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I. INTRODUCTION

Considerable attention has been focussed on the infrared fixed point behavior [1] of the standard model (SM) and
its extensions, especially the minimal supersymmetric standard model (MSSM). This is because there may be a stage
of unification beyond the SM, and if so, it then becomes important to perform the radiative corrections in determining
all the dimension ≤ 4 terms in the lagrangian. This can be achieved by using the renormalization group equations
to find the values of parameters at the electroweak scale, given their values at the unification scale. As such, much
effort has been devoted to the study of the evolution of various dimensionless Yukawa couplings in the SM, and its
minimal supersymmetric extension, the MSSM. Using the renormalization group evolution, one can relate the Yukawa
couplings to the gauge couplings via the Pendleton-Ross infrared stable fixed point (IRSFP) for the top-quark Yukawa
coupling [2,3], or via the quasi-fixed-point behavior [4]. The predictive power of the SM and its supersymmetric
extensions may, thus, be enhanced if the renormalization group (RG) running of parameters is dominated by infrared
stable fixed points (IRSFPs). These parameters (Yukawa couplings, ratios of Yukawa couplings to gauge couplings,
etc.) do not attain fixed point values at the weak scale, the range between the grand unified theory (GUT) scale
and the weak scale being too small for them to closely approach the fixed point. Nevertheless, the couplings may be
determined by the quasi-fixed point behavior [4] where the value of the coupling at the weak scale is independent of
its value at the GUT scale, provided the coupling at the GUT scale is large.

In supersymmetric theories there are superpartners of the ordinary particles in the spectrum, due to which there
are additional Yukawa couplings [5] in these models which lead to baryon number (B) or lepton number (L) violation.
Often, a discrete symmetry [6] called R-parity (Rp) is introduced to eliminate these B and L violating Yukawa
couplings. However, the assumption of Rp conservation in MSSM appears to be ad hoc, since it is not required for
the internal consistency of the model. Considerable attention has, thus, recently been focussed on the study of the
renormalization group evolution of Yukawa couplings, including the baryon and lepton number violating couplings,
of the MSSM [7–10]. This includes the study of quasi-fixed-point behavior as well as the true infrared fixed points
of the different Yukawa couplings, and the analysis of their stability. It has been shown that in the Yukawa sector
of the minimal supersymmetric standard model with baryon and lepton number violation there is only one infrared
stable fixed point. This corresponds to nontrivial fixed point for the top- and bottom-quark Yukawa couplings and
the B violating coupling λ′′

233, and a trivial one for the τ -Yukawa coupling and the L violating coupling λ233. It was
shown that all other fixed points are either unphysical or unstable in the infrared region. Similarly, fixed points were
obtained for the corresponding soft supersymmetry breaking trilinear couplings as well [9].

The purpose of the present paper is twofold. Firstly, we study the renormalization group evolution in the minimal
supersymmetric standard model with baryon and lepton number violation in order to obtain the exact as well as
the approximate analytical solutions for the Yukawa couplings and the soft supersymmetry breaking couplings at the
weak scale given their initial values at the ultraviolet (UV) or the GUT scale. Second, we study the renormalization
group flow of such a system, and determine the infrared fixed surfaces and infrared fixed points toward which the RG
flow is attracted.

The plan of the paper is as follows. In Sec.II we describe the renormalization group equations for the minimal
supersymmetric standard model with baryon and lepton mumber violation involving the highest generations. We
obtain the exact solutions for the RG equations, and describe the infrared fixed points for the third generation
Yukawa couplings and the highest generation baryon and lepton number violating couplings. Here we also study the
corresponding RG equations for the soft supersymmetry breaking trilinear couplings, and describe their infrared fixed
points. Sec.III is devoted to the study of the approximate analytical solutions of the RG equations for the Yukawa
couplings and the soft supersymmetry breaking trilinear couplings. In Sec.IV we carry out a detailed numerical study
of the infrared attractive fixed surfaces, and present their two dimensional projections to demonstrate the existence
of a strongly attractive fixed point. In Sec.V we present the summary and conclusions.

II. RENORMALIZATION GROUP EQUATIONS AND INFRARED FIXED POINTS

A. Infrared fixed points for Yukawa couplings

In this section we recall some of the basic features of the renormalization group evolution in the minimal supersym-
metric standard model with baryon and lepton number violation, and obtain the infrared fixed points of the Yukawa
couplings and the soft supersymmetry breaking trilinear couplings of the model. The superpotential of the model is
written as

W = (hU )abQ
a
LU

b

RH2 + (hD)abQ
a
LD

b

RH1 + (hE)abL
a
LE

b

RH1 + µH1H2, (1)
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where L, Q, E, D, U denote the lepton and quark doublets, and anti-lepon singlet, d-type anti-quark singlet and
u-type anti-quark singlet, respectively. In Eq. (1), (hU )ab, (hD)ab and (hE)ab are the Yukawa coupling matrices, with
a, b, c as the generation indices. Gauge invariance, supersymmetry and renormalizability allow the addition of the
following L and B violating terms to the MSSM superpotential (1):

WL =
1

2
λabcL

a
LLb

LE
c

R + λ′

abcL
a
LQb

LD
c

R + µiLiH2, (2)

WB =
1

2
λ′′

abcD
a

RD
b

RU
c

R, (3)

respectively. In this paper we shall consider, apart from the Yukawa couplings in (1), the dimensionless Yukawa
couplings λabc, λ′

abc and λ′′

abc only, and ignore the dimensionful couplings µ and µi. The couplings λabc and λ′′

abc are
antisymmetric in their first two indices due to SU(2)L and SU(3)C group structures, respectively. Corresponding to
the terms in the superpotentials (1), (2) and (3), there are soft supersymmetry breaking trilinear terms which can be
written as

− Vsoft =

[

(AU )ab(hU )abQ̃
a
LŨ

b

RH2 + (AD)ab(hD)abQ̃
a
LD̃

b

RH1

+ (AE)ab(hE)abL̃
a
LẼ

b

RH1

]

+

[

1

2
(Aλ)abcλabcL̃

a
LL̃b

LẼ
c

R + (Aλ′ )abcλ
′

abcL̃
a
LQ̃b

LD̃
c

R

]

+

[

1

2
(Aλ′′ )abcλ

′′

abcD̃
a

RD̃
b

RŨ
c

R

]

, (4)

where a tilde denotes the scalar component of the chiral superfield, and the notation for the scalar component of
the Higgs superfield is the same as that of the corresponding superfield. In addition there are soft supersymmetry
breaking gaugino mass terms with the masses Mi with i = 1, 2, 3, corresponding to the gauge groups U(1)Y , SU(2)L,
and SU(3)C , respectively.

Since the third generation Yukawa couplings are the dominant couplings in the superpotential (1), we shall retain
only the elements (hU )33 ≡ ht, (hD)33 ≡ hb, (hL)33 ≡ hτ in each of the Yukawa couplings matrices hU , hD, hL,
setting all other elements equal to zero. Furthermore, since there are 36 independent L violating trilinear couplings
λabc and λ′

abc in (2), and 9 independent B violating couplings λ′′

abc in the baryon number violating superpotential
(3), we would have to consider 39 coupled nonlinear evolution equations for the L violating case and 12 coupled
nonlinear equations for the B violating case, respectively. Thus, there is a clear need for a radical simplification of
the evolution equations before we can study the RG evolution of the Yukawa couplings in the MSSM with B and
L violation. Motivated by the generational hierarchy of the conventional Higgs couplings, we shall assume that an
analogous hierarchy amongst the different generations of B and L violating couplings exists. Thus, we shall retain
only the couplings λ233, λ′

333, λ′′

233, and neglect the rest [9]. We note that B and L violating couplings to higher
generations evolve more strongly because of larger Higgs couplings in their evolution equations, and hence could take
larger values than the corresponding couplings to the lighter generations. We also note that the experimental upper
limits are stronger for the B and L violating couplings with lower indices [11]. With these assumptions we can write
the relevant renormalization group equations as [9]

16π2 dh2
t

d(− ln µ2)
= h2

t

(

16

3
g2
3 + 3g2

2 +
13

15
g2
1 − 6h2

t − h2
b − λ′2

333 − 2λ′′2
233

)

, (5)

16π2 dh2
b

d(− ln µ2)
= h2

b

(

16

3
g2
3 + 3g2

2 +
7

15
g2
1 − h2

t − 6h2
b − h2

τ − 6λ′2
333 − 2λ′′2

233

)

, (6)

16π2 dh2
τ

d(− ln µ2)
= h2

τ

(

3g2
2 +

9

5
g2
1 − 3h2

b − 4h2
τ − 4λ2

233 − 3λ′2
333

)

, (7)

16π2 dλ2
233

d(− ln µ2)
= λ2

233

(

3g2
2 +

9

5
g2
1 − 4h2

τ − 4λ2
233 − 3λ′′2

233

)

, (8)

16π2 dλ′2
333

d(− ln µ2)
= λ′2

333

(

16

3
g2
3 + 3g2

2 +
7

15
g2
1 − h2

t − 6h2
b − h2

τ − λ2
233 − 6λ′2

333 − 2λ′′2
233

)

, (9)

16π2 dλ′′2
233

d(− ln µ2)
= λ′′2

233

(

8g2
3 +

4

5
g2
1 − 2h2

t − 2h2
b − 2λ′2

333 − 6λ′′2
233

)

. (10)
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where g1, g2, g3 are the gauge couplings of U(1)Y (in the GUT normalization), SU(2)L and SU(3)C gauge groups,
respevtively, and µ is the running mass scale. We note that within the context of grand unified theories, one is led to
the situation where baryon and lepton number violating Yukawa couplings may be related at the GUT scale, and one
may no longer be able to set one or the other arbitrarily to zero. We, therefore, include both, the baryon and the lepton

number violating couplings, in our RG equations. The evolution equations for the gauge couplings are not affected by
the presence of B and L violating couplings at the one-loop level, and can be written, in the usual notation, as

16π2 dg2
i

d(− lnµ2)
= −big

4
i , i = 1, 2, 3, (11)

with

bi = (
33

5
, 1, −3). (12)

The corresponding one-loop renormalization group equations for the gaugino masses Mi, i = 1, 2, 3 can be written as

16π2 dM2
i

d(− lnµ2)
= −2big

2
i M2

i . (13)

Defining

Ỹi =
h2

i

16π2
, i = t, b, τ, Ỹ =

λ2
233

16π2
, (14)

Ỹ ′ =
λ′2

333

16π2
, Ỹ ′′ =

λ′′2
233

16π2
, (15)

the solution of the RG equations (5) - (10) for the Yukawa and the B and L violating couplings can be written in a
closed form [12]

Ỹk(t) =
Ỹk(0)Fk(t)

1 + akkỸk(0)
∫ t

0 Fk(t′)dt′
, t = ln(

M2
X

µ2
), (16)

where MX is some large initial scale, and where Ỹk stands for the functions Ỹi (i = t, b, τ), Ỹ , Ỹ ′, and Ỹ ′′. Analogous
notation holds for the functions Fk. The quantities akk are the diagonal elements of the wave function anamolous
dimension matrix, and are given by

akk = {6, 6, 4, 4, 6, 6}, (17)

and the functions Fk are given by the set of integral equations

Ft(t) =
Et(t)

(1 + 6Ỹb(0)
∫ t

0
Fb(t′)dt′)1/6(1 + 6Ỹ ′(0)

∫ t

0
F ′(t′)dt′)1/6(1 + 6Ỹ ′′(0)

∫ t

0
F ′′(t′)dt′)1/3

, (18)

Fb(t) =
Eb(t)

(1 + 6Ỹt(0)
∫ t

0
Ft(t′)dt′)1/6(1 + 4Ỹτ (0)

∫ t

0
Fτ (t′)dt′)1/4(1 + 6Ỹ ′(0)

∫ t

0
F ′(t′)dt′)1/6(1 + 6Ỹ ′′(0)

∫ t

0
F ′′(t′)dt′)1/3

, (19)

Fτ (t) =
Eτ(t)

(1 + 6Ỹb(0)
∫ t

0
Fb(t′)dt′)1/2(1 + 6Ỹ (0)

∫ t

0
F (t′)dt′)(1 + 6Ỹ ′(0)

∫ t

0
F ′(t′)dt′)1/2

, (20)

F (t) =
E(t)

(1 + 4Ỹτ (0)
∫ t

0
Fτ (t′)dt′)(1 + 6Ỹ ′′(0)

∫ t

0
F ′′(t′)dt′)1/2

, (21)

F
′(t) =

E′(t)

(1 + 6Ỹt(0)
∫ t

0
Ft(t′)dt′)1/6(1 + 6Ỹb(0)

∫ t

0
Ft(t′)dt′)(1 + 4Ỹτ (0)

∫ t

0
Fτ (t′)dt′)1/4(1 + 4Ỹ (0)

∫ t

0
F (t′)dt′)1/4

×

1

(1 + 6Ỹ ′′(0)
∫ t

0
F ′′(t′)dt′)1/3

, (22)

F
′′(t) =

E′′(t)

(1 + 6Ỹt(0)
∫ t

0
Ft(t′)dt′)1/3(1 + 6Ỹb(0)

∫ t

0
Ft(t′)dt′)1/3(1 + 6Ỹ ′(0)

∫ t

0
F ′(t′)dt′)1/3

, (23)
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where the functions Ek(t) (= Et(t), Eb(t), Eτ (t), E(t), E′(t) and E′′(t)) are given by

Ek(t) =

3
∏

i=1

(1 + biα̃i(0)t)
cki/bi , (24)

with

α̃i(0) =
g2

i (0)

16π2
, i = 1, 2, 3, (25)

cti =

(

13

15
, 3,

16

3

)

, cbi =

(

7

15
, 3,

16

3

)

, cτi =

(

9

5
, 3, 0

)

, (26)

cλ233i =

(

9

5
, 3, 0

)

, cλ′

333
i =

(

7

15
, 3,

16

3

)

, cλ′′

233
i =

(

4

5
, 0, 8

)

. (27)

The solutions for the RG equations (11) for the gauge couplings and the gaugino masses (13) are well known and will
not be repeated here. We note that (16) gives the exact solution for the Yukawa couplings, while Fk’s in (18) - (23)
should in principle be solved iteratively.

In order to study the infrared fixed points for the Yukawa couplings, it is convenient to redefine

Rt =
h2

t

g2
3

, Rb =
h2

b

g2
3

, Rτ =
h2

τ

g2
3

, R =
λ2

233

g2
3

, R′ =
λ′2

333

g2
3

, R′′ =
λ′′2

233

g2
3

, (28)

and retaining only the SU(3)C gauge coupling constant g3, we can write the renormalization group equations (5) -
(10) for the Yukawa couplings as

3g2
3

dRt

dg2
3

= Rt

[

7

3
− 6Rt − Rb − R′ − 2R′′

]

, (29)

3g2
3

dRb

dg2
3

= Rb

[

7

3
− Rt − 6Rb − Rτ − 6R′ − 2R′′

]

, (30)

3g2
3

dRτ

dg2
3

= Rτ [−3 − 3Rb − 4Rτ − 4R − 3R′] , (31)

3g2
3

dR

dg2
3

= R [−3 − 4Rτ − 4R − 3R′] , (32)

3g2
3

dR′

dg2
3

= R′

[

7

3
− Rt − 6Rb − Rτ − R − 6R′ − 2R′′

]

, (33)

3g2
3

dR′′

dg2
3

= R′′ [5 − 2Rt − 2Rb − 2R′ − 6R′′] . (34)

There are no physically acceptable infrared fixed points for this set of RG equations with all the couplings attaining
nontrivial values. The only nontrivial infrared fixed points are obtained by neglecting R′. Then, the true infrared
fixed-points for these RG equations are [9]

(R′′∗, R∗

b , R∗

t ) =

(

77

102
,

2

17
,

2

17

)

, R∗

τ = R∗ = 0 (stable), (35)

(R∗

b , R∗

t ) =

(

1

3
,

1

3

)

, R∗

τ = R∗ = R′′∗ = 0 (unstable), (36)

(R′′∗, R∗

t ) =

(

19

24
,

1

8

)

, R∗

τ = R∗ = R∗

b = 0 (unstable), (37)

(R′′∗, R∗

b ) =

(

19

24
,

1

8

)

, R∗

τ = R∗ = R∗

t = 0 (unstable). (38)

We note that the τ Yukawa coupling Rτ and the lepton number violating coupling R approach trivial fixed point values
since there is no contribution from the SU(3) coupling g3 in their renormalization group equations. Also, because
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of this reason the B- and L- violating couplings do not approach simultaneous non-trivial fixed points. Furthermore,
the infrared fixed point values of the top- and bottom-quark Yukawa couplings for the stable fixed point (35) are
significantly different from the case when B and L is conserved [13]. Thus, the inclusion of B and L violation in
MSSM has the effect of lowering the infrared fixed point values of the top- and bottom-quark Yukawa couplings.
These are the important conclusions of our analysis. From (35) we note that the fixed point value for the top-quark
Yukawa coupling translates into a top-quark (pole) mass of about mt ≃ 70 sinβ GeV, which is incompatible with the
measured value of [14] the top mass, mt ≃ 174 GeV, for any value of tanβ. Thus, the stable infrared fixed point (35)
is not actually realised in nature.

The infrared fixed points(IRFP’s) that we have discussed above are the true IRFP’s of the renormalization equa-
tions for the Yukawa and baryon and lepton number violating couplings. However, these fixed points may not be
reached in practice, the range between the large (GUT) scale and the weak scale being too small for the ratios to
approach the fixed point values. In that case, the various Yukawa couplings may be determined by quasi-fixed point
behaviour [4], where the values of various couplings at the weak scale are independent of their values at the large scale,
provided the Yukawa couplings at the large scale are large. More precisely, in the regime where the Yukawa couplings
Ỹt(0), Ỹ(0), Ỹτ (0), Ỹ (0), Ỹ ′(0), Ỹ ′′(0) → ∞ with their ratios fixed, it is legitimate to drop 1 in the denominators
of the equations (16) and (18) – (23) so that the exact solutions for the Yukawa couplings approach the infrared
quasi-fixed-point (IRQFP) defined by

Ỹ QFP
k (t) =

FQFP
k (t)

akk

∫ t

0 FQFP
k (t′)dt′

, (39)

with

FQFP
t (t) =

Et(t)

(
∫ t

0 FQFP
b (t′)dt′)1/6(

∫ t

0 F ′QFP (t′)dt′)1/6(
∫ t

0 F ′′QFP (t′)dt′)1/3
, (40)

FQFP
b (t) =

Eb(t)

(
∫ t

0 FQFP
t (t′)dt′)1/6(

∫ t

0 FQFP
τ (t′)dt′)1/4(

∫ t

0 F ′QFP (t′)dt′)1/6(
∫ t

0 F ′′QFP (t′)dt′)1/3
, (41)

FQFP
τ (t) =

Eτ(t)

(
∫ t

0
FQFP

b (t′)dt′)1/2(
∫ t

0
FQFP (t′)dt′)(

∫ t

0
F ′QFP (t′)dt′)1/2

, (42)

FQFP (t) =
E(t)

(
∫ t

0
FQFP

τ (t′)dt′)(
∫ t

0
F ′′QFP (t′)dt′)1/2

, (43)

F ′QFP (t) =
E′(t)

(
∫ t

0 FQFP
t (t′)dt′)1/6(

∫ t

0 FQFP
t (t′)dt′)(

∫ t

0 FQFP
τ (t′)dt′)1/4(

∫ t

0 FQFP (t′)dt′)1/4(
∫ t

0 F ′′QFP (t′)dt′)1/3
, (44)

F ′′QFP (t) =
E′′(t)

(
∫ t

0 Ft(t′)dt′)1/3(
∫ t

0 Ft(t′)dt′)1/3(
∫ t

0 F ′(t′)dt′)1/3
. (45)

We note that the result (39) follows immediately by dropping 1 from the denominator of (16), whereas the results
(40) – (45) follow from the corresponding equations (18) – (23) by using an iterative procedure [12,15]. We stress
here that both the dependence on the initial conditions for each Yukawa coupling as well as the dependence on the
ratios of initial values of Yukawa couplings have completely dropped out of the runnings in Eqs.(39) and (40) – (45).
In other words, the quasi-fixed-points (39) are independent of whether the B and L violating couplings and the third
generation Yukawa couplings are unified or not. The fact that the ratios of the various Yukawa couplings do not enter
Eqs. (39) – (45) implies that these results are valid for any tan β regime.

B. Infrared fixed points for the trilinear soft supersymmetry breaking parameters

We now consider the evolution equations for the soft supersymmetry breaking trilinear parameters in the potential
(4). For these trilinear parameters we shall assume the same kind of generational hierarchy as was assumed for the
corresponding Yukawa couplings. Thus, we shall consider only the highest generation trilinear coulings (AU )33 ≡ At,
(AD)33 ≡ Ab, (AL)33 ≡ Aτ , (Aλ)233 ≡ Aλ, (Aλ′ )333 ≡ Aλ′ , (Aλ′′ )233 ≡ Aλ′′ , setting all other elements equal to
zero. As there is only one IRSFP (35) in the MSSM with B and L violation, we shall consider the IRFPs for the
A parameters corresponding to this case only, i.e. for At, Ab, Aτ , Aλ and Aλ′′ . Retaining only these parameters,
and defining the ratios Ãi = Ai/M3 (Ai = At, Ab, Aτ , Aλ, Aλ′′ ), we can write the relevant renormalization group

equations [9] for Ãi as (neglecting the SU(2)L and U(1)Y gauge couplings):
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3g2
3

dÃt

dg2
3

=

[

16

3
− (6Rt + 3)Ãt − RbÃb − 2R′′Ãλ′′

]

, (46)

3g2
3

dÃb

dg2
3

=

[

16

3
− RtÃt − (6Rb + 3)Ãb − Rτ Ãτ − 2R′′Ãλ′′

]

, (47)

3g2
3

dÃτ

dg2
3

=

[

−3RbÃb − (4Rτ +
R

2
+ 3)Ãτ −

7

2
RÃλ

]

, (48)

3g2
3

dÃλ

dg2
3

=

[

−
7

2
Rτ Ãτ − (

Rτ

2
+ 4R + 3)Ãλ

]

, (49)

3g2
3

dÃλ′′

dg2
3

=
[

8 − 2RtÃt − 2RbÃb − (6R′′ + 3)Ãλ′′

]

. (50)

One can obtain the exact solutions for RG equations (46) – (50) for the trilinear parameters Ai analogous to the
solutions (16) that we have obtained for the Yukawa couplings. The expressions for these solutions are lengthy, and
will not be written down here. Instead we shall obtain approximate analytical solutions for these RG equations in
Sec.III, and shall further study them numerically in Sec.IV. Nevertheless, we can obtain the true fixed points for the
Ãi parameters easily. These are

(Ã∗

λ′′ , Ã∗

b , Ã∗

t , Ã∗

τ ) =

(

1, 1, 1, −
2

17

)

, Ã∗

λ = 0, (51)

It is straightforward to show that this is the only infrared stable fixed point for the Ãi paprameters. The stability
of the fixed point (51) also follows from the general results connecting the stability of a set of A parameters to the

stability of the corresponding set of Yukawa couplings [16]. We further note that the fixed point values for Ãb and Ãt

are the same as in MSSM with baryon number conservation [16]. However, the fixed point value for Ãτ is affected by

the presence of the B-violating parameter Ãλ′′ .

III. ANALYTICAL SOLUTIONS

Having obtained the infrared fixed points of the renormalization group equations for the Yukawa couplings and the
soft supersymmetry breaking trilinear couplings, it is important to determine the approach to these fixed points. The
rate of approach to the fixed points can be determined by solving the RG equations in the neighbourhood of the fixed
points. Linearization of the RG equations (29)– (34) in the neighbourhood of the stable infrared fixed point (35) leads
to the following approximate analytical solution for the Yukawa and B and L violating couplings:

Rt =
2

17
− 0.002Rτ0

(

g2
3

g2
30

)−1

+ [0.5(Rt0 − Rb0) + 0.02Rτ0]

(

g2
3

g2
30

)−1.18

+ [0.48(Rt0 + Rb0) − 0.02Rτ0 − 0.06R′′

0 − 0.07]

(

g2
3

g2
30

)−0.2

+ [0.02(Rt0 + Rb0) + 0.002Rτ0 + 0.06R′′

0 − 0.05]

(

g2
3

g2
30

)−1.68

, (52)

Rb =
2

17
+ 0.04Rτ0

(

g2
3

g2
30

)−1

− [0.5(Rt0 − Rb0) + 0.02Rτ0]

(

g2
3

g2
30

)−1.18

+ [0.48(Rt0 + Rb0) − 0.02Rτ0 − 0.06R′′

0 − 0.07]

(

g2
3

g2
30

)−0.2

+ [0.02(Rt0 + Rb0) + 0.002Rτ0 + 0.06R′′

0 − 0.05]

(

g2
3

g2
30

)−1.68

, (53)

Rτ = Rτ0

(

g2
3

g2
30

)−1

, (54)

R = R0

(

g2
3

g2
30

)−0.2

, (55)
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R′′ = 0.75 − 0.005Rτ0

(

g2
3

g2
30

)−1

+ [−0.37(Rt0 + Rb0) + 0.02Rτ0 + 0.05R′′

0 + 0.05]

(

g2
3

g2
30

)−0.2

+ [0.37(Rt0 + Rb0) + 0.03Rτ0 + 0.95R′′

0 − 0.8]

(

g2
3

g2
30

)−1.68

, (56)

where Rt0, Rb0, Rτ0, R0, R
′′

0 are the corresponding initial values at the large (UV) scale. These equations determine,
in the leading order, how fast the infrared fixed point (35) is approached. The measure of infrared attraction is the
size of the negative power in (g2

3/g2
30) in various terms in the expression for Ri.

Similarly, liearization of the RG equations (46) – (50) for the trilinear couplings about the stable infrared fixed
point (51) leads to the following approximate solution for these couplings:

Ãt = 1 + 0.5
(

Ãt0 − Ãb0

)

(

g2
3

g2
30

)−1.2

+ 0.4
(

Ãλ′′0 − 1
)

(

g2
3

g2
30

)−2.57

− 0.5
(

1.2 − (Ãt0 + Ãb0) + 0.8Ãλ′′0

)

(

g2
3

g2
30

)−1.21

, (57)

Ãb = 1 − 0.5
(

Ãt0 − Ãb0

)

(

g2
3

g2
30

)−1.2

+ 0.4
(

Ãλ′′0 − 1
)

(

g2
3

g2
30

)−2.57

− 0.5
(

1.2 − (Ãt0 + Ãb0) + 0.8Ãλ′′0

)

(

g2
3

g2
30

)−1.21

, (58)

Ãτ = −
2

17
− 0.3

(

Ãt0 − Ãb0

)

(

g2
3

g2
30

)−1.2

+ 0.03
(

Ãλ′′0 − 1
)

(

g2
3

g2
30

)−2.57

+
(

0.47 + 0.03Ãt0 − 0.57Ãb0 + Ãτ0 + 0.19Ãλ′′0

)

(

g2
3

g2
30

)−1

− 0.27
(

1.2 − (Ãt0 + Ãb0) + 0.8Ãλ′′0

)

(

g2
3

g2
30

)−1.21

, (59)

Ãλ = Ãλ0

(

g2
3

g2
30

)−1

, (60)

Ãλ′′ = 1 +
(

Ãλ′′0 − 1
)

(

g2
3

g2
30

)−2.57

+ 0.06
(

1.2 − (Ãt0 + Ãb0) + 0.8Ãλ′′0

)

(

g2
3

g2
30

)−1.21

, (61)

where Ãt0, Ãb0, Ãτ0, Ãλ0, Ãλ′′0 are the initial values of the A parameters at the UV scale.

IV. NUMERICAL RESULTS

Having obtained analytically the true fixed points as well as the quasi-fixed points for the various couplings, as well
as the approximate solutions to the corresponding RG equations, it is instructive to carry out a numerical study of
these equations in order to illustrate the discussion of the previous sections.

Since the RG equations are coupled differential equations with several fixed points, this implies that the system
of equations (29) – (34) has an infrared fixed surface, the Rt − Rb − R′′ surface, Rτ = R = 0. In principle, a
three dimensional plot for the evolutions would reveal the infra-red fixed surfaces, with the sole infrared stable fixed
point being approached by the flow from different directions. However, such a demonstration is rather cumbersome.
We shall instead concentrate on the two dimensional projections of this three dimensional surface to illustrate the
approach to the fixed point.

For the purposes of our numerical analysis, we set the unification scale MX ≃ 1016 GeV, the unified gauge coupling
αG(MX) = 1/24.5 and a effective supersymmetry scale of MS = 1 TeV. We shall use the one-loop RG equations in
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the numerical analysis, since the difference between the one-loop and two-loop results for the infrared fixed points [17]
is less than 10%. Reinserting the electroweak gauge couplings g1, g2 in the RG equations (29) – (34), the fixed points
are no longer found to be exact. In order to determine the approximate positions of the fixed points, we shall maintain
running g1(µ), g2(µ) and follow the prescription that the approximate infrared fixed point in the Rt − Rb − R′′ space
is determined as the unique point in the evolution path from µ = MX to µ = MS which has the same value at
µ = MX and at µ = MS . The results depend somewhat on the evolution path, and in particular on the scale MX , the
deviations from the values in (35) being larger, the larger the scale MX . We note that the idea of grand unification
is not important for our results. The infrared fixed point and the infrared fixed surface are the properties of minimal
supersymmetric standard model with baryon and lepton number violation. Note that it is only in that they are not
exact but approximate do they depend on MX .

Our main objective here is to study the renormalization group flow in the coupling ratios Rt, Rb, R
′′ from MX to

MS , to display the fixed surfaces (projections of three dimensional surface onto two dimensions), and to locate the
infrared fixed point. We start with ht and hb each taking the values (9, 1, 0.5) to ensure a large range in the variation
of these parameters and λ′′

233 fixed at a reasonably large value of 1.1 for the computations that we perform. We
evolve the Yukawa couplings down to the IR scale using the one-loop RG equations and evaluate the coupling ratios
Rt, Rb, R

′′. The values of the couplings so obtained at the IR scale, viz., MS , are then used as the input at the UV
scale, MX , and evolved down to the IR scale and then iterated again. This procedure is repeated until all the final
points meet in the infrared fixed point. The results of these iterations are then projected onto the Rt − Rb, Rt − R′′

and Rb − R′′ planes, respectively. The results so obtained are presented in Figs. 1(a), 1(b) and 1(c), respectively. It
may be observed that the approach to the fixed point of the ratio R′′ is rather rapid since at the outset this quantity
was chosen close to it. The approach of the ratios Rt and Rb is significantly more dramatic since they are required to
approach the fixed point from rather disparate values. This clearly illustrates the strong attraction to the sole IRSFP.

The end result of the series of iterations that we have performed lead to the following infrared fixed point values
for the coupling ratios:

R′′QFP ≃ 0.65,

RQFP
b ≃ 0.59,

RQFP
t ≃ 0.59. (62)

This infrared fixed point and the fixed surfaces are as expected from the preceeding analytical considerations with,
however, shifted position of the fixed point due to the effect of including the electroweak gauge couplings in our
numerical iterations. It is, in fact, the quasi fixed point for the respective coupling ratios. The fixed point (62) implies
the approximate top-bottom Yukawa unification at all scales µ.

The fixed point values in (62) translate into the fixed point values for the top-, bottom-quark Yukawa couplings,
and the baryon number violating coupling:

λ′′QFP
233 ≃ 0.90,

hQFP
b ≃ 0.86,

hQFP
t ≃ 0.86. (63)

These quasi-fixed-point values for the Yukawa couplings are not significantly different from those obtained in a
situation when the τ Yukawa coupling was ignored, and when the baryon and lepton number violating couplings were
considered separately in the fixed point analysis [7]. Since the quasi-fixed points are reached for large initial values of
the couplings at the GUT scale, these reflect on the assumption of purturbative unitarity, or the absence of Landau
poles, of the corresponding couplings. The quasi-fixed points (63), therefore, provide an upper bound on the relevant

Yukawa and the baryon and lepton number violating couplings. From our analysis we, thus, conclude that λ′′

233
<
∼ 1

in a process independent manner.
We have carried an analogous numerical study for the soft supersymmetry breaking trilinear couplings. Here the

choice of inputs is larger and we economize on the possibilities, however, ensuring that the main focus of the analysis
is not lost. In Figs. 2(a), 2(b) and 2(c) we illustrate the infrared attraction for the trilinear couplings with a choice of
Yukawa and the baryon number violating couplings hb = λ′′

233 = 1.1 and ht = 1.65 (in order to break the near isospin
invariance of the top- and bttom-quark couplings), and universal boundary conditions for the trilinear couplings
±(3, 2, 1, 0.5)M1/2, 0, with M1/2 the universal gaugino mass, for the eight different computations that we perform.
The results for the Yukawa couplings and the trilinear couplings at the infrared scale are then fed back to the RG
equations at the UV scale and then evolved again. We exhibit the resulting attraction in terms of the projections
onto the Ãt − Ãb, Ãt − Ãλ′′ and Ãb − Ãλ′′ planes in Fig. 2. The dramatic focussing property of the renormalization
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group equations for the A parameters is clearly observed in these results. The results of this iteration process results
in the following predictions for the quasi-fixed points for the A parameters:

AQFP
λ′′ ≃ 0.95 mg̃,

AQFP
t ≃ 0.66 mg̃,

AQFP
b ≃ 0.67 mg̃, (64)

where mg̃ is the gluino mass (= M3) at the weak scale. These quasi-fixed point values for the A parameters must
be compared with the true fixed point values (51). We note that the quasi-fixed-point values (64) provide a lower
bound on the corresponding A parameters, whereas the true fixed-point values (51) represent an upper bound on
these parameters. From this analysis we are able to constrain these A parameters in the following model independent
manner:

Aλ′′

mg̃
≃ 1,

0.66
<
∼

At

mg̃

<
∼ 1,

0.67
<
∼

Ab

mg̃

<
∼ 1, (65)

V. SUMMARY AND CONCLUSIONS

We have carried out a detailed study of the infrared fixed point structure of the minimal supersymmetric standard
model with the third generation Yukawa couplings and with highest generation baryon and lepton number violation.
We have obtained the infrared fixed points for such a model, and shown that there is no physically acceptable infrared
fixed point with both baryon and lepton number violating couplings approaching a nontrivial fixed point. The
simultaneous nontrivial fixed point for the top- and bottom-quark Yukawa couplings, and the B-violating coupling
λ′′

233 is the only true fixed point that is stable in the infrared region. We have obtained approximate analytical
solutions to the RG equations near the stable fixed point, which illustrate the approach to the fixed point. We have
also derived the exact solutions of the RG equations of such a model in a closed form, from which we have obtained
infrared quasi-fixed point solutions for the various couplings. The quasi-fixed-points are realised at the weak scale
when the initial couplings at the GUT scale are large. These fixed points, thus, reflect on the assumption of the
perturbative unitarity of the corresponding couplings. We have carried out the corresponding RG analysis of the
trilinear soft supersymmetry breaking couplings, and obtained the infrared stable fixed point for these couplings, and
the approach to the fixed point analytically.

Since the true fixed points may not be reached at the electroweak scale, we have also studied the numerical
solutions of the RG equations, and obtained the infrared fixed surfaces, and demonstrated the convergence of the RG
flow towards the fixed point. From this analysis we have obtained a process independent upper bound on the highest

generation baryon number violating coupling, λ′′

233
<
∼ 1.

Our study of the RG flow of the Yukawa couplings has been complemented by the corresponding numerical study
of the RG equations for the soft supersymmetry breaking trilinear couplings, and the demonstration of the rapid
convergence towards the fixed point for these couplings. From this analysis, we have constrained the A parameters to

be Aλ′′/mg̃ ≃ 1, 0.66
<
∼ At/mg̃

<
∼ 1, 0.67

<
∼ Ab/mg̃

<
∼ 1. We emphasize that our results are independent of whether

or not there is a unification of the couplings at some large scale or not. The infrared fixed points and the infrared
fixed surfaces are the property of the MSSM with baryon and lepton number violation. Since they are approximate,
only their actual value depends on the large scale.
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Figure Captions

Fig. 1 (a) The values of the ratios Rb and Rt at the end of first four iterations for the inputs ht = 9, 1, 0.5, hb =
9, 1, 0.5, and λ′′

233 = 1.1.

Fig. 1 (b) The values of the ratios R′′ and Rt at the end of first four iterations for the inputs ht = 9, 1, 0.5, hb =
9, 1, 0.5, and λ′′

233 = 1.1.

Fig. 1 (c) The values of the ratios R′′ and Rb at the end of first four iterations for the inputs ht = 9, 1, 0.5, hb =
9, 1, 0.5, and λ′′

233 = 1.1.

Fig. 2 (a) The values of the ratios Ãb and Ãt at the end of first four iterations for the inputs hb = λ′′

233 = 1.1 and
ht = 1.65, and universal trilinear couplings A = ±(3, 2, 1, 0.5)M1/2, 0.

Fig. 2 (b) The values of the ratios Ãλ′′ and Ãt at the end of first four iterations for the inputs hb = λ′′

233 = 1.1 and
ht = 1.65, and universal trilinear couplings A = ±(3, 2, 1, 0.5)M1/2, 0.

Fig. 2 (c) The values of the ratios Ãλ′′ and Ãb at the end of first four iterations for the inputs hb = λ′′

233 = 1.1 and
ht = 1.65, and universal trilinear couplings A = ±(3, 2, 1, 0.5)M1/2, 0.
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