Vector bundles with a fixed determinant on an irreducible nodal curve #### USHA N BHOSLE Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India E-mail: usha@math.tifr.res.in MS received 7 July 2005; revised 31 August 2005 **Abstract.** Let M be the moduli space of generalized parabolic bundles (GPBs) of rank r and degree d on a smooth curve X. Let $M_{\bar{L}}$ be the closure of its subset consisting of GPBs with fixed determinant \bar{L} . We define a moduli functor for which $M_{\bar{L}}$ is the coarse moduli scheme. Using the correspondence between GPBs on X and torsion-free sheaves on a nodal curve Y of which X is a desingularization, we show that $M_{\bar{L}}$ can be regarded as the compactified moduli scheme of vector bundles on Y with fixed determinant. We get a natural scheme structure on the closure of the subset consisting of torsion-free sheaves with a fixed determinant in the moduli space of torsion-free sheaves on Y. The relation to Seshadri–Nagaraj conjecture is studied. **Keywords.** Nodal curves; torsion-free sheaves; fixed determinant. # 1. Introduction Generalized parabolic vector bundles (GPBs) on a smooth curve X are vector bundles on X together with parabolic structures on finitely many disjoint divisors D_j , $j=1,\ldots,m$ [1, 2]. There is an open subscheme M'' of the moduli space M of GPBs on which one can define a determinant morphism into the moduli space of generalized parabolic line bundles \bar{L} , the map does not extend to M. Let $M''_{\bar{L}}$ be its locally closed subset consisting of GPBs with a fixed determinant \bar{L} . In this note, we define a moduli functor and construct a coarse moduli scheme $M_{\bar{L}}$ for it. The moduli scheme contains $M''_{\bar{L}}$ as an open dense subscheme. Let Y be an irreducible projective nodal curve with nodes y_j , $j=1,\ldots,m$ and $p\colon X\to Y$ its desingularization with D_j the inverse image of y_j . Denote by U the moduli variety of torsion-free sheaves of rank r, degree d on Y. Let U' be the open subvariety of U corresponding to vector bundles on Y. There is a surjective morphism f from M onto U [1, 2]. The restriction of the morphism f to $M'=f^{-1}U'$ is an isomorphism onto the open subvariety U' of U. A GPB \bar{L} gives a torsion-free sheaf \mathcal{L} on Y. If \mathcal{L} is locally free, let $U'_{\mathcal{L}}$ be the closed subset of U' consisting of vector bundles with fixed determinant \mathcal{L} . Using f, $U'_{\mathcal{L}}$ may be identified with $M'_{\bar{L}}$ and $M_{\bar{L}}$ can be regarded as compactified moduli variety of vector bundles on Y with determinant \mathcal{L} . We show that $f(M_{\bar{L}}) = \overline{U_{\mathcal{L}}}$, the closure of $U_{\mathcal{L}}'$ in U, thus giving $\overline{U_{\mathcal{L}}'}$ the scheme structure of an image subscheme of U. Let I_j denote the ideal sheaf at the node y_j . For a torsion-free sheaf F of rank r on Y, let $N = \Lambda^r F/(\text{torsion})$ where (torsion) denotes the torsion subsheaf. Then we show that for any \bar{L} , the image $f(M_{\bar{L}})$ can be described (as a set) by $$f(M_{\bar{L}}) = \{ F \in U : I_i^r \mathcal{L} \subset N \subset \mathcal{L}, \quad \forall j \}.$$ This gives a proof of a conjecture by Seshadri and Nagaraj (Conjecture (a), p. 136 of [3]). Proving Seshadri–Nagaraj conjecture was not the aim of this note. The conjecture was proved by Sun [6] by degeneration methods. However he does not get a scheme structure on $\overline{U'_{\mathcal{L}}}$ or a moduli functor (except in some low rank cases). Our aim is to give a moduli functor and an explicit construction of a projective moduli space for it which contains an open subvariety isomorphic to $U'_{\mathcal{L}}$ if \mathcal{L} is a line bundle. We also deal with the case when \mathcal{L} is torsion-free but not locally free. The construction is much simpler than that of Schmitt [4] and hence the moduli space is easier to study. For example, properties like reduced, irreducible, Cohen–Macaulay follow immediately for our moduli space. Normality is true in rank 2 and is expected to be true in general. These properties have been used in computation of Picard groups in the rank two case. #### 2. The moduli scheme of GPBs with fixed determinant 2.1. Let X be a nonsingular projective curve over an algebraically closed base field k. Let D_j , j = 1, ..., m be disjoint divisors on X with $D_j = x_j + x'_j$, where x_j , x'_j are distinct closed points. We recall here some basics on generalized parabolic bundles (GPBs), details may be found in [1, 2]. #### **DEFINITION 2.1** A generalized parabolic bundle (GPB, in short) of rank r and degree d on X is a vector bundle E of rank r and degree d on X together with r-dimensional vector subspaces $F_j(E)$ of $E_{x_j} \oplus E_{x_j'}$. For a subbundle N of E, define $F_j(N) = F_j(E) \cap (N_{x_j} \oplus N_{x_j'})$ and $f_j(N) = \dim F_j(N)$. # **DEFINITION 2.2** Fix a rational number $\alpha \in (0, 1]$. A GPB $(E, F_j(E))$ is α -stable (resp. α -semistable) if for every proper subbundle N of E, one has $(d(N) + \alpha \Sigma_j f_j(N))/r(N) < (\text{resp.} \leq) (d(E) + \alpha rm)/r$. # **DEFINITION 2.3** Let $p_j \colon F_j(E) \to E_{x_j}, \ p'_j \colon F_j(E) \to E_{x'_j}$ be the projections. Assume that for each j, at least one of p_j , p'_j is an isomorphism. The subspace $F_j(E)$ determines an element $F_j(E)$ of $\operatorname{Gr}(r, E_{x_j} \oplus E_{x'_j}) \subset \mathbf{P}(\Lambda^r(E_{x_j} \oplus E_{x'_j}))$. One has a (rational) morphism $\delta \colon \mathbf{P}(\Lambda^r(E_{x_j} \oplus E_{x'_j})) \to \mathbf{P}(\Lambda^r E_{x_j} \oplus \Lambda^r E_{x'_j})$. Let det $F_j(E)$ denote the one-dimensional subspace of $\Lambda^r E_{x_j} \oplus \Lambda^r E_{x'_j}$ determined by $\delta(F_j(E))$. Define the determinant of $(E, F_j(E))$ to be the generalized parabolic line bundle (det E, det $F_j(E)$). # **DEFINITION 2.4** A family of GPBs of rank r, degree d parametrized by a scheme T is a tuple $(\mathcal{E}, F_j(\mathcal{E})_j)$ where $\mathcal{E} \to T \times X$ is a family of vector bundles of rank r, degree d on X which is flat over T and $F_j(\mathcal{E})$ is a rank r subbundle of $\mathcal{E}\mid_{T\times x_j}\oplus\mathcal{E}\mid_{T\times x_j'}$. The notion of equivalence of families is the obvious one. We fix a generalized parabolic line bundle $\bar{L} := (L, F_j(L))$. Fix isomorphisms $h_j: L_{x_j} \to k$, $h'_j: L_{x'_j} \to k$. Then $F_j(L)$ can be identified to a point $F_j(L)$ of \mathbf{P}^1 of the form (1:0), (0:1) or $(1:\lambda_j), \lambda_j \in k^*$. # 2.2 The moduli functor For simplicity, let us assume that there is only one divisor $D = x_1 + x_2$. Let $(\mathcal{E}, F(\mathcal{E})) \to T \times X$ be a family of GPBs of rank r, degree d on X with \mathcal{E}_t , $t \in T$, of fixed determinant L. For i = 1, 2 we have vector bundles $$\mathcal{E}_{x_i} = \mathcal{E}|_{T \times x_i} \to T.$$ Let $\mathcal{G}r \to T$ denote the Grassmannian bundle of rank r subbundles of $\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}$. It is embedded as a closed subvariety in $\mathbf{P}(\Lambda^r(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}))$ by Plücker embedding. Note that $F(\mathcal{E})$ defines a section of $\mathcal{G}r$. Since det $\mathcal{E}|_{t \times X} = L$, it follows that det $\mathcal{E} = p_T^*N \otimes p_X^*L$ for some line bundle N on T. Hence for i = 1, 2 one has det $\mathcal{E}_{x_i} = N \otimes L_{x_i} = N$, using the isomorphism h_i . Let $q_i \colon \Lambda^r(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}) \to \det \mathcal{E}_{x_i} = N$ be the projections, i = 1, 2. Define a hyperplane subbundle \mathcal{H} of $\mathbf{P}(\Lambda^r(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}))$ by $q_2 = 0$ if F(L) = (1:0), by $q_1 = 0$ if F(L) = (0:1) and by $q_2 - \lambda_j q_1 = 0$ if $F(L) = (1:\lambda)$. Let $H_T := \mathcal{G}r \cap \mathcal{H}$. It is a closed reduced subscheme of $\mathcal{G}r \subset \mathbf{P}(\Lambda^r(\mathcal{E}_{x_1} \oplus \mathcal{E}_{x_2}))$. Note that H_T is independent of the choice of h_1, h_2 . More generally, if we consider parabolic structures over finitely many disjoint divisors $D_j = x_j + x'_j$, for each j one constructs the hyperplane bundle \mathcal{H}_j and Grassmannian bundle $\mathcal{G}r_j$ over T. Let $\mathcal{G}r$ be the fibre product of $\mathcal{G}r_j$ over T and H_T the fibre product of $\mathcal{G}r_j \cap \mathcal{H}_j$ over T. # **DEFINITION 2.5** Let $F_{\bar{L}}^{ss}$ be the functor $F_{\bar{L}}^{ss}$: Schemes \to Sets which associates to a scheme T the set of equivalence classes of families $(\mathcal{E}, F(\mathcal{E})) \to T \times X$ of α -semistable GPBs of rank r and degree d with det $\mathcal{E}_t \cong L$ for all $t \in T$ such that the section of $\mathcal{G}r$ defined by $(F_j(\mathcal{E})_j)$ maps into H_T . One similarly defines a full subfunctor $F_{\bar{L}}^s$ of $F_{\bar{L}}^{ss}$ with semistable replaced by stable. # 2.3 Construction of the moduli space Let *S* denote the set of semistable GPBs (E, F(E)), where *E* is a vector bundle of rank *r*, degree *d* with fixed determinant *L* and F(E) is a subspace of $E_{x_j} \oplus E_{x'_j}$ of dimension *r* with fixed weights $(0, \alpha), 0 < \alpha < 1$. For $m \gg 0$, all GPBs in *S* satisfy the condition $$(*) \hspace{1cm} H^1(E(m)) = 0, H^0(E(m)) \cong \mathbb{C}^n, H^0(E(m)) \to H^0(E(m) \otimes (\oplus_j \mathcal{O}_{D_j}))$$ is surjective. Let Q denote the quot scheme of coherent quotients of $\mathcal{O}_X^n \otimes \mathcal{O}_X(-m)$ with fixed Hilbert polynomial determined by r, d. Let R be the nonsingular subvariety of Q corresponding to quotient vector bundles E satisfying condition (*). Denote by R_0 the nonsingular closed subvariety in R corresponding to E with $\Lambda^r(E) = L$. Let $\mathcal{E} \to R \times X$ be the universal quotient bundle. Over R, we have the fibre bundle $\mathcal{G}r$ with each fibre an m-fold product of Gr(r, 2r) as in §2.2. Over R_0 , we have the fibre bundle $\tilde{R}_0 := H_{R_0}$ whose fibres are *m*-fold products of hyperplane sections of Gr(r, 2r). Then $\tilde{R_0}$ is a closed subvariety of $\mathcal{G}r$. Let $\tilde{R_0}^s$ (resp. $\tilde{R_0}^{ss}$) be the open set of stable (resp. semistable) points in $\tilde{R_0}$. The GIT quotient M of $\mathcal{G}r$ by $\operatorname{PGL}(n)$ for a suitable polarization (depending on α) is the coarse moduli space for GPBs [1, 2]. It is a normal projective variety. Since $\tilde{R_0}$ is a $\operatorname{PGL}(n)$ -invariant closed subscheme (subvariety) of $\mathcal{G}r$, the GIT quotient $M_{\tilde{L}}$ of $\tilde{R_0}^{ss}$ by $\operatorname{PGL}(n)$ is a closed subvariety of M (with a natural reduced subscheme structure). The GIT quotient $M_{\tilde{L}}^s = \tilde{R_0}^s //\operatorname{PGL}(n)$ is an open subscheme of $M_{\tilde{L}}$. It is easy to see that $M_{\tilde{L}}$ (resp. $M_{\tilde{L}}^s$) is the coarse moduli space for the functor $F_{\tilde{L}}^{ss}$ (resp. $F_{\tilde{L}}^s$). **Theorem 1.** Let $\alpha \in (0,1)$. Then there is a coarse moduli space $M_{\bar{L}}$ (resp. $M_{\bar{L}}^s$) for the functor $F_{\bar{L}}^{ss}$ (resp. $F_{\bar{L}}^s$). The moduli space $M_{\bar{L}}$ is a projective (irreducible) variety, containing $M_{\bar{L}}^s$ as an open subvariety. Let M' (resp. $M'_{\bar{L}}$) be the open subscheme of M (resp. $M_{\bar{L}}$) consisting of GPBs $(E,F_j(E))$ such that the projections p_j,p'_j are isomorphisms for all j. Then $M'_{\bar{L}}$ corresponds to GPBs in M with fixed determinant \bar{L} with $F_j(L)=(1:\lambda_j),\lambda_j\in k^*$ and $M_{\bar{L}}$ is the closure of M'_j . # 3. Application to nodal curves 3.1. Let Y be an irreducible projective nodal curve with nodes y_j , j = 1, ..., m and X its desingularization with D_j , the inverse image of y_j . Then there is a correspondence from GPBs on X of rank r, degree d to torsion-free sheaves on Y of the same rank and degree [1, 2]. The correspondence induces a surjective morphism f from M onto U, where U is the moduli space of torsion-free sheaves of rank r, degree d on Y. The restriction of the morphism f to M' is an isomorphism onto the open subvariety U' of U corresponding to vector bundles on Y. One has $f^{-1}U' = M'$. For r=1, a GPB \bar{L} corresponds to a torsion-free sheaf \mathcal{L} on Y. Then \mathcal{L} is a line bundle if and only if $F_j(L)=(1,\lambda_j),\ \lambda_j\in k^*,\ \forall j$. Suppose that \mathcal{L} is a line bundle and let $U'_{\mathcal{L}}$ be the closed subset of U' corresponding to vector bundles with fixed determinant \mathcal{L} . Then $f^{-1}U'_{\mathcal{L}}=M'_{\bar{L}}$ and the morphism f maps $M'_{\bar{L}}$ isomorphically onto $U'_{\mathcal{L}}$. Hence, if \mathcal{L} is a line bundle, then $f(M_{\bar{L}})$ contains $U'_{\mathcal{L}}$ as an open subset. Since $M_{\bar{L}}$ is an irreducible, closed subscheme of M, the image $f(M_{\bar{L}})$ is a closed, irreducible subscheme of U and $U'_{\mathcal{L}}$, being open, is dense in it. It follows that $f(M_{\bar{L}})$ is the closure of $U'_{\mathcal{L}}$. *Remark* 3.1. The projective scheme $M_{\bar{L}}$ can be regarded as the compactified moduli space of vector bundles of rank r with determinant \mathcal{L} on the nodal curve Y. Remark 3.2. In fact, for any torsion-free sheaf \mathcal{L} of rank 1, the image $f(M_{\tilde{L}})$ is a closed, irreducible subscheme of U containing the subset of U consisting of torsion-free sheaves with fixed determinant \mathcal{L} as an open dense set. # 3.2 Relation to Seshadri–Nagaraj conjecture For a torsion-free sheaf F of rank r on Y, let $N := (\Lambda^r F)/(\text{torsion})$, where (torsion) denotes the maximum subsheaf with proper support. Denote by I_j the ideal sheaf of the node y_i . Define $U_{\mathcal{L}}$ as the set $$U_{\mathcal{L}} = \{ F \in U : I_i^r \mathcal{L} \subset N \subset \mathcal{L}, \quad \forall j \}.$$ Seshadri and Nagaraj had defined this set for Y with one node and conjectured that if \mathcal{L} is a line bundle, then $U_{\mathcal{L}}$ is the closure of $U'_{\mathcal{L}}$ (Conjecture (a), page 136 of [3]). We prove this conjecture. Let \tilde{R}_0^{1-ss} denote the subset consisting of 1-semistable points, then $\tilde{R}_0^{ss} \subset \tilde{R}_0^{1-ss}$. Let P be the moduli space of 1-semistable GPBs [5]. One has morphisms $f \colon \tilde{R}_0^{ss} \to U$ inducing $f \colon M_{\tilde{L}} \to U$ and $f_1 \colon \tilde{R}_0^{1-ss} \to U$ inducing $f_1 \colon P \to U$. # **PROPOSITION 3.3** Let \overline{L} be any GPB of rank 1 on X and L the corresponding torsion-free sheaf of rank 1 on Y. - (1) If $(E, F_j(E)) \in \tilde{R}_0^{1-ss}$, then $F = f_1((E, F_j(E))) \in U_{\mathcal{L}}$ and hence $f(M_{\tilde{L}}) \subset U_{\mathcal{L}}$. - (2) The morphism $\tilde{R}_0^{1-ss} \to U$ surjects onto $U_{\mathcal{L}}$. - (3) $f(M_{\bar{L}}) = U_{\mathcal{L}}$ for α sufficiently close to 1. *Proof.* We may assume that Y has only one node y. It is easy to see (from the proof) that the general case follows exactly on same lines. Consider a GPB (E, F(E)). Let $p_i : F(E) \to E_{x_i}$, i = 1, 2 be the projections and $a_i = \dim \ker p_i$. Let $E_0 = p^*(F)/(\text{torsion})$, then $E_0 \subset E$. Since $F|_{Y-y} = p_*E|_{Y-y}$, one has $N|_{Y-y} = (p_*L)|_{Y-y} = \mathcal{L}|_{Y-y}$. Hence to check that $I^r\mathcal{L} \subset N \subset \mathcal{L}$, we have only to check it locally at the node y. Let (A, m) be the local ring at y. Its normalization \bar{A} is a semilocal ring with two maximal ideals m_1, m_2 . The inclusion $$F_{\mathbf{v}} \subset (p_*E)_{\mathbf{v}}$$ may be identified with the inclusion $$(r-a_1-a_2)A \oplus a_1m_1 \oplus a_2m_2 \subset r\bar{A}$$ (Proposition 4.2 of [2]). (1) We consider the following cases separately. Case (i). Suppose that p_1 , p_2 are both isomorphisms. Then $\det(E, F(E)) = \bar{L}$ corresponds to a torsion-free sheaf \mathcal{L} which is locally free at y. In this case, F is locally free at y with $(\det F)_y = \mathcal{L}_y$ so that $N = \mathcal{L} \supset I^r \mathcal{L}$. Case (ii). Assume that p_1 is an isomorphism, p_2 is not an isomorphism (the opposite case can be dealt with similarly). Then $\det(E, F(E)) = (L, L_{x_1}) = \bar{L}$ corresponds to \mathcal{L} which is not locally free at y. One always has $N \subset p_*L$ and $N_y \subset \mathcal{L}_y$ if and only if $N_y \otimes k(y) \subset F(L)$. Locally, $a_1 = 0$ so that $F_y = (r - a_2)A \oplus a_2m_2$. Then $N_y = (m_2)^{a_2}$ so that $N_y \otimes k(y) \subset L_{x_1} = F(L)$. Hence $N \subset \mathcal{L}$. Since $m^r \subset m_2^{a_2}$, it follows that $I^r \mathcal{L} \subset N \subset \mathcal{L}$. Case (iii). If both p_1 and p_2 are not isomorphisms, one has $a_1 \ge 1$, $a_2 \ge 1$. Then locally, $N_y = m_1^{a_1} m_2^{a_2} \subset m_1 m_2 = m$. It follows that N_y maps to zero in $p_*L \otimes k(y)$ so that $N \subset I\mathcal{L} \subset \mathcal{L}$. Since $m^r \subset m_1^{a_1} m_2^{a_2}$, one has $I^r\mathcal{L} \subset N \subset \mathcal{L}$. Note that any $(E, F(E)) \in M_{\bar{L}}$ with $F(L) = (1 : \lambda), \lambda \in k^*$ (i.e. \mathcal{L} locally free at y) occurs only in cases (i) or (iii). For $(E, F(E)) \in M_{\bar{L}}$ with F(L) = (1 : 0) (or F(L) = (0 : 1)) only cases (ii) and (iii) occur. Part (1) now follows. Note that $(E, F_j(E))$ is 1-semistable if and only if F is semistable [1, 2]. (2) Let $F \in U_{\mathcal{L}}$. Since $I^r \mathcal{L} \subset N \subset \mathcal{L}$ it follows that $L|_{X-D} = p^*N|_{X-D}$ where $D = \sum_j (x_j + x_j')$. Since det $E_0 = p^*N$ outside D, one has $L = \det E_0$ outside D. It follows that $L = \det E_0 \otimes \mathcal{O}_X(\sum_j (a_j x_j + a_j' x_j'))$, $a_j + a_j' \leq r$. Let E be given by an extension $$0 \to E_0 \to E \to \bigoplus_j (k(x_j)^{a_j} \oplus k(x_j')^{a_j'}) \to 0.$$ The composite $F \hookrightarrow p_*E_0 \hookrightarrow p_*E$ induces a linear map $F \otimes k(y_j) \to p_*(E) \otimes k(y_j)$. Let $F_j(E)$ be the image of this linear map. Then $(E, F_j(E))$ maps to F and it is 1-semistable as F is semistable [2]. By construction, det $E = \det E_0 \otimes \mathcal{O}_X(\sum_j (a_j x_j + a_j' x_j')) = L$. It follows that $(E, F_j(E)) \in \tilde{R}_0^{1-ss}$. (3) Let $P_{\bar{L}}$ denote the closure of $\tilde{R}_0^{1-ss}/\text{PGL}(n)$ in P. For α close to 1, there is a surjective birational morphism $\phi \colon M \to P$ with $f = f_1 \circ \phi$. It maps $M_{\bar{L}}$ birationally into $P_{\bar{L}}$. Since both these spaces are irreducible and of the same dimension, it follows that $\phi(M_{\bar{L}}) = P_{\bar{L}}$. Since $f(\tilde{R}_0^{1-ss})$ surjects onto $U_{\mathcal{L}}$, it follows that $f_1(P_{\bar{L}}) \supset U_{\mathcal{L}}$ and hence $f(M_{\bar{L}}) \supset U_{\mathcal{L}}$. From (1), it follows that $U_{\mathcal{L}} = f(M_{\bar{L}}) = f_1(P_{\bar{L}})$. #### **COROLLARY 3.4** If \mathcal{L} is a line bundle, then $U_{\mathcal{L}}$ is the closure of $U'_{\mathcal{L}}$. *Proof.* From Proposition 3.3, one has (as sets) $f(M_{\bar{L}}) = U_{\mathcal{L}}$. Since $f(M_{\bar{L}})$ is the closure of $U'_{\mathcal{L}}$ if \mathcal{L} is a line bundle, the result follows. *Remark* 3.5. The proof of Proposition 3.3(1) easily generalizes to $(E, F_j(E))$ replaced by a family $(\mathcal{E}, F_j(\mathcal{E})) \to T \times X$. Remark 3.6. Sun [6] had proved the conjecture (a) of Seshadri–Nagaraj by considering a smooth curve X degenerating to an irreducible nodal curve Y. However he does not get a moduli functor or a scheme structure on $U_{\mathcal{L}}$ except in some cases (e.g. one node, rank 2, degree 1). Remark 3.7. Schmitt [4] has constructed a moduli space \mathcal{M} of α -semistable descending singular $\mathrm{SL}(r)$ -bundles (A, q, τ) where (A, q) is a GPB on X and τ : $\mathrm{Sym}^*(A \otimes \mathbb{C}^r)^{\mathrm{SL}(r,\mathbb{C})} \to \mathcal{O}_X$ a nontrivial homomorphism. It is shown that $\det A = \mathcal{O}_X$ and for $\alpha \in (0, 1) \cap \mathbb{Q}$, there is a forgetful morphism $h: \mathcal{M} \to M$ (§5.1 of [4]). For α close to 1, one has a forgetful morphism $\mathcal{M} \to U = U(r, 0)$ whose set theoretic image is $U_{\mathcal{L}}$ (Proposition 5.1.1 of [4]). Then, since $\det A = \mathcal{O}_X$, it follows that $h(\mathcal{M}) = M_{\bar{L}}$ (as sets). #### Acknowledgements I would like to thank I Biswas and A Schmitt for useful comments and careful reading of the previous version. # References - [1] Bhosle Usha N, Generalised parabolic bundles and applications to torsion-free sheaves on nodal curves. *Arkiv for Matematik* **30(2)** (1992) 187–215 - [2] Bhosle Usha N, Generalised parabolic bundles and applications II. *Proc. Indian Acad. Sci.* (*Math. Sci.*) **106(4)** (1996) 403–420 - [3] Nagaraj D S and Seshadri C S, Degenerations of the moduli spaces of vector bundles on curves I. *Proc. Indian Acad. Sci. (Math. Sci.)* **107(2)** (1997) 101–137 - [4] Schmitt A, Singular principal *G*-bundles on nodal curves. *J. Eur. Math. Soc.* **7** (2005) 215–251 - [5] Sun X, Degeneration of moduli spaces and generalized theta functions. *J. Algebraic Geom.* **9** (2000) 459–527 - [6] Sun X, Moduli spaces of SL(r)-bundles on singular irreducible curves. *Asian J. Math.* **7(4)** (2003) 609–625, math. AG/0303198