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ON COHERENT SYSTEMS OF TYPE (n; d; n+ 1) ON PETRI CURVESU. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADAbstrat. We study oherent systems of type (n; d; n+1) on a Petri urve X of genusg � 2. We desribe the geometry of the moduli spae of suh oherent systems forlarge values of the parameter �. We determine the top ritial value of � and showthat the orresponding \ip" has positive odimension. We investigate also the non-emptiness of the moduli spae for smaller values of �, proving in many ases that theondition for non-emptiness is the same as for large �. We give some detailed results forg � 5 and appliations to higher rank Brill-Noether theory and the stability of kernelsof evaluation maps, thus proving Butler's onjeture in some ases in whih it was notpreviously known. 1. IntrodutionLet X be a smooth irreduible projetive urve. A oherent system of type (n; d; k) onX is a pair (E; V ) where E is a vetor bundle on X of rank n and degree d and V is alinear subspae of H0(E) with dimV = k. A notion of stability for oherent systems, de-pendent on a real variable �, an be de�ned and leads to the onstrution of moduli spaesG(�;n; d; k) for �-stable oherent systems (see [16℄, [19℄, [26℄). There is a natural ompat-i�ation eG(�;n; d; k) obtained by onsidering equivalene lasses of �-semistable oherentsystems. For k = 0, G(�;n; d; 0) is independent of � and oinides with the moduli spaeM(n; d) of stable bundles of rank n and degree d on X, while eG(�;n; d; 0) oinides withthe orresponding moduli spae fM(n; d) of S-equivalene lasses of semistable bundles.If k � 1, a neessary ondition for non-emptiness of G(�;n; d; k) (resp. eG(�;n; d; k)) is� > 0 (resp. � � 0). For n = 1, all oherent systems are �-stable for all � > 0 andG(�; 1; d; k) oinides with the lassial variety of linear systems Gk�1d .A systemati study of oherent systems on urves of genus g � 2 de�ned over theomplex numbers was begun in [5℄ (see also [4℄) and ontinued in [6℄ and [7℄. In partiular,preise onditions for non-emptiness of G(�;n; d; k) are known when k � n [6, Theorem3.3℄. For k > n, muh less is known. There are general results due to E. Ballio [2℄ andDate: Deember 13, 2007.2000 Mathematis Subjet Classi�ation. 14H60.Key words and phrases. oherent systems, stability, Brill-Noether, Petri urve.The authors are members of the researh group VBAC (Vetor Bundles on Algebrai Curves). The �rsttwo authors were supported by EPSRC grant GR/T22988/01 for a visit to the University of Liverpool.The seond author aknowledges the support of CONACYT grant 48263-F. The third author thanksCIMAT, Guanajuato, M�exio and California State University Channel Islands, where a part of thispaper was ompleted, and aknowledges support from the Aademia Mexiana de Cienias, under itsexhange agreement with the Royal Soiety of London.1



2 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADM. Teixidor i Bigas [30℄; Teixidor's results are muh the stronger, but are ertainly notbest possible. Some more detailed results have been obtained in [8, 9℄. It is known thatthe �-stability ondition stabilises for � > d(n� 1); we denote the orresponding \large�" moduli spae G(�;n; d; k) by GL(n; d; k) (see setion 2 for more details).Our objet in this paper is to study the ase k = n + 1 when the urve X is a Petriurve, in other words, for every line bundle L on X, the multipliation mapH0(L)
H0(L� 
K)! H0(K)is injetive. In this ase GL := GL(�;n; d; n + 1) is non-empty if and only if the Brill-Noether number � := �(n; d; n+ 1) = g � (n+ 1)(n� d+ g)is non-negative [5, Theorem 5.11℄. When in addition d � g + n, G(�) := G(�;n; d; n+ 1)is independent of � > 0 and its struture has been determined [8, Theorem 2℄. Our �rstmain theorem (Theorem 3.1) generalises these results and gives a signi�ant improvementof the estimate � > d(n�1) for G(�) to oinide with GL. The detailed statement, whihinludes additional information on the struture of GL, is as follows (here E 0 denotes thesubsheaf image of the evaluation map V 
 O ! E; for the de�nitions of generated andgenerially generated, see setion 2).Theorem 3.1. Suppose that X is a Petri urve of genus g � 2 and � > maxf0; �lg,where �l := d(n� 1)� n�n� 1 + g � hgni� :Then(1) G(�) 6= ; if and only if � � 0;(2) G(�) = GL;(3) (E; V ) 2 G(�) if and only if (E; V ) is generially generated and H0(E 0�) = 0;(4) if � > 0, G(�) is smooth and irreduible of dimension �; moreover the generielement of G(�) is generated;(5) if � = 0, G(�) is a �nite set of ardinalityg! nYi=0 i!(g � d+ n+ i)! ;moreover every element of G(�) is generated.It follows in partiular that, if (E; V ) 2 GL, then the okernel E=E 0 of the evaluationmap V 
O ! E is a torsion sheaf. In setion 4, we de�ne a strati�ation of GL in termsof the length of E=E 0. More preisely, for every integer t � 0, we write�t = f(E; V ) 2 GL : E=E 0 has length tg and St =[i�t�i:Then



ON COHERENT SYSTEMS 3Theorem 4.2. Suppose � � 0 and that the subsets St of GL are de�ned as above. Then(1) St is losed in GL and is non-empty if and only if 0 � t � t1 := � �n+1�;(2) for 1 � t � t1, St � St�1 n St;(3) for 1 � t � t1, dimSt = � � t;(4) St is irreduible for t < �n+1 ;(5) if �n+1 is an integer, then all irreduible omponents of St1 have the same dimen-sion.In setion 5, we show that there exists (E; V ) 2 GL suh that (E; V ) is not �l-stable,in other words �l is an (atual) ritial value in the sense of [5, De�nition 2.4℄. In viewof Theorem 3.1, �l is in fat the top ritial value of �.Setions 6 { 8 are onerned with the moduli spae G(�) for arbitrary �. It wasproved in [8℄ that, if G(�) 6= ;, then � � 0. Several results on the non-emptiness ofG(�) when � � 0 were also proved in [8℄. In setion 6, we extend these results usingthe tehniques of elementary transformations and extensions of oherent systems. Inpartiular for n = 2; 3; 4, we show in setion 7 that G(�) 6= ; if and only if � � 0 (seeTheorems 7.1, 7.2 and 7.3 for details). We then onsider in setion 8 the ase g � 5(inluding g = 0 and g = 1, whih have been exluded from our general disussion). Forg � 2, the results are omplete, while for g = 3; 4; 5, there are a few ases still to besolved.In setion 9, we give some appliations to higher rank Brill-Noether theory (see setion2 for de�nitions). We �rst obtain some irreduibility and smoothness results for Brill-Noether loi using the programme envisaged in [5, setion 11℄. For the seond appliation,suppose that L is a generated line bundle of degree d > 0 and let V be a linear subspaeof H0(L) of dimension n + 1 whih generates L (in other words, (L; V ) is a generatedoherent system of type (1; d; n+ 1)). We have an evaluation sequene0 �!MV;L �! V 
O �! L �! 0:The bundles MV;L arise in several ontexts and have been used in the study of Piardbundles [13℄, normal generation of vetor bundles [25, 11℄, syzygies and projetive embed-dings [14℄, higher rank Brill-Noether loi [20℄, theta-divisors [3, 23℄ and oherent systems[12, 5, 8℄.A partiular point of interest is to determine whether or not MV;L is stable. In fat,in [12℄, Butler onjetured that MV;L is stable for general hoies of X, L and V . Hisonjeture [12, Conjeture 2℄ is onerned more generally with generated oherent systemsof any type (n; d; k). We shall be onerned only with the ase n = 1; Butler's onjeturean then be stated as follows.Conjeture 9.5. Let X be a Petri urve of genus g � 3. Suppose that � := �(1; d; n+1) � 0 and that L is a general element of B(1; d; n+1) (when � = 0, L an be any element



4 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADof the �nite set B(1; d; n + 1)) and let V be a general subspae of H0(L) of dimensionn+ 1. Then MV;L is stable.In most of the above referenes, V is taken to be H0(L), whih implies by Riemann-Roh that d � g + n and the stability problem has been solved in this ase [12, 8℄.However the ase where V is a proper subspae of H0(L) seems equally interesting; thisis mentioned but not used in [12℄, used in a minor way in [5℄ and studied for low values ofthe odimension in [23℄. However, the restrition plaed on d in [23℄ implies that d � 2n,so this ase (although not the remaining results of [23℄) is also overed in [20, 22℄. Inthe present paper, we do not use the stability of MV;L exept through itations fromearlier papers. We are therefore able to use our methods to prove the stability of MV;Lin some ases where it is not (to our knowledge) already known. These new examplesfor whih MV;L is stable depend essentially on the use of extensions of oherent systems(more spei�ally on Propositions 6.9, 6.10, 6.12, 7.5 and 7.6).We assume throughout that X is a Petri urve of genus g, where, exept in setion8, g � 2. We assume also that X is de�ned over the omplex numbers. We denote theanonial line bundle on X by K. 2. PreliminariesIn this setion, we reall some fats about oherent systems, most of whih an be foundin [5℄ and [15℄.For � 2 R, we de�ne the �-slope of the oherent system (E; V ) of type (n; d; k) by��(E; V ) := dn + �kn:A oherent subsystem of (E; V ) is a pair (F;W ), where F is a subbundle of E and W �V \H0(F ).De�nition 2.1. For any � 2 R, a oherent system (E; V ) on X is �-stable (respetively�-semistable) if, for every proper oherent subsystem (F;W ),��(F;W ) < ��(E; V ) (respetively �):We denote by G(�;n; d; k) the moduli spae of �-stable oherent systems of type(n; d; k) ([16℄, [19℄, [26℄) and by eG(�;n; d; k) the moduli spae of S-equivalene lassesof �-semistable oherent systems (see [5, setion 2℄). It follows from the de�nition of�-stability that, if k � 1 and G(�;n; d; k) 6= ;, then � > 0 and d > 0 [5, setion 2 andLemmas 4.1 and 4.3℄.Remark 2.2. Given a oherent system (E; V ) and an e�etive line bundle L, let eE =E 
 L. Choose a non-zero setion s of L and let eV be the image of V in H0( eE) underthe indued inlusion H0(E) ,! H0( eE) : v 7! v 
 s. Then(1) E is (semi)stable if and only if eE is (semi)stable.



ON COHERENT SYSTEMS 5(2) (E; V ) is �-(semi)stable if and only if ( eE; eV ) is �-(semi)stable [26, Lemma 1.5℄.Remark 2.3. It follows from Remark 2.2 that, if G(�;n; d; k) 6= ; for all integers d 2 [a; b℄with a; b 2 Z and b� a � n� 1, then G(�;n; d; k) 6= ; for all d � a:For any triple (n; d; k), we de�ne the Brill-Noether number �(n; d; k) by�(n; d; k) = n2(g � 1) + 1� k(k � d+ n(g � 1)):For a oherent system (E; V ), the Petri map at (E; V ) is the map(2.1) V 
H0(E� 
K)! H0(E 
 E� 
K)given by multipliation of setions. We have the following fundamental result (see [15,Corollaire 3.14℄, [5, Corollary 3.6 and Proposition 3.10℄).Proposition 2.4. Every irreduible omponent of G(�;n; d; k) has dimension� �(n; d; k).Moreover, if (E; V ) 2 G(�;n; d; k), then G(�;n; d; k) is smooth of dimension �(n; d; k) at(E; V ) if and only if (2.1) is injetive.For a line bundle L with V = H0(L), the Petri map (2.1) takes the form(2.2) H0(L)
H0(L� 
K)! H0(K)De�nition 2.5. The urve X is a Petri urve if (2.2) is injetive for every line bundle Lon X.It is a lassial fat (see [1℄) that the general urve of any given genus g is a Petri urve.It should however be emphasised that, exept for ertain low values of the genus, thereexist �-stable oherent systems (E; V ) on the general urve for whih (2.1) is not injetive(see, for example, [29, x5℄).The �-range is divided into a �nite set of intervals by a set of ritial values f�ig,where, for k � n, 0 = �0 < �1 < � � � < �L <1[5, Proposition 4.6℄. For �; �0 2 (�i; �i+1), we have G(�;n; d; k) = G(�0;n; d; k) and wedenote this moduli spae by Gi := Gi(n; d; k). In partiular, for � > �L, we have the\large �" moduli spae GL := GL(n; d; k).The relation between two onseutive moduli spaes Gi�1 and Gi is given by the soalled \ips" (see [5℄ for a more omplete desription). For any ritial value �i, wedenote by ��i , �+i values of � in the intervals respetively immediately before and after�i and let G+i := f(E; V ) 2 Gi j (E; V ) is not ��i �stablegand G�i = f(E; V ) 2 Gi�1 j (E; V ) is not �+i �stableg:These are alled ip loi and(2.3) Gi �G+i = Gi�1 �G�i :



6 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADFor any ritial value �i, the ip lous G+i onsists of the oherent systems (E; V ) 2 Gifor whih there exists an exat sequene(2.4) 0! (E1; V1)! (E; V )! (E2; V2)! 0;with (Ej; Vj) of type (nj; dj; kj), �i-semistable and �+i -stable for j = 1; 2 and(2.5) ��i(E1; V1) = ��i(E2; V2); k1=n1 < k=n(see [5, Lemma 6.5℄ for more details). Similarly, the ip lous G�i onsists of the oherentsystems (E; V ) 2 Gi�1 for whih there exists an exat sequene0! (E2; V2)! (E; V )! (E1; V1)! 0;with (Ej; Vj) �i-semistable and ��i -stable for j = 1; 2 and satisfying (2.5).In [5℄, numerial riteria were obtained to help determine whether the ip loi havepositive odimension. More generally, these riteria an be used to estimate the numberof parameters on whih the oherent systems (E; V ) given by extensions (2.4) depend.De�ne, for fj; lg = f1; 2g,Cjl = njnl(g � 1)� njdl + nldj + kjdl � kjnl(g � 1)� kjkl= (kj � nj)(dl � nl(g � 1)) + nldj � kjkl(2.6)and(2.7) H 0jl = Hom((Ej; Vj); (El; Vl)); H 2jl = H0(E�l 
Nj 
K)�;Nj being the kernel of the evaluation map Vj 
 O ! Ej. We have, by [5, equations (8)and (11)℄,(2.8) dimExt1((Ej; Vj); (El; Vl)) = Cjl + dimH 0jl + dimH 2jl :The following lemma an be regarded as a simpli�ed version of [5, Lemma 6.8℄.Lemma 2.6. Suppose that, for j = 1; 2, (Ej; Vj) has type (nj; dj; kj) and varies in afamily depending on at most �(nj; dj; kj) parameters. Suppose further that, for some h0,h2, dimH 021 � h0; dim H 221 � h2for all (Ej; Vj) ourring in these families and thatC12 � h0 � h2 > 0:Then the oherent systems (E; V ) arising as non-trivial extensions of the form (2.4) de-pend on at most �(n; d; k)� 1 parameters.Proof. By (2.8), for �xed (E1; V1), (E2; V2), the oherent systems (E; V ) depend on atmost C21 + h0 + h2 � 1parameters. The result follows from [5, Corollary 3.7℄. �



ON COHERENT SYSTEMS 7Remark 2.7. Note that, if we assume in addition that (E; V ) is �-stable for some �, thenwe an take h0 = 0, sine a non-zero homomorphism (E2; V2)! (E1; V1) would ontradit[5, Proposition 2.2(ii)℄.The \small �" moduli spaes G0(n; d; k) and eG0(n; d; k) are losely related to the Brill-Noether lous B(n; d; k) of stable bundles, whih is de�ned byB(n; d; k) := fE 2M(n; d)jh0(E) � kg:Similarly one de�nes the Brill-Noether lous eB(n; d; k) for semistable bundles byeB(n; d; k) := f[E℄ 2 fM(n; d)jh0(gr(E)) � kg;where fM(n; d) is the moduli spae of S-equivalene lasses of semistable bundles, [E℄ isthe S-equivalene lass of E and gr(E) is the graded objet assoiated to a semistablebundle E. The formula (E; V ) 7! [E℄ de�nes a morphism : G0(n; d; k)! eB(n; d; k);whose image ontains B(n; d; k). We shall use this morphism  in setion 9.We �nish this setion with a useful de�nition and some notation.De�nition 2.8. A oherent system (E; V ) isgenerated if the evaluation map V 
O ! E is surjetive;generially generated if the okernel of the evaluation map is a torsion sheaf.Notation. We shall write �, G(�), eG(�), GL for �(n; d; n + 1), G(�;n; d; n + 1),eG(�;n; d; n + 1), GL(n; d; n + 1) respetively. For any oherent system (E; V ), we shallonsistently denote by E 0 the subsheaf image of the evaluation map. We shall also denoteby (ni; di; ki) the type of a oherent system (Ei; Vi).3. The moduli spae for large �In this setion we assume that X is a Petri urve and obtain a strengthening of [5,Theorem 5.11℄. In partiular we obtain a muh better lower bound on the parameter �whih ensures that G(�) = GL. In later setions we shall prove that this bound is bestpossible and desribe a natural strati�ation of GL. For d � g+n, Theorem 3.1 has beenproved in [8, Theorem 2℄. We reall that, for any oherent system (E; V ), E 0 denotes thesubsheaf image of V 
O in E.Theorem 3.1. Suppose that X is a Petri urve and � > maxf0; �lg, where(3.1) �l := d(n� 1)� n�n� 1 + g � hgni� :Then(1) G(�) 6= ; if and only if � � 0;(2) G(�) = GL;



8 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEAD(3) (E; V ) 2 G(�) if and only if (E; V ) is generially generated and H0(E 0�) = 0;(4) if � > 0, G(�) is smooth and irreduible of dimension �; moreover the generielement of G(�) is generated;(5) if � = 0, G(�) is a �nite set of ardinalityg! nYi=0 i!(g � d+ n+ i)! ;moreover every element of G(�) is generated.We shall prove Theorem 3.1 by means of a sequene of propositions. We begin withtwo lemmas, the �rst of whih is a variant of [8, Lemma 3.1℄. Sine the hypotheses arenot exatly the same as those of [8, Lemma 3.1℄, we inlude a proof.Lemma 3.2. Let X be a Petri urve and (E; V ) a oherent system of type (n; d; k). If(E; V ) is generially generated and H0(E 0�) = 0, then k � n + 1 and d � g + n� � gn+1�.Moreover, if (E2; V2) is a quotient oherent system of (E; V ), then (E2; V2) is generiallygenerated and H0(E 0�2 ) = 0.Proof. Certainly k � n. If k = n, then E 0 �= On, ontraditing the hypothesis H0(E 0�) =0. So k � n+ 1.Replaing V , if neessary, by a subspae of dimension n + 1 whih generates E 0, wehave an exat sequene(3.2) 0! L� ! V 
O ! E 0 ! 0;where L = detE 0. From the dual of (3.2) and the hypothesis H0(E 0�) = 0, we see thath0(L) � n+ 1. By lassial Brill-Noether theory, this implies thatdegE 0 = degL � ngn + 1 + n = g + n� gn + 1 :Hene d � degE 0 � g + n� � gn+1� as required.For the last part, note that the image of E 0 in E2 is preisely E 02. Hene E 02 is a quotientof E 0 and the result follows. �Remark 3.3. Note that(3.3) �l = (n� 1)(d� g � n)� �g � n hgni� = (n� 1)(d� n)� n�g � hgni� :and that d � g + n� � gn+ 1�, d � ngn+ 1 + n, � � 0:Note in partiular that, by (3.3),�l � 0) d � g + n) � � 0:



ON COHERENT SYSTEMS 9Lemma 3.4. Let f : Z>0 ! Q be de�ned byf(r) := 1r �g � � gr + 1�� :Then f is a dereasing funtion of r.Proof. If g � r + 1, we have f(r) � 1r �g � gr + 1� = gr + 1and f(r + 1) � 1r + 1 �g � g � r � 1r + 2 � = g + 1r + 2 � gr + 1 :On the other hand, if g < r + 1, thenf(r) = gr > gr + 1 = f(r + 1): �Proposition 3.5. Suppose that (E; V ) is a generially generated oherent system of type(n; d; n+ 1) and H0(E 0�) = 0. Then (E; V ) is �-stable for � > maxf0; �lg.Proof. Let (E2; V2) be a proper quotient oherent system of (E; V ) of type (n2; d2; k2). Itfollows from Lemma 3.2 that k2 � n2 + 1 and d2 � g + n2 � h gn2+1i. Hene(3.4) ��(E2; V2) � 1 + 1n2 �g � � gn2 + 1�� + ��n2 + 1n2 � :If � > maxf0; �lg then, sine 0 < n2 < n,(3.5) �� 1n2 � 1n� = ��n� n2nn2 � � �n(n� 1) > dn � 1� 1n� 1 �g � hgni� :Hene, from (3.4) and Lemma 3.4,��(E2; V2)� ��(E; V ) > 1n2 �g � � gn2 + 1��� 1n� 1 �g � hgni� � 0:Sine this holds for all (E2; V2), it follows that (E; V ) is �-stable. �Remark 3.6. Suppose (E2; V2) is a oherent system of type (n2; d2; k2) with0 < n2 < n; k2 � n2 + 1; d2 � g + n2 � � gn2 + 1� :If � � �l > 0, then (3.4) still holds as does the �rst inequality in (3.5), while the seondinequality in (3.5) beomes �. So��(E2; V2) � ��(E; V )with equality if and only if � = �l and



10 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADn2 = n� 1; k2 = n; d2 = g + n� 1� hgni :Proposition 3.7. For given n and d, the following three onditions are equivalent:(a) there exists a generated oherent system (E; V ) of type (n; d; n+1) with H0(E�) =0;(b) there exists a generially generated oherent system (E; V ) of type (n; d; n+1) withH0(E 0�) = 0;() � � 0.Proof. Clearly (a) implies (b) and, by Lemma 3.2 and Remark 3.3, (b) implies ().Now suppose () holds. By lassial Brill-Noether theory, G(1; d; n + 1) 6= ; and itsgeneral element (L;W ) is generated (in the ase � = 0, G(1; d; n + 1) is �nite and allelements are generated). If we de�ne E by the exat sequene0! E� ! W 
O ! L ! 0;then (E;W �) satis�es (a). �Proposition 3.8. Suppose that � > maxf0; �lg and (E; V ) is an �-semistable oherentsystem of type (n; d; n+ 1). Then (E; V ) is generially generated and H0(E 0�) = 0.Proof. Sine (E 0; V ) is a generated oherent system, we an write (E 0; V ) �= (Os; H0(Os))�(G;W ) where H0(G�) = 0, W = H0(G) \ V and (G;W ) is generated. Let r denote therank of G. Note that, sine h0(E 0) � n+1, we must have r � 1. We require to show thatr = n.Suppose to the ontrary that r � n�1. Sine the oherent system (G;W ) is generated,we have, by Lemma 3.2, degG � g + r � � gr+1�. Hene1r �g � � gr + 1�� + 1 + �n+ 1� sr � ��(G;W ):Sine (E; V ) is �-semistable, it follows that1r �g � � gr + 1�� + 1 + �n+ 1� sr � dn + �n+ 1n :Now s � n � r; so, for any �xed r, the minimum value for the left-hand side of thisinequality is given by s = n� r. By Lemma 3.4, this minimum value is then a dereasingfuntion of r. Hene 1n� 1 �g � hgni� + 1 + � nn� 1 � dn + �n+ 1n ;i. e. �n(n� 1) � d� nn � 1n� 1 �g � hgni� ;ontraditing the hypothesis that � > �l. �



ON COHERENT SYSTEMS 11Remark 3.9. Under the hypotheses of Proposition 3.8, we have an exat sequene(3.6) 0! E 0 ! E ! � ! 0;where � is a torsion sheaf. If t is the length of � , then degE 0 = d � t. Sine (E 0; V ) isgenerated and H0(E 0�) = 0, Lemma 3.2 gives d� t � g + n� � gn+1�, or equivalently(3.7) t � t1 := d� g � n+ � gn + 1� = � �n+ 1� :We shall see later (Theorem 4.2) that this bound is best possible. In partiular, if wewrite d0 = g + n� � gn+ 1� ;then, for d > d0, we have t1 � 1, so there exists a non-generated oherent system (E; V )in GL.Proof of Theorem 3.1. Parts (2) and (3) follow from Propositions 3.5 and 3.8, and (1)then follows from Proposition 3.7.(4) If � > 0, it follows from [8, Lemma 4.2℄and [5, Theorem 5.11℄ that G(�) is smoothand irreduible of dimension �. The fat that the generi element is generated then followsfrom Proposition 3.7.(5) If � = 0, it follows from [8, Lemma 4.2℄ that G(�) is �nite and that, as a sheme, itis redued. By (3.6) and (3.7), every element is generated. The formula for the ardinalityof G(�) now follows from [1, Chapter V, formula (1.2)℄. �4. A stratifiation of GLLet(4.1) �0 = f(E; V ) 2 GLj(E; V ) is generatedg:Clearly �0 is open in GL. If � � 0, we know from Theorem 3.1 that �0 6= ;. Moreover,by Remark 3.9, the omplement of �0 in GL is a disjoint union of loally losed subsets�t, de�ned for 1 � t � t1 by(4.2) �t = f(E; V ) 2 GLj 9 an exat sequene (3:6) with � of length tg:We now de�ne St =[i�t�i;where the �i are the loally losed subsets of GL de�ned in (4.1) and (4.2). ClearlyGL = S0 � S1 � � � � � St � : : : . We would like to show that the subsets St de�ne awell-behaved strati�ation of GL.We begin with a lemma, whih will be needed again later



12 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADLemma 4.1. Suppose that we have an exat sequene0 �! F �! E �! � �! 0;where � is a torsion sheaf of length t, and that V is a subspae of H0(F ) of dimensionn+ 1. Then (E; V ) 2 GL(n; d; n+ 1), (F; V ) 2 GL(n; d� t; n + 1):Proof. It is lear that (E; V ) is generially generated if and only if (F; V ) is generiallygenerated and that E 0 = F 0. The result follows at one from Theorem 3.1(3). �Theorem 4.2. Suppose � � 0 and that the subsets St of GL are de�ned as above. Then(1) St is losed in GL and is non-empty if and only if 0 � t � t1 := � �n+1�;(2) for 1 � t � t1, St � St�1 n St;(3) for 1 � t � t1, dimSt = � � t;(4) St is irreduible for t < �n+1 ;(5) if �n+1 is an integer, then all irreduible omponents of St1 have the same dimen-sion.Proof. The fat that St is empty if t > t1 = � �n+1� has already been proved in Remark3.9. We prove the rest of the theorem by indution on t1, the result being an immediateonsequene of Theorem 3.1 if t1 = 0.Suppose therefore that t1 � 1. We onsider the moduli spaeGL;d�1 := GL(n; d� 1; n+ 1)and denote by St;d�1 the subset of GL;d�1 given bySt;d�1 := f(F; V ) 2 GL;d�1j 9 an exat sequene (3:6) with � of length � tg:The maximum value of t on GL;d�1 is��(1; d� 1; n+ 1)n + 1 � = t1 � 1;so we an assume indutively that the theorem holds for GL;d�1.Note next that, if (F; V ) 2 GL;d�1 and E is de�ned by an elementary transformation(4.3) 0! F ! E ! � ! 0;with � a torsion sheaf of length 1, then (E; V ) 2 GL by Lemma 4.1. In fat it is easyto see that the (E; V ) obtained in this way are preisely the elements of S1 and, moregenerally, for 1 � t � t1,(4.4) (E; V ) 2 St , (F; V ) 2 St�1;d�1:The next step is to arry out this onstrution for families of oherent systems. Sine(n; d � 1; n + 1) are oprime there is a universal family (U ;V) parametrised by GL;d�1



ON COHERENT SYSTEMS 13[6, Proposition A.8℄. Denote by p : PU ! X � GL;d�1 the natural projetion. As in theHeke orrespondene of [24℄, PU parametrises the triples(F; V; 0! F ! E ! � ! 0)for whih (F; V ) 2 GL;d�1 and � has length 1. The universal property of GL now gives usa diagram PU 	�! GLp #X �GL;d�1:By (4.4), we have(4.5) St = 	(p�1(X � St�1;d�1)); 	�1(St�1 n St) = p�1(X � (St�2;d�1 n St�1;d�1)):The fat that St 6= ; for t � t1 follows at one. Moreover GL;d�1 is a projetive varietyand, by indutive hypothesis, St�1;d�1 is losed and, provided t � 1 < �n+1 � 1, alsoirreduible; hene St is losed in GL, ompleting the proof of (1). Properties (2) and (4)follow immediately from (4.5).For (3), note that, by the indutive hypothesis,(4.6) dim(p�1(X � St�1;d�1)) = �(n; d� 1; n+ 1)� (t� 1) + 1 + (n� 1) = � � t:Moreover, if (E; V ) 2 �t and the torsion sheaf � of (4.2) has support onsisting of tdistint points, then 	�1(E; V ) onsists of preisely t points. Hene 	 is generially �niteon (p�1(X � St�1;d�1)), so (3) follows from (4.6).Finally, for (5), suppose �n+1 is an integer and let S 0 be any irreduible omponent ofSt1�1;d�1; by indutive hypothesis, dimS 0 = �(n; d� 1; n + 1)� (t1 � 1). As in (4.6), wehave dim(	(p�1(X � S 0)) = � � t1:The result follows. �5. The Top Critial ValueIn the previous setions we gave a desription of GL(n; d; n + 1). We shall show nowthat the bound of Theorem 3.1 is best possible if �l > 0 and analyse what happens atthis value of the parameter. Note that the ondition �l > 0 implies that n � 2.Theorem 5.1. Suppose �l > 0. Then there exists a oherent system (E; V ) whih is�+l -stable and �l-semistable, but not �l-stable.Proof. We shall onstrut (E; V ) as an extension(5.1) 0! (E1; V1)! (E; V )! (E2; V2)! 0;where(5.1a) (E2; V2) 2 GL(n� 1; d2; n) with d2 = g + n� 1� � gn�;(5.1b) (E1; V1) is of type (1; d� d2; 1).



14 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADNote that d > d2 by (3.3), so (E1; V1) exists. Moreover �(n�1; d2; n) � 0; so, by Theorem3.1, (E2; V2) also exists and indeed is �-stable for all � > 0 and in partiular for � = �l.It is easy to hek from the de�nition (3.1) that(5.2) ��l(E1; V1) = ��l(E2; V2);so (E; V ) is �l-semistable but not �l-stable. Moreover, sine (E1; V1) and (E2; V2) areboth �l-stable but not isomorphi, it follows from (5.2) that(5.3) Hom((E1; V1); (E2; V2)) = 0 = Hom((E2; V2); (E1; V1)):Now any subsystem of (E; V ) whih ontradits �+l -stability must also ontradit �l-stability. If the extension (5.1) is non-trivial, the only subsystem whih ontradits �l-stability is (E1; V1) and learly this does not ontradit �+l -stability. It remains only toprove that there exists a non-trivial extension (5.1), or equivalently to prove thatExt 1((E2; V2); (E1; V1)) 6= 0:Now, by (2.8) and (2.6),dimExt 1((E2; V2); (E1; V1)) � C21 = (k2 � n2)(d1 � n1(g � 1)) + n1d2 � k1k2:Here we have (n1; d1; k1) = (1; d� d2; 1), (n2; d2; k2) = (n� 1; d2; n), soC21 = (d� d2 � g + 1) + d2 � n = d� g � n+ 1:Sine �l > 0, it follows from (3.3) that d� g � n > 0 and so C21 > 0 as required. �Corollary 5.2. If �l > 0, then it is equal to the top ritial value �L. Moreover the iplous G+L is given preisely by the non-trivial extensions (5.1) whih satisfy (5.1a) and(5.1b) and has dimension � � � 1.Proof. The fat that �L = �l follows at one from Theorems 3.1 and 5.1. If (E; V ) 2 G+L ,we have a sequene (2.4) for whih (E2; V2) is �+l -stable and (2.5) holds with �i = �l.By Lemma 3.2, we must have k2 � n2 + 1 and d2 � g + n2 � h gn2+1i. By Remark 3.6, itfollows that n2 = n� 1; k2 = n; d2 = g + n� 1� hgni :Hene all the onditions of (5.1) hold.Aording to Lemma 2.6 and Remark 2.7, it remains to prove thatC12 � h0(E�1 
N2 
K) > 0:Putting in values from (5.1), we have, sine �l > 0,C12 = (n� 1)�d� g � n + 1 + hgni�� n > g � hgni� 1 � 0:On the other hand, E�1 
N2 
K is a line bundle of degree 2g � 2� d. If d > 2g � 2, weare �nished. If d � 2g � 2, then, by Cli�ord's Theorem,h0(E�1 
N2 
K) � g � d2 < g � g + n2 :



ON COHERENT SYSTEMS 15It is therefore suÆient to prove thatg + n2 � hgni + 1:Sine n � 2, this is obvious. �Remark 5.3. The estimate for the dimension of G+L in the proof of Corollary 5.2 issuÆient for our purposes, but is quite rude and an ertainly be improved.We now turn to the determination of the ip lous G�L .Proposition 5.4. If �l > 0, then the ip lous G�L onsists of the non-trivial extensions(5.4) 0! (E2; V2)! (E; V )! (E1; V1)! 0;where (E1; V1) and (E2; V2) satisfy the same properties as in (5.1), and has dimension� � � 1.Proof. If (E; V ) 2 G�L , then there ertainly exists a non-trivial extension (5.4) with(E2; V2) ��l -stable and ��l(E2; V2) = ��l(E; V ); k2 � n2 + 1(see (2.5)). By [8, Theorem 1(1)℄, we must have �(n2; d2; n2 + 1) � 0 and so, by Remark3.3, d2 � g + n2 � h gn2+1i. By Remark 3.6, it follows thatn2 = n� 1; k2 = n; d2 = g + n� 1� hgni :Hene all the onditions of (5.1) hold. Now note that N1 = 0 and C21 > 0 as shown inthe proof of Theorem 5.1. The proposition follows from Remark 2.7. �Remark 5.5. Taking � = �l in the proof of Proposition 3.8 gives a slightly di�erentdesription of G�L , namelyG�L = f(E; V ) j (E; V ) generially generated; E 0 �= O�G;H0(G�) = 0; G saturated in Eg:It is easy to see that these two desriptions are equivalent.Theorem 5.6. Suppose �l > 0. Then GL�1 is non-empty and irreduible, and is birationalto GL.Proof. This follows from Corollary 5.2, Proposition 5.4 and (2.3). �6. Moduli spaes for any �As we have seen (see Theorems 3.1 and 5.6), for �(n; d; n + 1) � 0 and � > �L�1,the moduli spae G(�;n; d; n+1) is non-empty and the non-emptiness is related with theexistene of oherent systems (E; V ) suh that E is generially generated andH0(E 0�) = 0:Our objet in this setion is to try to generalise these results to arbitrary � > 0. Ford � g + n, these results are largely ontained in the unpublished [12℄ (see also [11℄) andin [8℄.



16 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADWe begin by realling the results of [8℄ whih we require.Proposition 6.1. [8, Theorem 1(1)℄ Let X be a Petri urve and � < 0. Then G(�) = ;for all � > 0.Before proeeding further, we de�neU(n; d; n+ 1) := f(E; V ) 2 GL : E is stablegand U s(n; d; n+ 1) := f(E; V ) : (E; V ) is �-stable for all � > 0g:Note that U(n; d; n+ 1) an be de�ned alternatively asU(n; d; n + 1) := f(E; V ) : E is stable and (E; V ) is �-stable for all � > 0gand in partiular U(n; d; n + 1) � U s(n; d; n + 1). In the onverse diretion, note that,if (E; V ) 2 U s(n; d; n + 1), then E is semistable. However it is not generally true thatU(n; d; n+1) = U s(n; d; n+1) and we an have U s(n; d; n+1) 6= ;, U(n; d; n+1) = ;. Ourmain objet in the remainder of the paper is to determine when these sets are non-empty.Remark 6.2. By openness of �-stability, U(n; d; n + 1) and U s(n; d; n + 1) are opensubsets of GL, thus inheriting natural strutures of smooth variety, and with these samestrutures they are also embedded as open subsets of every G(�). If either U(n; d; n+ 1)or U s(n; d; n+1) is non-empty, then, by Theorem 3.1, it is irreduible of dimension � (or�nite when � = 0) and its generi element (E; V ) is generated with H0(E�) = 0.Proposition 6.3. [8, Proposition 2.5(4)℄ Let (E; V ) be a generated oherent system oftype (n; d; n+ 1) suh that E is semistable. Then (E; V ) 2 U s(n; d; n+ 1).Proposition 6.4. [8, Proposition 4.1(2)℄ Let X be a Petri urve and suppose that g +n � � gn+1� � d � g + n and that g and n are not both equal to 2. Then U(n; d; n + 1) isnon-empty.Proposition 6.5. [8, Proposition 4.6℄ Let X be a Petri urve and � � 0: If g � n2 � 1,then U(n; d; n+ 1) 6= ;.In the remainder of this setion, we shall introdue two further tehniques for onstrut-ing oherent systems. The �rst is that of elementary transformations, whih we shall usein two distint ways.Sine any stable bundle of degree � n(2g� 1) is generated by its setions, Proposition6.3 implies that U(n; d; n + 1) 6= ; for d � n(2g � 1) (see also [8, Proposition 2.6℄). Thenext proposition provides a signi�ant improvement on this.Proposition 6.6. Let X be a Petri urve. Ifd0 = � n(g+3)2 if g is oddn(g+2)2 if g is even,then U s(n; d0; n+ 1) 6= ;.



ON COHERENT SYSTEMS 17If d � d1, where d1 = 8><>: n(g+3)2 + 1 if g is oddn(g+2)2 + 1 if g is even and n � g!( g2 )!( g2+1)!n(g+4)2 + 1 if g is even and n > g!( g2 )!( g2+1)! ;then U(n; d; n+ 1) 6= ;.Proof. It is easy to hek that, with the above de�nition of d0, �(1; d0n ; 2) � 0 (in fat,d0n is the smallest integer for whih this is true). Hene, by lassial Brill-Noether theory,there exists a line bundle L of degree d0n suh that h0(L) � 2 and L is generated byits setions. Now let L1; : : : ;Ln be any suh line bundles and let V be a subspae ofH0(L1 � : : : � Ln) of dimension n + 1 suh that (L1 � : : :� Ln; V ) is generated. Hene(L1 � : : :� Ln; V ) 2 U s(n; d0; n+ 1) by Proposition 6.3.Again by lassial Brill-Noether theory, one an �nd pairwise non-isomorphi line bun-dles L1; : : : ;Ln of degree d1�1n suh that, for all i, h0(Li) � 2 and Li is generated byits setions (in the ase g even and d1 = n(g+2)2 + 1, the number of distint line bundlesof degree d1�1n with h0 � 2 is g!( g2 )!( g2+1)! [1, Chapter V, formula (1.2)℄). Now onsiderextensions 0! L1 � : : :� Ln ! E ! � ! 0;where � is a torsion sheaf of length t � 1. These extensions are lassi�ed by n-tuples(e1; : : : ; en) with ei 2 Ext1(�;Li). It an be shown (see [21, Th�eor�eme A.5℄) that, forany t, there exists an extension of this type for whih E is stable. Moreover V an beregarded as a subspae of H0(E), making (E; V ) a oherent system. If (E1; V1) is a propersubsystem of (E; V ) with E1 6= E, then V1 � V \H0(E1 \L1� : : :�Ln). It follows fromthe �-stability of (L1 � : : :� Ln; V ) for large � that k1n1 � kn . Sine E is stable, we havealso d1n1 < dn . It follows that (E; V ) 2 U(n; d; n+ 1). �Remark 6.7. For a general urve X, the seond part of Proposition 6.6 is valid withd1 = � n(g+1)2 + 1 if g is oddn(g+2)2 + 1 if g is evenby [30℄. However, this does not imply the result for an arbitrary Petri urve.Our seond use of elementary transformations is to proveProposition 6.8. Suppose that U(n; na; n+1) 6= ; for some integer a. Then U(n; d; n+1) 6= ; for all d with d > na and d � �1 mod n.Proof. In view of Remark 2.2, it is suÆient to prove this for d = na + 1 and for d =na+ n� 1.Suppose �rst that d = na+1. Let (F; V ) 2 U(n; na; n+1) and de�ne E as an elementarytransformation (4.3). Then (E; V ) 2 GL(n; na+1; n+1) by Lemma 4.1. The stability ofE follows easily from the stability of F , so (E; V ) 2 U(n; d; n+ 1).



18 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADNow suppose d = na + n � 1. Again let (F; V ) 2 GL(n; na; n + 1) and let x 2 X.Let � be the torsion sheaf of length 1 supported at x and de�ne E as an elementarytransformation 0! E ! F (x)! � ! 0:Then F an be regarded as a subsheaf of E and V as a subspae of H0(E). By Lemma4.1, the oherent system (E; V ) 2 GL(n; na + n � 1; n + 1). The stability of E followsfrom the stability of F (x). �The seond tehnique is the use of extensions of oherent systems. The idea is to takea generi element (E; V ) of GL and try to prove that E is stable. If this is not the ase,there exists a quotient E2 of E with �(E2) � �(E) and we an hoose E2 to be stable.We have therefore an extension 0! E1 ! E ! E2 ! 0;and, taking V1 = V \H0(E1) and V2 = V=V1, we obtain an extension of oherent systems(6.1) 0! (E1; V1)! (E; V )! (E2; V2)! 0:We are assuming that (E; V ) is a generi element of GL, so (E; V ) is generated andH0(E�) = 0. Using Lemma 3.2, we see that (6.1) is subjet to the following onditions:� �(E2) � �(E);� E2 is stable, (E2; V2) is generated and k2 � n2 + 1;� �(E2) � 1 + 1n2 �g � h gn2+1i�.Proposition 6.9. Suppose that X is a Petri urve, n � 3, d < g+n+ gn�1 and n2 � n�2.Then no extension (6.1) exists satisfying the stated onditions.Proof. Suppose we have suh an extension. Then1 + 1n2 �g � � gn2 + 1�� � �(E2) � dn:By Lemma 3.4, the left hand side of this inequality is a dereasing funtion of n2; so wehave 1 + 1n� 2 �g � � gn� 1�� � dn;i.e. d � g + n+ 2gn� 2 � nn� 2 � gn� 1�� g + n+ 2gn� 2 � ng(n� 2)(n� 1)= g + n+ gn� 1 :This gives the required ontradition. �



ON COHERENT SYSTEMS 19It remains to onsider the extensions (6.1) for whih n2 = n� 1. We have two ases:(6.2) 0! (E1; V1)! (E; V )! (E2; V2)! 0; n1 = k1 = 1and(6.3) 0! (E1; 0)! (E; V )! (E2; V2)! 0; n1 = 1:Proposition 6.10. Suppose that X is a Petri urve, n � 2 and d > g + n. Thenthe extensions (6.2) whih satisfy the onditions stated above depend on at most � � 1parameters.Proof. Sine E2 is stable and (E2; V2) is generated, (E2; V2) 2 GL(n2; d2; n2+1) by Propo-sition 6.3. Hene (E2; V2) depends on �(n2; d2; n2+1) parameters, while (E1; V1) dependson d1 = �(1; d1; 1) parameters. By Remark 2.7,H 021 = Hom((E2; V2); (E1; V1)) = 0:By Lemma 2.6, it remains to prove that(6.4) C12 > dimH 221 :Now, by (2.6), C12 = (n� 1)d1 � n;while dimH 221 = h0(E�1 
N2 
K);where N2 is the kernel of the evaluation map V2 
 O ! E2. Now E�1 
N2 
K is a linebundle of degree 2g � 2� d. If d � 2g � 2, then, by Cli�ord's Theorem,h0(E�1 
N2 
K) � g � 1� d2 + 1 = g � d2 :So (6.4) holds if (n� 1)d1 � n > g � d2 :Sine d1 � dn , this will be true if (n� 1)dn � n > g � d2 ;i.e. if 3n� 22n d > g + n:This is ertainly true sine d > g + n.If d > 2g� 2, then h0(E�1 
N2
K) = 0 and we require to prove only that C12 > 0. Infat C12 = (n� 1)d1 � n � n� 1n d� n > n� 1n (g + n)� n = n� 1n g � 1 � 0: �



20 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADRemark 6.11. Propositions 6.9 and 6.10 are direted towards proving that U(n; d; n +1) 6= ;. If we wish only to prove that U s(n; d; n + 1) 6= ;, we are not onerned withthe stability of E and we need to onsider extensions (6.2) under the usual onditions of[5, setion 6.2℄ for the ip loi G+i . We an still assume that (E; V ) is generated withH0(E�) = 0, so (E2; V2) is also generated with H0(E�2) = 0, hene d2 � g + n2 � h dn2+1i,and now �(E2) < �(E). So the result of Proposition 6.9 holds under the assumptiond � g + n+ gn�1 . In Proposition 6.10, note that (E2; V2) 2 GL(n2; d2; n2 + 1) by Theorem3.1(3); so (E2; V2) depends on preisely �(n2; d2; n2 + 1) parameters and the rest of theproof goes through.We turn now to the onsideration of the extensions (6.3).Proposition 6.12. Let X be a Petri urve and n � 3. Suppose that d < g + n + gn�1 .Then there exist no extensions (6.3) satisfying the onditions of (6.1) with(6.5) dn < 2g2n� 1 + 2:Proof. Sine (E2; V2) is generated, we an write as usual0! N2 ! V2 
O ! E2 ! 0:Note that H0(N2) = 0 and that (N�2 ; V �2 ) is generated. Moreover N�2 has rank 2 and, sineh0(E�2) = 0, h0(N�2 ) � n+ 1. Suppose we prove that, for any line subbundle L1 of N�2 ,(6.6) h0(L1) � 1:Then, by [25, Lemma 3.9℄, h0(detN�2 ) � 2n� 1:Hene, by lassial Brill-Noether theory and the assumption �(E2) � �(E),(n� 1)dn � d2 = degN�2 � (2n� 2)g2n� 1 + 2n� 2;whih ontradits (6.5).It remains to prove (6.6). Consider an exat sequene0! L1 ! N�2 ! L2 ! 0:Sine N�2 is generated, so is L2. But L2 is ertainly not trivial sine h0(N2) = 0, soh0(L2) = s � 2 and degL2 � (s� 1)gs + s� 1:If s < n, then h0(L1) � n+ 1� s � 2 anddegL1 � (n� s)gn� s+ 1 + n� s:



ON COHERENT SYSTEMS 21So d2 = degN�2 � (s� 1)gs + s� 1 + (n� s)gn� s + 1 + n� s= 2g � (n+ 1)gs(n� s+ 1) + n� 1:Sine 2 � s � n� 1, this gives(6.7) d2 � 2g � (n+ 1)g2(n� 1) + n� 1 � g + n� 1;sine (n�1)dn � d2, this ontradits the assumption that d < g + n + gn�1 . It follows thats � n, so degL2 � (n� 1)gn + n� 1and(6.8) degL1 = d2 � degL2 < g + n� 1� (n� 1)gn � n + 1 = gn:The inequality (6.6) now follows from lassial Brill-Noether theory. This ompletes theproof. �Remark 6.13. The non-strit inequality(6.9) d � g + n+ gn� 1is suÆient exept when n = 3, when (6.7) fails to give a ontradition. The other plaewhere the inequality d < g + n+ gn�1 is used is (6.8). In this ase (6.9) gives degL1 � gn ;whih is suÆient for (6.6). In partiular, if n � 4, (6.9) and (6.5) are suÆient for thevalidity of Proposition 6.12.7. The ases n = 2, n = 3 and n = 4In this setion we shall assume that g � 3.Theorem 7.1. Let X be a Petri urve of genus g � 3. Then U(2; d; 3) 6= ; if and only if�(2; d; 3) � 0.Proof. This follows at one from Propositions 6.1 and 6.5. �Theorem 7.2. Let X be a Petri urve of genus g � 3. Then U(3; d; 4) 6= ; if and only if�(3; d; 4) � 0.Proof. Aording to Proposition 6.5, the result holds for g � 8. For lower values of g, theresult holds by Proposition 6.4 in the following ases� g = 3; d = 6;� g = 4; d = 6; 7;� g = 5; d = 7; 8;� g = 6; d = 8; 9;



22 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEAD� g = 7; d = 9; 10.For g 6= 5, Proposition 6.8 and Remark 2.3 give the result for all d � g + 3� �g4�, i.e. forall � � 0.When g = 5, Remark 2.2 gives the result for d = 10; 11 and Proposition 6.6 for d � 13,leaving only d = 9; 12 open. For g = 5; d = 9, the inequalities d < g + n+ gn�1 , d > g + nand dn < 2g2n�1 + 2 are all satis�ed and the result follows from Propositions 6.9, 6.10 and6.12. Finally, the ase d = 12 now follows using Remark 2.2. �Theorem 7.3. Let X be a Petri urve of genus g � 3. Then U(4; d; 5) 6= ; if and only if�(4; d; 5) � 0.Proof. Proposition 6.5 gives U(4; d; 5) 6= ; for g � 15. Now Proposition 6.4 overs thefollowing ases� g = 3; d = 7;� g = 4; d = 8;� g = 5; d = 8; 9;� g = 6; d = 9; 10;� g = 7; d = 10; 11;� g = 8; d = 11; 12;� g = 9; d = 12; 13;� g = 10; d = 12; 13; 14;� g = 11; d = 13; 14; 15;� g = 12; d = 14; 15; 16;� g = 13; d = 15; 16; 17;� g = 14; d = 16; 17; 18.Proposition 6.8 now gives the following additional ases� g = 4; d = 9; 11;� g = 5; d = 11;� g = 8; d = 13;� g = 9; d = 15;� g = 10; d = 15;� g = 12; d = 17;� g = 14; d = 19.Remark 2.3 now ompletes the argument for g = 10; 12; 14.For other g, we try using extensions of oherent systems. Propositions 6.9, 6.10 and6.12, together with Proposition 6.8, give the following additional ases� g = 5; d = 10;� g = 6; d = 11;� g = 7; d = 12; 13;



ON COHERENT SYSTEMS 23� g = 8; d = 14;� g = 9; d = 14;� g = 11; d = 16;� g = 13; d = 18.Again using Remark 2.3, this ompletes the argument for g = 5; 7; 8; 9; 11; 13. Moreover,in view of Proposition 6.6, the only outstanding ases are g = 3; d = 8; 9; 10; 12, g =4; d = 10; 14 and g = 6; d = 12; 16.Proposition 7.4. Suppose that X is a Petri urve of genus 3 and d = 8; 9 or 12. ThenU(4; d; 5) 6= ;.Proof. Suppose �rst that d = 8. Sine d = 2n, the result then follows from [7, Theorem5.4℄. For d = 9, we now use Proposition 6.8 and, for d = 12, we apply Remark 2.2. �Proposition 7.5. Suppose that X is a Petri urve of genus 6 and d = 12 or 16. ThenU(4; d; 5) 6= ;.Proof. In view of Remark 2.2, it is suÆient to prove that U(4; 12; 5) 6= ;. Note that inthis ase we have12 = d = g + n + gn� 1 and dn = 3 < 2g2n� 1 + 2 = 127 + 2:Let (E; V ) be a generi element of GL(4; 12; 5) and suppose that E is not stable. ByRemark 6.13 and Proposition 6.10, the only possible form for a destabilising sequene is(7.1) 0! (E1; V1)! (E; V )! (E2; V2)! 0; E2 stable ; n2 � 2:Moreover, all the inequalities in the proof of Proposition 6.9 must be equalities, whih isthe ase if and only if n1 = n2 = 2 and d1 = d2 = 6:Sine (7.1) is the only possible form for a destabilising sequene with E2 stable, it followsthat E is semistable. If k2 > 3, then [25, Lemma 3.9℄ applies to give h0(detE2) � 5,whih would require d2 � 9 by lassial Brill-Noether theory, a ontradition. So k2 = 3and k1 = 2.Sine (E2; V2) is generated and h0(E�2) = 0, we have (E2; V2) 2 U(2; 6; 3), whih hasdimension �(2; 6; 3) = 0. Sine E is semistable and �(E1) = �(E), E1 is also semistable.Moreover, (E1; V1) must be generially generated, otherwise it would have a subsystem(L; V1) with L a line bundle, ontraditing the �-stability of (E; V ). It follows that anysubsystem (L1;W1) of (E1; V1) with L1 of rank 1 has degL1 � 3 and dimW1 � 1, so(E1; V1) is �-semistable for all � > 0. Now, by [5, Theorem 5.6℄,dimGL(2; 6; 2) = �(2; 6; 2) = 9:On the other hand, if (E1; V1) 62 GL(2; 6; 2), we have(7.2) 0! (L1;W1)! (E1; V1)! (L2;W2)! 0



24 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADwith degL1 = degL2 = 3 and dimW1 = dimW2 = 1:Moreover, for the extensions (7.2), we have, by (2.6),� C21 = 3� 1 = 2;� dim H 021 = dimHom((L2;W2); (L1;W1)) � 1;� dim H 221 = 0 by (2.7),so dimExt1((L2;W2); (L1;W1)) � C21 + 1 = 3:Sine (L1;W1) and (L2;W2) eah depend on 3 parameters, the extensions (7.2) dependon at most 3 + 3 + 3� 1 = 8 < �(2; 6; 2)parameters.We now onsider the extensions (7.1) with (E1; V1), (E2; V2) as above. We have, by(2.6) and (2.7),� C12 = 12� 6 = 6;� dim H 221 = h0(E�1 
 N2 
 K) � 3 by [10, Theorem 2.1℄ sine E�1 
 N2 
 K issemistable of rank 2 and slope�d12 + degN2 + degK = �3� 6 + 10 = 1;� H 021 = 0 by Remark 2.7.So, by Lemma 2.6, the general (E; V ) 2 GL(4; 12; 5) does not admit an extension (7.1)and we are done. �Proposition 7.6. Suppose that X is a Petri urve of genus 3 or 4 and d = 10 or 14.Then U(4; d; 5) 6= ;.Proof. In view of Remark 2.2, it is suÆient to prove that U(4; 10; 5) 6= ;. Let (E; V )be a generi element of GL(4; 10; 5) and suppose that E is not stable. Then we have adestabilising sequene(7.3) 0! (E1; V1)! (E; V )! (E2; V2)! 0satisfying the onditions of (6.1). We have the following possibilities.� n2 = 1: 3 � �(E2) � 52 , whih is a ontradition.� n2 = 2: 12(g + 1) � �(E2) � 52 , so d2 = 4 or 5 if g = 3, d2 = 5 if g = 4; moreoverk2 � 3 and, by [27℄, h0(E2) � 72 , so k2 = 3.� n2 = 3: 2 � �(E2) � 52 , so d2 = 6 or 7; moreover k2 � 4 and, by [27℄, h0(E2) �d2+32 , giving the possibilities (d2; k2) = (6; 4); (7; 4); (7; 5).



ON COHERENT SYSTEMS 25We onsider �rst the ase n2 = 3. If k2 = 4, we are in the situation of (6.2) andProposition 6.10 applies. In the remaining ase d2 = 7, k2 = 5, we have h0(detE2) =8� g � 5. So, by [25, Lemma 3.9℄, E2 possesses either a line subbundle L with h0(L) � 2or a subbundle F of rank 2 with h0(F ) � 3. In the �rst ase, sine E2 is stable, we havedegL � 2, a ontradition. In the seond ase dF := degF � 4 and any line subbundleof F has degL � 2, hene h0(L) � 1. It follows that, for any subspae W of H0(F ) ofdimension 3, (F;W ) 2 GL(2; dF ; 3). Hene, by Theorem 3.1(1), �(2; dF ; 3) � 0. SinedF � 4, this holds only when g = 3, dF = 4. It follows that F is semistable and, by[27℄, h0(F ) � 3 and hene h0(F ) = 3. Note further that F is not stritly semistable, forotherwise we would have a sequene 0 ! L1 ! F ! L2 ! 0 with degL1 = degL2 = 2,so that h0(F ) � 2. Hene F is stable and (F;W ) 2 U(2; 4; 3). Now let W1 := H0(F )\ V2and onsider the exat sequene(7.4) 0! (F;W1)! (E2; V2)! (L;W2)! 0;where dimW1 � 3. If dimW1 < 3, then dimW2 � 3, ontraditing the fat that degL = 3.So dimW2 = 2, dimW1 = 3 and(F;W1) 2 U(2; 4; 3); (L;W2) 2 U(1; 3; 2):For the extensions (7.4), we have, by (2.6) and (2.7),� C21 = 4� 4 + 6� 6 = 0;� H 021 = 0 by Remark 2.7;� dim H 221 = h0(F � 
 L� 
K)� = 0 sine F � 
 L� 
K is stable of degree �2.So, by (2.8), the extension (7.4) splits, whih ontradits the stability of E2. We havetherefore proved that the only possible destabilising sequenes for a general (E; V ) of type(7.3) with E2 stable are those with n2 = 2.Suppose then that n2 = 2. We have k2 = h0(E2) = 3 and we know that (E2; V2) isgenerated and h0(E�2) = 0, so (E2; V2) 2 U(2; d2; 3). Suppose now that E is semistable,so that d2 = 5. Then also E1 is semistable and in fat stable sine gd(n1; d1) = 1.It follows that any line subbundle L of E1 has degL � 2 and hene h0(L) � 1. So(E1; V1) 2 U(2; 5; 2). For the extensions (7.3), we have, by (2.6) and (2.7),� C12 = 10� 6 = 4;� dim H 221 = h0(E�1 
N2 
K) = 0 sine E�1 
N2 
K is stable with slope < 0;� H 021 = 0 by Remark 2.7.So, by Lemma 2.6, the general (E; V ) does not admit an extension of this type.It remains to onsider the possibility that E is not semistable. From the above, thisan happen only when g = 3 and we have an extension (7.3) withn1 = n2 = 2; d1 = 6; d2 = 4; k1 = 2; k2 = 3:We ertainly have (E2; V2) 2 U(2; 4; 3), but we an no longer guarantee that E1 issemistable. However the maximal degree of a line subbundle of E1 is 4, for otherwise



26 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADE would have a quotient bundle of rank 3 and degree � 5; this annot be stable sine Ehas no stable quotient bundles of rank 3 ontraditing the stability of E. It follows thatE would have either a quotient line bundle of degree � 1 or a stable quotient bundle ofrank 2 of degree � 3; both of these are impossible (see the itemized list following (7.3)).Moreover, we an still argue as in the proof of Proposition 7.5 to show that (E1; V1) de-pends on at most �(2; 6; 2) parameters. Now for the extensions (7.3), we have, by (2.6)and (2.7),� C12 = 12� 6 = 6;� dim H 221 = h0(E�1 
N2
K) = 0 sine degN2
K = 0 and the maximal degree ofa line subbundle of E�1 is �2;� H 021 = 0 by Remark 2.7.The result now follows from another appliation of Lemma 2.6. �This ompletes the proof of Theorem 7.3. �Remark 7.7. In the ourse of proving Proposition 7.6, we have shown that there isno oherent system (E2; V2) of type (3; 7; 5) on a Petri urve of genus 3 or 4 with E2stable. A slight modi�ation of the proof shows that G(�; 3; 7; 5) = ; for all � > 0and all g � 3 (we have to prove that E2 is stable for all (E2; V2) 2 G(�; 3; 7; 5)). Sine�(3; 7; 5) = 17� 6g < 0 for g � 3, this is to be expeted, but, so far as we are aware, ithas previously been proved only for g � 6 (see [8, Theorem 3.9℄, where it is shown that,for k > n, G(�;n; d; k) = ; if �(n; d; n + 1) < 0; in this ase �(3; 7; 4) = 16 � 3g < 0 ifand only if g � 6.). 8. Low genusThe ases g = 0 and g = 1 have been exluded from the earlier part of this paper sinethey present speial features and have been handled elsewhere [17, 18℄.For g = 0, there are no stable bundles of rank � 2, so U(n; d; n + 1) is always emptyif n � 2. Moreover, if d is not divisible by n, there exist no semistable bundles; heneU s(n; d; n+ 1) = ;. For the remaining ase, when d is divisible by n, U s(n; d; n+ 1) 6= ;(see [17, Proposition 6.4℄). One may note that in this ase � � 0 is equivalent to d � n.For g = 1, the moduli spaes G(�) are well understood (see [18℄). The results forU(n; d; n+ 1) and U s(n; d; n+ 1) are summarised in the following theorem.Theorem 8.1. Let X be a urve of genus 1 and n � 2. Then� U s(n; d; n+ 1) 6= ; if and only if d � n+ 1;� U(n; d; n + 1) 6= ; if and only if d � n + 1 and gd(n; d) = 1.



ON COHERENT SYSTEMS 27Proof. The �rst part follows from the main theorem of [18℄ and [18, Remark 6.3℄. For theseond part, reall that, on an ellipti urve, stable bundles exist if and only if (n; d) = 1,and, in this ase, all semistable bundles are stable. �The ondition d � n+ 1 here is preisely equivalent to � � 0.For g = 2, note �rst that the ase g = n = 2, d = 4 is a genuine exeption inProposition 6.4 (see [8, Lemma 6.6(1)℄). More generally, if E is any bundle of rank n � 2and degree 2n with h0(E) � n + 1 on a urve of genus 2, then E annot be stable. Infat, by Riemann-Roh, we have h1(E) � 1, so there exists a non-zero homomorphismE ! K, whih immediately ontradits stability. There do exist semistable bundles withh0(E) � n + 1, whih an be onstruted as in the proof of Proposition 6.6 or by usingsequenes 0! E� ! V 
O ! L ! 0with degL = 2n and V a subspae of H0(L) of dimension n + 1 whih generates L; theoherent system (E; V �) is then �-stable for all � > 0. We dedueTheorem 8.2. Let X be a urve of genus 2 and n � 2. Then� U s(n; d; n+ 1) 6= ; if and only if d � n+ 2 (or equivalently � � 0);� U(n; d; n + 1) 6= ; if and only if d � n + 2, d 6= 2n.Proof. We have U(n; d; n+ 1) 6= ; in the following ases:� d � 3n by [8, Proposition 2.6℄;� d = n + 2; : : : ; 2n� 1 by [7, Theorem 5.5℄;� d = 2n + 2; : : : ; 3n� 1 by Remark 2.2.Moreover U s(n; 2n; n+ 1) 6= ; by Proposition 6.6. It remains to prove(i) U(n; 2n; n + 1) = ;;(ii) U(n; 2n + 1; n+ 1) 6= ;.For (i), we have already remarked that a vetor bundle E of rank n and degree 2n withh0(E) � n + 1 annot be stable (see also [22, Th�eor�eme 2℄).For (ii), every stable bundle E of rank n and degree 2n + 1 has h0(E) � n + 1. If wean prove that there exists suh a bundle whih is generated, we an hoose a subspae Vof H0(E) of dimension n+ 1 suh that (E; V ) is generated. Then (E; V ) 2 U(n; d; n+ 1)by Proposition 6.3.To show that E is generated, we need to prove that h1(E(�x)) = 0 for all x 2 X. NowE(�x) is stable of degree n+1 and E(�x)�
K is stable of degree n�1. We onsider theBrill-Noether lous B(n; n� 1; 1). By [28℄ or [10℄, this lous has dimension �(n; n� 1; 1)and hene odimension 1� (n� 1) + n(g � 1) = 2



28 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADin M(n; n� 1). It follows that the generi E 2M(n; 2n + 1) hash1(E(�x)) = h0(E(�x)� 
K) = 0for all x 2 X as required.This ompletes the proof of the theorem. �Theorem 8.3. Let X be a Petri urve of genus 3 and n � 2. Then U(n; d; n + 1) 6= ; if� � 0, exept possibly when n � 5, d = 2n+ 2.Proof. For n = 2; 3; 4, this has already been proved. For n � 5, we have U(n; d; n+1) 6= ;in the following ases:� d � 3n+ 1 by Proposition 6.6;� d = n + 3; : : : ; 2n by [7, Theorem 5.4℄;� d = 2n + 1 by Proposition 6.8;� d = 2n + 3; : : : 3n by Remark 2.2. �Remark 8.4. For general X (but not neessarily for all Petri X), the exeption an beremoved using Teixidor's degeneration methods [30℄.Remark 8.5. For g = 4; 5 and n � 5, a similar argument works with the followingpossible exeptions� g = 4, d = 2n+ 2; 2n+ 3; 3n+ 2; 3n+ 3;� g = 5, n = 5, d = 12; 13; 17; 18;� g = 5, n � 6, d = 2n+ 2; 2n+ 3; 2n+ 4; 3n+ 2; 3n+ 3; 3n+ 4.For general X, one an use Teixidor's result to rule out some of the exeptions.9. Appliations to Brill-Noether theory and dual spansWe reall from setion 2 that the Brill-Noether lousB(n; d; k) and eB(n; d; k) are de�nedby B(n; d; k) = fE 2M(n; d)jh0(E) � kgand eB(n; d; k) = f[E℄ 2 fM(n; d)jh0(gr(E)) � kg;It follows that the formula (E; V ) 7! [E℄ de�nes a morphism : G0(n; d; k)! eB(n; d; k);whose image ontains B(n; d; k).The following theorem, whih is essentially a restatement of [5, Theorem 11.4 andCorollary 11.5℄ for the ase k = n+ 1, is true for any smooth urve; we state it in a verygeneral and formal way to make it appliable in a wide variety of situations.



ON COHERENT SYSTEMS 29Theorem 9.1. Suppose that B(n; d; n+ 1) 6= ;. Then(1)  is one-to-one over B(n; d; n+ 1)�B(n; d; n+ 2);(2) if G0(n; d; n+ 1) is irreduible, then B(n; d; n+ 1) is irreduible;(3) if �(n; d; n+ 1) � n2(g � 1) and G0(n; d; n+ 1) is smooth and irreduible, thenSingB(n; d; n+ 1) = B(n; d; n+ 2)and G0(n; d; n+1) is a desingularisation of the losure B(n; d; n+1) of B(n; d; n+1)in fM(n; d).Proof. (1) is obvious.(2) follows from (1) and the fat thatB(n; d; n+1) is a Zariski-open subset of  (G0(n; d; n+1). [Note that the hypothesis �(n; d; n+1) � n2(g�1) of [5, Conditions 11.3℄ is not neededhere.℄(3) follows from [5, Corollary 11.5℄. �Of ourse, if U(n; d; n+1) 6= ;, then B(n; d; n+1) 6= ;. Thus we have many instanes inthis paper for whih B(n; d; n+1) 6= ;. We shall not list all of them as we shall be statinga more spei� result later. For the time being, we note the following two orollaries. The�rst is a slightly extended version of [8, Corollary 4.5℄, the seond is new.Corollary 9.2. Suppose that X is a Petri urve, g + n � � gn+1� � d � g + n and(g; n) 6= (2; 2). Then(1) B(n; d; n+1) is irreduible of dimension �(n; d; n+1) and smooth outside B(n; d; n+2);(2) GL(n; d; n+ 1) is a desingularisation of B(n; d; n+ 1);(3) if either d < g + n or d = g + n and n 6 j g, B(n; d; n + 1) is projetive andGL(n; d; n+ 1) is a desingularisation of B(n; d; n+ 1).Proof. The ondition on d implies that �l � 0. Hene, by Theorem 3.1, G0(n; d; n+ 1) =GL(n; d; n + 1) and is smooth and irreduible of dimension �(n; d; n + 1). MoreoverU(n; d; n+1) 6= ; by Proposition 6.4. (1) and (2) now follow from Theorem 9.1. For (3), wenote that, under the stated onditions on d, E is stable for every (E; V ) 2 GL(n; d; n+1)[8, Proposition 3.5℄; hene  (GL(n; d; n+ 1)) = B(n; d; n+ 1). �Remark 9.3. When g = n = 2 and d = 4, B(2; 4; 3) = ; by [8, Lemma 6.6℄, butGL(2; 4; 3) 6= ;. In this ase, the image of  is ontained in fM(2; 4) nM(2; 4).Corollary 9.4. Suppose that X is a Petri urve and that all the ip loi for oherentsystems of type (n; d; n + 1) have dimension � �(n; d; n + 1) � 1. If B(n; d; n + 1) 6= ;,then � B(n; d; n+ 1) is irreduible;



30 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEAD� B(n; d; n+1) is smooth of dimension �(n; d; n+1) at E whenever E is generiallygenerated and h0(E) = n+ 1.Proof. The hypotheses imply that G0(n; d; n + 1) is birational to GL(n; d; n + 1) and istherefore irreduible. Irreduibility of B(n; d; n+ 1) follows from Theorem 9.1(2). If E isstable, h0(E) = n + 1 and E is generially generated, then (E;H0(E)) 2 U(n; d; n + 1),whih is smooth of dimension �(n; d; n+ 1) by Theorem 3.1(4). The result follows from[5, Theorem 11.4(iv)℄. �We know that this orollary has genuine ontent sine the ip loi at �l = �L havedimension � �(n; d; n+ 1)� 1 (Corollary 5.2 and Proposition 5.4).We now turn to our seond appliation. Suppose that L is a generated line bundle ofdegree d > 0 and let V be a linear subspae of H0(L) of dimension n+1 whih generatesL (in other words, (L; V ) is a generated oherent system of type (1; d; n+ 1)). We havean evaluation sequene(9.1) 0 �!MV;L �! V 
O �! L �! 0:This is also known as the dual span onstrution (see [12℄) and has been used in the ontextof oherent systems in [5, 8℄ and also in the proof of Proposition 3.7. The following is aspeial ase of [12, Conjeture 2℄.Conjeture 9.5. Let X be a Petri urve of genus g � 3. Suppose that � := �(1; d; n+1) �0 and that L is a general element of B(1; d; n+ 1) (when � = 0, L an be any element ofthe �nite set B(1; d; n+1)) and let V be a general subspae of H0(L) of dimension n+1.Then MV;L is stable.This onjeture is related to our results by the following simple proposition (ompare[5, Theorem 5.11℄).Proposition 9.6. Suppose that X is a Petri urve. The following are equivalent:(1) there exists a generated oherent system (L; V ) of type (1; d; n+1) withMV;L stable;(2) U(n; d; n + 1) 6= ;.Proof. For (1))(2), we note that (M�V;L; V �) is a generated oherent system of type(n; d; n+1) withM�V;L stable, so (M�V;L; V �) 2 U(n; d; n+1) by Proposition 6.3. Conversely,suppose U(n; d; n + 1) 6= ;. If �(n; d; n + 1) > 0, the generi element of U(n; d; n + 1) isa generated oherent system (E;W ) with h0(E�) = 0 and E stable. If �(n; d; n+ 1) = 0,then all elements of U(n; d; n+1) have this property. The dual of the evaluation sequeneof (E;W ) an be written as0 �! E� �!W � 
O �! L �! 0;where L is a line bundle of degree d. It follows that MW �;L �= E� and is therefore stable,proving (1). �



ON COHERENT SYSTEMS 31Remark 9.7. By Theorem 8.2 and Proposition 9.6, the onjeture fails for g = 2, d = 2n,but is otherwise true for g = 2. In fat, although Butler [12, x1℄ disusses the questionof whether MV;L is stable, [12, Conjeture 2℄ atually has the weaker onlusion that(M�V;L; V �) 2 G0(n; d; n + 1). In this form the onjeture is true for g = 2 (see Theorem8.2).Using Proposition 9.6, we an now begin to form a list of ases for whih Conjeture9.5 holds. In the list we have noted where eah ase was proved.� g + n� � gn+1� � d � g + n ([12℄, [8, Proposition 4.1℄);� g � n2 � 1 ([12℄, [8, Proposition 4.6℄);� d � d1 (Proposition 6.6, [30℄);� d � 2n ([20, 22, 7℄);� n = 3; 4 (Theorems 7.2, 7.3)The �rst and fourth items in this list an be expanded further by the use of Remark 2.3and Proposition 6.8. Aording to the analysis in setion 7, the following ases for n = 3and n = 4 depend on the use of extensions of oherent systems (possibly in onjuntionwith other methods):� n = 3; g = 5; d = 9; 12;� n = 4; g = 3; d = 10;� n = 4; g = 4; d = 10; 14;� n = 4; g = 5; d = 10; 14;� n = 4; g = 6; d = 11; 12; 15; 16;� n = 4; g = 7; d = 12; 13; 16; 17; 20;� n = 4; g = 8; d = 14; 18;� n = 4; g = 9; d = 14; 18; 22;� n = 4; g = 11; d = 16; 20; 24; 28;� n = 4; g = 13; d = 18; 22; 26; 30.All of these ases, and those depending on Propositions 6.6 and 6.8, are (so far as we areaware) new.Of the methods we have used, the only ones apable of further development appearto be elementary transformations (using diret sums of higher rank vetor bundles) andextensions of oherent systems (using more re�ned alulations). The methods of [30℄ould also yield improved results for general X.Referenes[1℄ E. Arbarello, M. Cornalba, P. A. GriÆths and J. Harris, Geometry of Algebrai urves Volume I,Springer-Verlag, New York 1985.[2℄ E. Ballio, Coherent systems with many setions on projetive urves, preprint.[3℄ A. Beauville, Some stable vetor bundles with reduible theta divisor, Manusripta Math. 110(2003) 343{349.
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