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1. Introduction 

Let G be a reductive group over an algebraically closed field and B a Borel 
subgroup of G. The flag variety X = G/B is a projective variety and any line 
bundle L on X is homogeneous and the space of sections F(X,L) and more 
generally the cohomology groups Hi(X,L) are G-modules and have been the 
subject of a lot of study. When L is effective, i.e. F(X,L)#O, one knows that 
Hi(x, L)=0 for i > 0  and that dim F(X, L) may be computed by the dimension 
formula of Weyl. This vanishing theorem is a simple consequence of the 
Kodaira vanishing theorem over ~ and was proved by Kempf in characteristic 
p>0.  Simpler proofs were given by Haboush, Andersen and Mehta-Ramana- 
than. 

A problem of interest in this connection is whether F(X,L)| 
F(X, LQE) is surjective when L and E are effective. In particular this would 
imply that the complete linear system of L imbeds G/B as a projectively 
normal variety whenever L is ample. This is a simple consequence of the 
irreducibility of G-modules of the type F(X, L) in characteristic zero. In posi- 
tive characteristics this was known in several cases as a consequence of the 
standard monomial theory of Seshadri and his school. We prove it here in full 
generality. 

Let T be a maximal torus in B and W= N(T)/T the Weyl group. Then the 
B-orbits of coB, co~W give an affine cellular decomposition of G/B. The 
closures X,o of BcoB in G/B are called Schubert varieties. The cohomology 
vanishing theorem for L over Xo, was proved recently by Mehta-Ramanathan 
[4], when L is ample. They also show that in this case F(G/B,L)--*F(X~,L) is 
surjective. Their principal contribution consists in the notion of a Frobenius 
split variety and compatible splitting and a criterion for it proved by exploiting 
the local nature of the duality theorem for the Frobenius morphism. This way 
they show that G/B is Frobenius split, compatibly with any Schubert variety. 

In this note we improve these results to the case when L is effective and as 
a consequence prove that Schubert varieties are normal. In a recent manuscript 
[6] Seshadri has proved the normality of Schubert varieties. 
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Our observation is simply that in the case of the flag variety G/B there is a 
splitting F,6--,6 which actually factors through F,((9(D))~(9 where D is an 
effective divisor linearly equivalent to L p-1 where p is the product of all the 
fundamental weights, p > 0 is the characteristic of the base field and F is the 
absolute Frobenius morphism. This extra information yields the improved 
result mentioned above. 

2. Flag varieties 

First we introduce some notation. The base field k will always be an algebra- 
ically closed field of characteristic p >0, unless otherwise mentioned. For  any 
variety X over k, F: X ~ X  is the absolute Frobenius morphism. For a smooth 
variety X we denote by K x (or K) its canonical bundle. If V is an ~x-Module 
we denote the pull back F* V sometimes by V ~p). The character on B given by 
the product of fundamental characters is denoted p. In additive terminology, 
we may also say p is the half sum of positive roots. 

We start with a supplement to the result of Metha-Ramanathan (r4], 
Proposition 1) on the vanishing of cohomology of ample line bundles on 
Frobenius split varieties. Recall that a variety is Frobenius split ([4], Defini- 
tion 2) if the exact sequence 

O~6--'F, ~)--'C ~O 

splits, where (9--,F, C9 is the pth power map. The refinement consists in as- 
suming that the splitting, namely a section of (F,6)* is actually a section of 
F,((_0(D))* where D is an effective divisor. The result gives vanishing of eohomo- 
logy for many line bundles which are not necessarily ample. 

Lemma 1. Let X be a variety which admits a splitting of 

0 -~0~  F, (9--, C-~0 

given by a map F, (9---,F, (_9(D)~t~ where D is some effective divisor. Then for any 
vector bundle V on X, we have that HI(X, VtP)| implies Hi(X, V)=0.  I f  
V---,W is a homomorphism then Hi(X,V)~Hi(X,W) is injective (resp. sur- 

jective) if Hi(x, V tp) | (9(D)) ~ Hi(X, W tp) | 6(9)) is so. 

Proof Tensor the Frobenius sequence with V and note the isomorphisms 
V| (9 =F,(VtP)), VQF,((,O(D))= F,(VtP)Q6(D)). Thus we have a diagram 

H i ( X ~  Hi(X' i* V(p)) 

H'(X, F,(V tp) | (9(D))) 

where the composite on Hi(X, V) is identity. But 

Hi(X, F, (VtP) | 6(D))) ~ H'(X, V (p) | (9(D)), 
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since F is an affine morphism. The first assertion is then obvious. The second 
assertion is equally clear after observing that in the diagram 

Hi(x, V) , Hi(X, V(P)| 

1 
H'(X, W) , Hi(X, W~P~| 

the induced splittings of the horizontal rows are compatible. 
We would like to use the above result in the following situation. Let L be a 

line bundle and F(L)x~L be the natural evaluation homomorphism of the 
trivial bundle to L. We tensor this by another line bundle M and apply F to it. 
We get the natural map 

F(L) | F(M)-~ F(L | M). 

By Lemma 1 this is surjective if 

r((r(L) x | M)(P)| (9(D)) -+ r((L | M)(P)| (9(D)) 

is surjective. Thus we get the following corollary. 

Corollary. Under the assumptions on X as in Lemma 1 we have: the natural map 

is surjective if 

F(X, L) | F(X, M) ~ F(X, L | M) 

r (x ,  L )~P~ Q F( X, MP Q(9( D)) ~ F( X, LP Q MP | 

is surjective. 

Remark. Similar result for G/B has been proved by Andersen [1]. 

We wish to apply this principle now to the flag variety G/B. This is possible 
due to the following proposition. 

Proposition 1. Let X = G/B. The exact sequence 

O-oOx~F , (_gx~ C-~O 

admits a splitting F,(gx-,t9 x which factors through F,(Ox(D)) where D is an 
effective divisor with Ox(D).~.LVp -~, Lp being the line bundle associated to the 
character p (=the product of fundamental weights) of B to the B-bundle 
G~G/B. 

Proof. This is a simple consequence of Corollary to Proposition 10 in [4]. We 
will recall how this splitting is given, indicating how the improvement is 
actually implicit in the construction. In order to give a map F, ~ P x ~ x  of the 
desired type or what is the same a section of F,(Ox(D))* one uses the relative 
duality for the Frobenius morphism. This gives the isomorphism F,(~gx(D))* 
~F,(KI-P| A section of the latter can be viewed as a section of 
KI-P| For X we know that K - I ~ L  2 and hence KI-P| 
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~L~  -1. The composite of a map F,((gx(D))~O x with the inclusion (gx--*F , (_Ox~ 
F,((gx(D) ) is a constant function and so it is enough to check that it is 
nonzero at a point, say (B)~G/B. In [4] (corollary to Proposition 10) however, 
this section is given by considering a well-known birational morphism ~k: 
Z--*G/B of a nonsingular variety Z onto G/B. A section of K -1 is then 
constructed which vanishes on a divisor which we may assume to be of the 
form ~- I (D)  with D linearly equivalent to L~ -1. The differential of ~k gives a 
nonzero map K - l ~ t P * K x  1 and hence we get a section of @*Kx I or what is 
the same a section of ~ k , ( ~ * K ~ I ) = K x l |  = K x  1. This gives the desired 
splitting. 

Now we will apply the corollary to the case of G/B to prove the following 
theorem. 

Theorem 1. Let k be an algebraically closed field of arbitrary characteristic, G a 
reductive group over k and Q a parabolic subgroup of G. Let L, E be effective 
line bundles on G/Q, i.e. H~ L)g~ 0 and H~ E)*  O. Then we have 

i) Hi(G/Q, L) = 0 for i > O. 
ii) The natural map 

F(G/Q, L) x F(G/Q,/X)--,F(G/Q, L |  

is surjective. 
iii) I f  moreover L is ample then the complete linear system of L imbeds G/Q 

as a projectively normal variety. 

Proof. The variety G/Q and the line bundles all can be constructed as schemes 
fiat over 7.. Then a simple application of semicontinuity shows that if we prove 
the theorem for fields of positive characteristic then it also follows for fields of 
zero characteristic. (Of course one uses the Lefschetz principle to go from one 
field to another of the same characteristic.) Thus we can assume that the base 
field is of characteristic p > 0. 

We can also reduce to the case Q=B, a Borel subgroup. For, assume by 
induction that we have proved i) for lower dimensional reductive groups. Then 
the fibration of n: G/B--,G/Q has as fibre Q/B, which is the flag variety of a 
lower dimensional group viz. the reductive part  of Q. Hence we have Hi(Q/B, 
(gQ/B)=0, So that R i n ,  d)=0 for i>0.  Since n ,  0=(9,  n , n * L = L .  Thus by 
Leray's spectral sequence we have, for any line bundle L on G/Q, Hi(G/Q, L) 
= HI(G/B, n* L). Thus we need deal with only G/B. 

i) This of course is well known (cf. e.g. [1], [3], [4]). In the present set up 
we can argue as follows. By Lemma 1 we have only to show that Hi(LPQL~ -1) 
= 0  or by interation that Hi((L|174 This is true since on G/B, 
LQLp  is ample whenever L is effective. 

ii) We will need the following property of the Steinberg module F(L~-I). 

Lemma 2. The natural map 

F(L) (p~ | r(L~- 1)__, F(L" | L~- 1) 

is an isomorphism, for all effective line bundles L = L z. 
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Proof. From 1), we conclude that dim F(L~) is the same as that given in 
characteristic 0 and hence given by Weyl's dimension formula, namely 

1-I 
a>O 

[I (p, 
a>O 

Substituting in turn 2=Z, ( p - 1 ) p  and p z + ( p - 1 ) p  in this formula, one sees 
that the dimensions on the left and the right sides are the same. We first note 
that when L is of the form L~ ~-a for some r>=O, the right side is F(L~ ~+'-1) 
which is an irreducible G-module. Hence the G-linear map in the lemma is 
surjective and consequently an isomorphism. In general, F(L~ ~-~ | for 
large enough r and let s be a nonzero section of L~"-I| -~. Tens| with 
s p gives an injection F(L)(P)~F(LPp~-I)(p) and hence an injection 
F(L)(P)| - 1)~F(LP~ +'-t).  Since this factors through the map in the lemma, 
we see it is also an injection and hence an isomorphism. 

To return to the proof of Theorem 1, it is enough to show by corollary to 
Lemma 1 that 

F(L ) ~'~ | | L~- a) ~ F(L~ | (L') p | L~- 1) 

is onto. We will show that 

r(L)~P~ | r((L')P) | r(L~- ~) -. r((L | L'F O L~- ~) 

is itself surjective. Now by Lemma 2, -') and hence 
it is enough to show that 

F(LP) | r((I2 F) N r(CPo- 1) .__, r((C N 12), | L~ - ~) 

is onto. Again by Lemma 2, it is enough to show that 

F(LP) NF((L'F NLPn -~) -*F((L | N L~ -~) 

is onto. By iterating this result replacing L by L p and L' by L'r| -~ and so 
on, we see that it is enough to show that 

r(LPr) | F((L,F~ | L~r- 1) ..~ F((L | 12) pr | L~ ~- 1) 

is onto for large r. If L is ample, this is obvious since on X x X, the bundle L 
=p*L|174 is ample and hence we have only to choose r large enough 
so that HI(Lp~Qp~L-pl| where Ia is the ideal sheaf of the diagonal. Thus 
we have proved the assertion when one of L, L' is ample. In general, we have 
only to show that 

F(L p) | ')-~F(LP| - ') 

is onto. Since (E)P| -1 is ample, this follows from the earlier assertion. 
iii) Since G/Q is nonsingular this follows at once from ii). 



222 S. Ramanan and A. Ramanathan 

3. Schubert varieties 

We now turn to similar questions on Schubert varieties. We will prove the 
following theorem. 

Theorem 2. Let k be a field of arbitrary characteristic, zero or positive. Let G 
be a reductive group over k and Q be a parabolic subgroup. Let X be a Schubert 
variety in G/Q, i.e. the closure of a B-orbit in G/Q. Let L, E be effective line 
bundles on G/Q. Then we have 

i) Hi(X, L) = 0 for i > 0 
ii) F(G/Q, L)--+F(X, L) is surjective 

iii) F(X, L) | E) ~F(X,  L |  is surjective. 

Proof. The Schubert variety X can be constructed as a scheme flat over (at 
least) a nonempty open subset of Spec 7Z (see Lemma 3, p. 22 in [4]). Thus as 
we have remarked in the proof  of Theorem 1 we can assume the field k is of 
characteristic p > 0. 

Next we show how to reduce to the case Q = B .  Consider the fibration n: 
G/B~G/Q. Let X'=n-I (X) .  Then n: X'---}X is a Q/B fibration and X'  is 
irreducible, closed and B-invariant. Hence it is a Schubert variety in G/B. 
Moreover as in the proof of Theorem 1 Leray spectral sequence gives that 
HI(X, L)= Hi(X ', n* L). Then it follows easily that the theorem for G/B implies it 
for G/Q. So we only deal with the case G/B below. 

We have given a splitting F,((P(D))~(9 on G/B (see Proposition 1 above). 
The induced splitting F,C--}O on G/B has been shown in [4] to be compatible 
with the Schubert varieties Xi(=g,(Ztl  ..... il) in the notation of [4], [2]). Since 
by suitably choosing the reduced expression for the longest element of the 
Weyl group we can get our given X as one of the X i (cf. [2], w Lemma 3, p. 
71) we can assume that this splitting is compatible with X. (In fact one can 
show that this splitting is compatible with any Schubert variety. See [5]). Thus 
there is a splitting F,(gP(D))--}g9 on G/B such that F,I  maps on I, where I is the 
ideal sheaf of X. Since this factors through F,(I(D))~(P, its image is an ideal 
containing I. If  D is so chosen as not to contain X (which is possible since D is 
very ample) then the image of F,(I(D)) equals I outside the support  of D and 
hence everywhere (see proof of Lemma 1 in [4]). In other words, the splitting 
F,((9(D))o(,9 takes F,(I(D)) into 1 giving a splitting of the inclusion 1--,F,(I(D)). 

Now tensor the split sequence 

0-- ,I-- ,r ,( t(D)) ~ C ' - , 0  

by L and take cohomology. Then we get that HI(G/B,L| is a direct sum- 
mand of Hi(G/B,L| LP|174 Replacing L by L v~-I 

p r -  i 1 i p r  pr__ 1 I" " " i p r -  1 
|  - we see that  H(G/B, IA | |  lmphes that H(G/B, IJ 
| 1 7 4  and hence by induction that Hi(G/B,L| But 
LPr|174174174174 SO that, L |  being ample, we do have 
HI(G/B,Lr174174 for i > 0  and large enough r. Hence we conclude that 
H'(G/B, L |  0 for i >  0. Using this in the cohomology sequence of 

O~L| ~ LtX ~O 

Theorem 2 follows from Theorem 1. 
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Theorem 3. Let k be a field of arbitrary characteristic. Let G be a reductive group 
over k and Q a parabolic subgroup. Then any Schubert variety X in G/Q is 
normal. Moreover the linear system on X given by an ample line bundle on G/Q 
imbeds X as a projectively normal variety. 

Proof. We only have to prove the normality of X. The projective normality 
then follows from Theorem 2, part iii). 

As in the proof of Theorem 2 for any Schubert variety X ~ G/Q, ~- I(X) is a 
Schubert variety in G/B, where n: G/B~G/Q is the canonical map. Since n: 
n - I ( X ) ~ X  is a fibration with the nonsingular Q/B as fibre, if we prove n-~(X) 
is normal it then follows that X is normal. Thus we are reduced to the case Q 
~ n .  

Let X be the Schubert variety in G/B corresponding to co~W. We proceed 
by induction on d imX (=/(co), the length of co). I f / (co)=0 there is nothing to 
prove. Otherwise we can find a simple root ~ such that co=co's,, with l(~o') 
=l (~o)- l .  Let P~ be the parabolic subgroup BuBs~B. Let Y be the Schubert 
variety corresponding to co'. Then under n: G/B--,G/P, both X and Y have the 
same image, say Y', with X = n - I ( Y  ') a IPl-bundle over Y' and Y birational to 
Y' (see e.g. [3] w Lemma 1, p. 562). Thus to prove X is normal it is enough 
to prove Y' is normal. 

Let L be an ample line bundle on G/P,. Consider the diagram 

r(G/B,~*L") , ,  r(Y, ~* L") 

r(G/P,, L") , ,  F(Y; 12) 

Since the top horizontal arrow is surjective by Theorem 2 and bottom arrow is 
surjective because of ampleness it follows that 

r(Y', L")-~ r(Y, ~* L=)= r(Y' ,L"|  ~r) 

is surjective (and hence bijective). Since this is true for all n, and L is ample on 
Y', this implies that n , (gr=(9  r, (where n: Y ~ Y '  is given by natural map 
G/B~G/P,). Since dim Y=l (co ' )=dimX-1 ,  by the induction hypothesis Y is 
normal. Then n ,  (,0r=O r, implies Y' is normal, as was to be proved. 

Remark. In [5] the following results will be proved. 

i) The diagonal G/B~G/B x G/B is compatibly split. This easily yields the 
projective normality. In fact for any Schubert variety X, the diagonal is 
compatibly split. 

ii) It is easy to see that the splitting of G/B given in [4] compatibly splits 
all Schubert varieties. Then it would follow that the intersection of any set of 
Schubert varieties is reduced. 

iii) Schubert varieties are Cohen-Macaulay. 
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