urysohn, Uber
die Michtigkeit zusammenhidngender Mengen; Mathematische Annalen,
Band 94, p. 268).

Example 4,—Let the space R be defined as follows:
R=a+b+ g+t +e. . .Gj=12...)

A point of R shall be said to be of Oth, 1st or 2nd order aécording as the
letter which represents the point contains no element, only one element or
two elements respectively in the suffix.

The neighbourhoods are defined as follows:
Ulay)= a;z; U(by)= bii;
(i.e., the points of the second order are isolated points.)

U™ (¢) = ¢ +i :’-7 (a; + by;) 1‘
U"'(a) —a-+ 33 ‘E';o a;; th=1,2,3...
i=1 =n

rh=b+3 ¥ b,

=1 d==n J

The neighbourhoods satisfy H,, H,, H,.
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H,: evident.
H,: follows from the fact that for every point x
U™ (x). U+ H(x) = U"+* (x)

H,: follows from the fact that only the points of the second order—
which are in fact identical with their neighbourhoods—can be contained
in a neighbourhood of any other point.

H-separability: is evidently satisfied for any two points of the same
order; that it is satisfied for all other points also is seen from the following
equalities :

1. (a point of the second order and a point of the first order):

Uay,). Ut (c;) =0, Ulby). Ut (c;) =0;

2. (second order and Oth order):

U (ay,). UP+1 (@) = 0, U (by,). UP+1 (2) = 0;
U(ay,). UM (b)) = 0, U(by,). U (a) =0;

3. (first order and Oth order):

Ut (cp).U?+1(a) = 0, U'(cy).U2+1(b) = 0.

However for arbitrary n and m,

U”* (a). U™ (b) o U™ (a). U™ (b)

D(S“gméﬂ_gzmﬁmgg

i=1 i=a+m t=n+m

of 2 Qg -l—m)/) . (.2 b(n-}-m);'
j=1 i=1
> C?Z + e

Thus, in the space R, the points @ and b are U-inseparable and conse-
quently they are both irregular points of the space. As a matter of fact,
a and b are both semiregular points of the space. Incidentally we have
here a simple example of a semiregular space which is not regular. (Com-
pare in this connection Example 3 above, and M. H. Stone, “Application
of the theory of Boolean rings to General Topology,” Trans. Amer. Math.
Society, 1937, 41, p, 452, where, the author who was the first to recognise
the importance of semiregular spaces, has constructed a rather complicated
example of a semiregular space which is not regular.)

In the space constructed above, a and b are U-inseparable and the other
points are all regular. The space is H-closed. To prove this let us take
an arbitrary open covering {G} of R. Let us denote by G (a), G (b) a pair

Ad
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of elements of {G}, which contain a and b respectively. G (a) and G (b)
will each contain all but a finite number, say » and m respectively, of the
¢;’s. Supposen >m. Then the ¢;'s which are not covered simultaneously
by G (a) and G (%) will be n in number. These ¢;’s will be covered by the
closures of a finite number of the G’s, say Gy, G,....Gp  Itis easy to see
that R— [G @)+ G (0)+ G+ G,+....+G,)] is a finite set of ;s and
b;’s. Hence, etc.

By a similar reasoning, we can show that the complement of every
neighbourhood of a and b are H-closed. The complement of every neigh-
bourhood of every a;;, b;;, c; which are all regular points are also H-closed.
Hence the condition of the theorem is satisfied in the space R and R is
therefore maximal-Hausdorff. Being a Hausdorff irregular space, R cannot
evidently be bicompact.

We have thus proved that a maximal-Hausdorff space need not neces-
sarily be bicompact.




