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We study the thermodynamics of a globally supersymmetric theory in the presence of a net back-
ground of “charge” associated with a continuous symmetry. We solve exactly a prototypical model
involving two chiral superfields in the weak-coupling limit and demonstrate the existence of a
second-order phase transition associated with the spontaneous breaking of this symmetry. This is
done by showing that one of the scalar fields in the supermultiplet develops a vacuum expectation
value below a critical temperature. We also find that this phase transition is in the same universality

class as the usual Bose gas condensation.

I. INTRODUCTION

There is currently a great deal of interest in theories
with broken supersymmetry' (SUSY). Apart from their
intrinsic beauty, these theories may play an important role
in understanding of the gauge hierarchy problem.? Such
theories have an underlying invariance under simultane-
ous transformation between boson and fermion fields; in
such theories, bosons and fermions are treated on the
same footing by putting them in the same supermultiplet
having a common mass. In a realistic model based on
SUSY, such a symmetry must be broken, because there
are no bosons and fermions in nature which are degen-
erate in mass. Furthermore, if SUSY has relevance to ac-
tual physics, it must be incorporated into a grand unified
theory.> It then becomes necessary to understand the
finite-temperature behavior of a SUSY theory.* Such a
study is important in describing the evolution of the early
Universe if SUSY is a good symmetry at high energy.

In the case of ordinary symmetries, it is well known
that if they are broken at T =0, they may be restored at a
higher temperature.® This occurs at T, at which the ef-
fective scalar-boson mass term vanishes. This T is deter-
mined by the various coupling constants in the theory,
and also by the presence of a conserved background
“charge” (e.g., weak isospin and hypercharge, etc.).>® Itis
also known that the effect of a background of charges car-
ried by the fermions, such as baryon number, etc., is negli-
gible on such phase transitions.’

In this paper, we study the critical behavior of a global-
ly SUSY theory in the presence of a net background of
charge.® Because of SUSY, the charge, in general, is car-
ried by both bosons and fermions. To study the effect of
a net background of conserved charge in a SUSY theory,
we consider a prototypical globally SUSY model of two
complex scalars 4, and A_ and a Dirac fermion ¢. The
Lagrangian of the model is’

L= |34, |*—|s+MA, +84 >+ |04 _ |2
— (M 4284 ))A_ |*+¥lid—M)Y
—(2gA  b_v,—gA* v, "C 'Y, +H.c), (1

where ¥, and ¢ _ are the usual chiral projections of ¢ and
z,bi stands for transpose with C, the charge-conjugation
operator. Here M, g, and s are constants with dimensions
1, 0, and 2, respectively. The Lagrangian is invariant
under the SUSY transformation

8= —(M +28A%)A_€e, —(s +MA +gA_ He_

—iPA  e_—idA_e€, ,

up to a total space-time gradient. Here € is, as usual, an
infinitesimal anticommuting Majorana spinor. This La-
grangian is nothing but the component-form version of
the most general renormalizable Lagrangian of two chiral
superfields @, and ®_ of opposite chirality (®, and &*
have the same chirality) from which the auxiliary fields
have been eliminated through equations of motion. It is
also invariant under the following global symmetry
transformation (R invariance):

A, —A,, Yy—e 'Y,

—2ia —ia 2)
A_—e A_, Yy_—e "N_ .

Thus the “fermionic charges” of 4, A_, and ¢ are O,
—2,and —1, respectively."®

The summary of the rest of the paper is as follows. In
Sec. II we solve the model exactly in the weak-coupling
limit and show the existence of a phase transition for spa-
tial dimensions d >2. We show this by demonstrating
that the vacuum expectation value (VEV) of A_ is
nonzero for T < T,. Thus the continuous symmetry (2) is
broken below 7,. In Sec. III we study the critical
behavior of the model in detail and show that it is in the
same universality class as the ordinary Bose gas.' Our
conclusions are in Sec. IV.
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II. MODEL AND SOLUTION

From (1) it is clear that we are dealing with a system of
particles 4., A_, and ¢ (and their antiparticles) which
can be mutually interconverted by various “reactions” al-
lowed by the Lagrangian. The individual numbers of
various particles [given by N(4,), N(A4,), etc. where
the bar refers to antiparticles] are not conserved in equili-
brium but the net fermionic charge N, corresponding to
the global continuous symmetry (2), given by

N=-2[N(A_)—N(A_)]-[NW)-NW1, 3)

is conserved. If the interactions are completely neglected,
then the individual particle numbers will be conserved.
We take an intermediate weak-coupling approach where
all interactions are neglected but the various reactions are
kept so that the constraint (3) is satisfied. Assuming that
an equilibrium is reached with respect to all the “reac-
tions” allowed by the Lagrangian (1), the partition func-
tion is given by!!
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the cancellation of the zero-point energy in (5) due to the

fact that
E(A,)=E(A_)=E{)), (6)

due to SUSY. Using the plane-wave representation for

the free-particle states and standard methods,!! we get in
the thermodynamic limit
Z(u,T)=2Z5(0,TZp(u, NZp(+u,+T) , )
where
InZp,plp, T =~ )d [ ax 2 e e
Xe_ﬁ,(k2+M2)l/2 , (8)
€,=1(bosons), €,=(—1)"*! (fermions) . 9)

Here M is the common mass of each particle (antiparticle)
and ¥ is the volume of the system ultimately going to in-
finity. The integral in (8) can be done by standard

Zp,D=3 [#¢ 3 e F7 |, methods.!® We get
N=0 -
[E"E-N 4BV
E InZg p(p,T)= ED S r =%, cosh(Bur)K4(BMr) ,
=1
where ’ (10)
=( 2 [nE ﬁE(A——)]
E(A_ with
F2XEX S [ng()—7ig(¥)] (4) A=Q2Br/M)"?, d'=+5(d +1)
E()
and and K,(z) a standard Bessel function.!? Therefore,
_ Z(u,T) can be obtained using (7). Since BpV =InZ,
Eé )E(A np(4)+rg(4,)+1] where p is the pressure of the system, one can get all the
+ thermodynamic quantities. For example, we list the
+ 3 E(A_)[ng(A_)+7g(d_)+1] charge density p=Q/V and the energy density u =U/V.
E(4_) We have
+2 >, EW)[ng(¢)+rag(y)—1], (5) g
2 FWne )+ A1) p= || —ppu, T4pe(u, AT, (1
and u is the chemical potential,® corresponding to the Y
constraint (4) and B=1/T, as usual. Here ng(4,), etc.,, 9 L
denote the number of particles in the single-particle states u=- "BE(BP ) =up(p, T)+2ur(zp, 371, (12)
labeled by E(A,), etc. The factors of 2 in (4) and (5) 4
come from the spin sum for the Dirac fermion. Notice where
J
4 & : .
pF(,T)= Adﬁl > r 4V, sinh(Bur)K (BMr) , (13)
r=1
up (. =M. 3 (=@ =e_cosh(Bur)[Ky s 1(BMr)—(BMr)~'K 4(BM
s r, T = d+! , ur)[Kg 4 1(BMr)—(BMr 2(BMr)]} . (14)

r=1

By using the large-z form of K, (z), namely,'?

172
-z

LA e % z>>1, (15)

K, (2)= 2

we see that the sum in (13) for pg(u,T) is divergent for
p=M for d <2. So a nonzero T, exists only for d >2.
By contrast, pp is found to be convergent for all 7>0.

I
Therefore, the fermions do not affect the phase transition.

For d > 2, the critical temperature T, is given by

p=psM,T)+pr(7M,3T,) . (16)

The numerical value of T, is clearly affected by fermions.
For T <T,, as usual, u sticks at M and (11) becomes
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p—pol T)=pp(M,T)+pp(+M,+T) , (17)

where po(T) is the condensate density. To relate it to oth-
J

pold )=V"1(ePM_1)~1,

er quantities of interest, we note the usual equality be-
tween the VEV of a field and the square root of the
ground-state particle number density.”> In our case, the
ground-state densities are given by

polA_ )=V ePM=#_1)=1, py(4_)=V—1(ePM+w_1)-1 (18)

p0(¢)=V~l(eZﬁ(M—/4/2)+1)—1’ ﬁo(¢)=V~1(eZﬂ(M+p/2)+l)—l .

For T <T,, all the py’s vanish (in the thermodynamic lim-
it) except po(4_) which is nonzero and is given by (17).
There we can write

polT)=po(4_)#£0 for0<T <T,
=0 forT>T, . (19)

This signals the breakdown of the global symmetry (2)
below T.. The ground-state energy of the system is given
by

ug =Mpo(A_)=Mpy(T)+0 (20)

for T < T, and is zero for T >T,.

III. CRITICAL BEHAVIOR

To study the critical behavior of the system, we have to
study (11) and (13) near u=M. For u~M, following Ref.
10, we get

4—d

2
(d —2)n?/229 2

r

pB(,u, T)=PB(M: T)—

x | = (MZ___ 2)(0'—2)/2
3 Iz
+O0(M?*—p?), 2<d <4, (21)
e, T)=pp(M,T)+0 (M?*—pu?) . (22)

Expanding these near T, and substituting in (11) and (13)
we get

T-T
MGt = - €0, 2<d <4,
(4

2/(d —2) (23)

d—2 _ /2
27%d —2)n?” [P5(To)+pr(T)] .

4—d

2

C|=
mMT

For 1 <0, we get, similarly,

polT)= |t | T.lp5s(T.) +p(T,)] . 24)

T
In (23) and (24) the primes indicate derivative with respect
to temperature. Now comparing (23) and (24) with Eqgs.
(26) and (41), respectively, of Ref. 10, we see that all of
the exponents of the system will be the same as those of
the usual Bose gas. Therefore, the system is in the same
universality class as the usual Bose gas. (Note that in Ref.
10, it was shown that the relativistic Bose gas is in the
same universality class as the usual nonrelativistic Bose
gas.)

Being in the same universality class, however, does not
mean that the two systems are identical. Quantities like
the critical temperature and various amplitudes can still
be quite different in the two systems. In these quantities,
the presence of fermion in the system will be felt. As an
example, we describe the system in the extreme relativistic
(ER) limit. In this limit, p << M¢ and using the low-z ex-
pansion of K., (2),1?

v—1
Kv(z)=£—z—l;—(—ﬁ, z<1, (25)
we get, from (7), (10), (11), and (13), to leading order (for
d=3),

2°T*  MuT?
S
2T2 T
+E£T  Lapppnyg @6)
2
p=§MT2+£"—”Z&(M2—#2)V2+ cee (27)

48 2

These equations may be compared with Egs. (12) and (13)
of Ref. 14 for the ER limit of the usual Bose gas. These
give

48

Te= 177

1/2 1/2
‘f’— ] , (28)
M

as compared with

T,=V73

172
£
2|

for the usual Bose gas.'* The influence of the fermions is
seen to lower the critical temperature for the same overall
density, as might have been anticipated. Also by studying
(26) and (27) one can obtain the jump in the specific-heat
derivative:
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aCy
aT

aCy
oT

28972

T_" 72

c

T,

(4

£
" ] . (30

IV. CONCLUDING REMARKS

We have studied the thermodynamics of a globally su-
persymmetric theory in the presence of a net background
of charge density. This charge is associated with a con-
tinuous global symmetry and, by virtue of SUSY, is car-
ried by both bosons and fermions in the theory. We have
solved a prototypical model exactly in the weak-coupling
limit and shown that there is a second-order phase transi-
tion at 7,40, associated with the breaking of this global
symmetry. This has been shown by demonstrating that

A _ develops a nonzero VEV below T,. Thus, in SUSY
models a conserved charge carried by fermions can be bro-
ken due to the condensation of bosons which must appear
in the model due to SUSY. Although the phase transition
is found to be in the same universality class as the usual
Bose gas, there are important differences between the two.
It is possible that if the model is solved with interactions
fully taken into account, the differences from the Bose
condensation may be brought more strongly.
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