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Abstract. It is an attempt to explore non-singular cosmological solutions with non-rotating perfect
fluids with p = k�. The investigation strongly indicates that there is no solution of the above type
other than already known. It is hoped that this result may be rigorously proved in future.

1. Introduction

Singularity free cosmological solutions of the type stated in the title known so far are of a
very special class and have the following characteristics:

(a) The space time is cylindrically symmetric.
(b) In case the metric is diagonal, theg�� ’s are of the formg�� = a function of time

multiplied by a function of the radial coordinate.

However (a) does not necessarily require thatg�� is diagonal and if the metric has a non-
diagonal element for the two spaces which are the orbits of the group of isometries which
exist because of (a), onlygtt, grr and = detjgabj(wherea; b = 2; 3) are expressible in the
product form.

(c) There is only one independent time function namely cosh(�t).
(d) Only two values ofk are permissible namelyk = 1=3 or 1.

It may be mentioned that the authors of these papers assumed only the existence of aG 2

and not full cylindrical symmetry (cylindrical symmetry requires that one of the isometrics
is a rotation. They did assume the separability as stated in (b). Neither (c) nor (d) was
assumed; indeed nonsingular solutions in which there is no equation of state of the form
p = k� were also exhibited.

The situation seemed intriguing and one felt tempted to ask the question – Do these
known solutions exhaust the class of non-singular solutions of the type stated in the title?
Or are they just a subset of measure zero amongst the whole class of non-singular solu-
tions? At first sight the second alternative may seem appealing for it is quite likely that the
other solutions which exist have escaped discovery because of their complicated nature.

In the present paper, an attempt is made to plug in the condition of non-singularity at the
beginning of the investigation and then try to solve the relevant equations. This has been
facilitated by the discovery of two results by the present author, namely
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(1) For any non-rotating cosmological solution which is singularity free, the space –
average of each of the Raychaudhuri scalars must vanish provided only that the
strong energy condition is obeyed.

(2) If in the above non-singular solution the cosmic matter be a perfect fluid, then the
time average of each of the Raychauduri scalar also vanishes.

The result of the investigation gives a strong indication that the already known solutions
are the only non-singular solutions of the stated type although at two points we have to
introduce somewhat ad-hoc assumption which seem provably true but not proven to be
such.

2. The coordinate system

The non-rotating condition allows us to choose a coordinate system which is both comov-
ing and the time coordinate orthogonal to the three space

ds2 = g00dt
2 + gikdx

idxk : (1)

The fluid velocity vector has the components

v1 = 0; v0 =
1

p
g00

: (2)

The acceleration vector has the components

_vi =
1

2
(ln g00);i ; _v0 = 0: (3)

Thus the acceleration vector is orthogonal tov� and in the three space is a gradient vector.
We can choose therefore a space-like coordinate sayx1 along _v, which is orthogonal to the
other two coordinates. Thus the metric now assumes the form

ds2 = g00dt
2 + grrdr

2 + gabdx
adxb: (4)

The indicesa; b run over the values 2, 3 and we have writtenr in place ofx 1. The diver-
gence relationT �

�;� = 0 gives withp = k�:

pg
(k+1)=2k
00 = function oft alone: (5)

p
�p

j3gj
�1+k

= function of space co-ordinates only (6)

and combining the above two relations,

�p
j3gj
�2k

g�1
00 = function oft � function of space co-ordinates only. (7)

From (5) and (6) it follows thatp; � just likeg00 are functions ofr andt only. Consider
now the following three field equations
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2�2 +
1

3
�2 +

4�

3
(�+ 3p) = _v�;� � _�; (8)

�ikjk =
2

3
�0i; (9)

3R = �2

3
�2 + 2�2 + 16��: (10)

In the above the vertical bar followed by an index (e.g.� ik jk) indicates covariant derivative
with respect to the three space metric and3R is the scalar curvature of the three space.

Plugging the condition thatp; �, �; g00 are functions ofr andt only, we get from eqs
(8)–(10).

[2�2 � _v�;�];a = 0 (11)

[3R� 2�2];a= 0 (12)

�akjk = 0 (13)

wherea = 2; 3.
A detailed analysis of the eqs (11)–(13) leads to the conclusion that the metric tensor

components may be independent ofx2 andx3 i.e we prove the existence ofG2.
A look at the eqs (5)–(7) allow us to write

pg
(k+1)=2k
00 = function oft alone:

p
p
j3gj

1+k
= function ofr alone:�p

j3gj
�2k

g�1
00 = (function oft) � (function ofr):

Although these equations do not lead to the separability forp; �, g 00 andj3gj but one
feels inclined to conjecture that such indeed is the case. In fact the assumption that any
of them is of the formT (t). R(r) makes the others of the same form. This is the first
assumption to which we referred in the introduction.

We shall conclude this section by making a specific choice of the origin of our coordinate
system. As we have noted in the introduction, in this case, the space average and time
average of Raychaudhuri scalars vanish. This would require in particular that they vanish
at r ! �� andt ! ��. Consequently these scalars likep; �, �2, �2 which are positive
definite must have at least one maximum. Take the case of�- with � = �t (function oft
alone)� �r (function ofr alone).
(@ ln �=@r) = 0 would require(@�r=@r) = 0 (�r = 0) and this would give some

constant values ofr. In case ofp (or �) it is easy to see that there will be only one such
constant. We choose this constant to be such that the maximum occurs atr = 0. Similarly
the maximum of�t occurs att = 0. Our origin is thus a very special point where
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@�

@r
=

@�

@t
=

@g00

@r
=

@g00

@t
=

@
p

3g

@r
=

@
p

3g

@t
= 0

as also
@�2

@r
=

@�2

@r
= 0:

Presumably an investigation of these relations will lead to the vanishing of the first order
derivatives of all the metric tensor components with respect to bothr and t. This our
second assumption.

3. Proof of cylindrical symmetry

By direct calculation

3R =3 R1
1 +

1p
jgrrj

@

@r

 
1p
jgrrj

@ ln
p


@r

!
+

 
1p
jgrrj

@

@r
ln
p


!2

; (14)

where = detjgabj.
We evaluate3R1

1, by using an analogue of the procedure leading to Raychaudhuri equa-
tion. Consider the three space defined byt = constant. In this space, the unit vector along
r is geodetic and hypersurface orthogonal. Hence if we consider the Raychauduri equa-
tion in 3-dimensions with this unit vector taking the place of the velocity vector, only its
‘expansion’ and shear will appear. They are defined as

�i =
1

p
grr

Æi1;

‘Expansion’� = � i
ji =

1
p
grr

(ln
p
);r;

‘Shear’�ik =
1

2
(�ijk + �kji)�

1

2
(gik + �i�k)�

1
j1:

Note that in the last term1=2 occurs in place of1=3 in 4 dimensions. This is to satisfy the
trace free condition of�i

k. Because of the definition the ‘shear tensor’�ik is orthogonal
to the vector�i. Thus the only non-vanishing components are� 2

2(= ��3
3) and�23. The

Raychauduri analogue three dimensional equation is thus

3R1
1 =3 Rik�

i�k = � 1p
jgrrj

@

@r
�� 1

2
�2 � 2�2: (15)

Combining (10), (14) and (15) we get

�2

3
�2 + 2�2 + 16��� 1

2
�2 + 2�2 = 0: (16)

With our assumption of the vanishing of 1st order derivatives at the origin, one may
think that eq. (16) would require the vanishing of� at the origin and consequently lead
to the trivial case of�; p etc. vanishing everywhere. However there is a catch, if there
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is an angular coordinate, then ‘elementary flatness’ condition would require that asr !
0; g22 = r2grr wherex2 is the angular coordinate and consequently althoughg 22, r = 0,
(ln g22), r ! (2 ln r), r = 2=r asr ! 0 and thus blow up asr�1. In (16) therefore� need
not be zero at the origin.

We are thus led to the conclusion that at least one of the coordinatex 2, x3 must be an
angular coordinate. Both of them cannot be angular coordinates for the last two terms in
(16), i.e.

�1

2
�2 + 2�2 =

1

2
(2���)(2� +�)

would blow up asr ! 0 and� would become singular. In case only one angular coordinate
is present, the term 0(r�1) would cancel out either in (2���) or in (2�+�) so that the
product gives a finite non-zero contribution to�. With two angular coordinates, both the
factors blow up.

4. The final form of the metric

So far, the assumption of separability of� (i.e. � = � t�r) has led to the separability ofg00
and3g. A reference to any of the eqs (8), (9) or (10) now shows thatg 11 andY also have
the separability property.

Onceg11 andg00 are both found to be separable, we may make scale transformations of
r andt to makejg11j = g00 and thus the line element reduces to the final form

dz2 = g00(dt
2 � dr2) + gabdx

adxb

with the restriction (g22) = g11r
2 asr ! 0. So that (lnjg22j)� = (ln g11)

�.

5. The three cases

Multiplying eq. (8) throughout byg00 and replacing_v�;� by derivatives@=@rln p, we get

�
1

3
�2 + 2�2

�
g00 +

4�

3
(�+ 3p)g00 = �g00 _� �

1
p


� @

@r

�
k

1 + k
(ln p);r

p


�
: (17)

With the results already deduced, we have

L1 andR1 are function oft alone ANDR2 is function ofr alone; (18)

where the terms in (17) are indicated as follows: The capital lettersL andR refer to the
left side and right side respectively; the subscripts 1 and 2 indicate position of the term
beginning from the left.

From (18) and (17) we conclude thatL2 is either a function of only one variabler or t
or may be just a constant. Thus we have three cases:
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(A) �g00 = Const.> 0

(B) �g00 = f(t)

(C) �g00 = �(r)

For both (A) and (B) the divergence integral�g00
(k+1)=2k = function of t alone gives

(asg00 involvesr as well),k = 1 or p = �. We take up the case (A)

Case A. �g00 = constant,k = 1. The other divergence integral�
�p

(3gj
�1+k

is a function

of r alone given this case.�g00 is a function ofr alone, consequently is a function ofr
alone. Using this condition,

� =
1

2
p
g00

@

@t

�
log j3pgj

�
=

1

2
p
g00

(ln g00):

Hence, the shear components are

S1 � �11 =
1

2
p
g00

(ln g00)
: � 1

3
� =

2

3
�;

S2 = S1 =
2

3
�;

S3 = �4

3
�

and

�2 =
1

2
(S2

1 + S2
2 + S2

3) =
4�2

3
: (19)

Eliminating�2 from (17) with the help of the above relation we get,

3g00�
2 = �g00 _� + constant:

At the origin � = 0 and _� is positive, so the constant is positive. Writing this asb2 and
putting in the value of�, we get,�

_g00

g00

�2

= � @

@t

�
_g00

g00

�
+ 4b2

which gives on integrationg00 = cosh 2bt � a function ofr alone.
However it is easy to see that in this casegab cannot be diagonal. To see this use (19) in

(16) to get

2�2g00 + 16��g00 +

�
2�2 � 1

2
�2

�
g00 = 0:

If gab be diagonal, the last term is a function ofr alone, hence with�g 00 = constant,
one would have,�2 g00 = function ofr alone whereas�2 g00 is a function oft alone.

Further analysis of this non-diagonal case leads us to the solution given by Mars. We
omit the details of this analysis.
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Case B. � g00 = function oft alone,k = 1; p = �. A rather painstaking analysis gives in
this case the group of solutions given by Dadhichet al.

Case C. �g00 = �(r). Again an analysis leads to the Senovilla solution withk = 1
3

i.e.
p = 1

3�
.

6. Conclusion

Our motivation was to examine whether non-singular non-rotating perfect fluid (withp =
k�) cosmologies exist besides those already discovered and presented in the literature. We
have not been able to give an unequivocal answer but have found that with some almost
imperative assumptions, one is led to the already known solutions.
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