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ON COHERENT SYSTEMS OF TYPE (n; d; n+ 1) ON PETRI CURVESU. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADAbstra
t. We study 
oherent systems of type (n; d; n+1) on a Petri 
urve X of genusg � 2. We des
ribe the geometry of the moduli spa
e of su
h 
oherent systems forlarge values of the parameter �. We determine the top 
riti
al value of � and showthat the 
orresponding \
ip" has positive 
odimension. We investigate also the non-emptiness of the moduli spa
e for smaller values of �, proving in many 
ases that the
ondition for non-emptiness is the same as for large �. We give some detailed results forg � 5 and appli
ations to higher rank Brill-Noether theory and the stability of kernelsof evaluation maps, thus proving Butler's 
onje
ture in some 
ases in whi
h it was notpreviously known. 1. Introdu
tionLet X be a smooth irredu
ible proje
tive 
urve. A 
oherent system of type (n; d; k) onX is a pair (E; V ) where E is a ve
tor bundle on X of rank n and degree d and V is alinear subspa
e of H0(E) with dimV = k. A notion of stability for 
oherent systems, de-pendent on a real variable �, 
an be de�ned and leads to the 
onstru
tion of moduli spa
esG(�;n; d; k) for �-stable 
oherent systems (see [16℄, [19℄, [26℄). There is a natural 
ompa
t-i�
ation eG(�;n; d; k) obtained by 
onsidering equivalen
e 
lasses of �-semistable 
oherentsystems. For k = 0, G(�;n; d; 0) is independent of � and 
oin
ides with the moduli spa
eM(n; d) of stable bundles of rank n and degree d on X, while eG(�;n; d; 0) 
oin
ides withthe 
orresponding moduli spa
e fM(n; d) of S-equivalen
e 
lasses of semistable bundles.If k � 1, a ne
essary 
ondition for non-emptiness of G(�;n; d; k) (resp. eG(�;n; d; k)) is� > 0 (resp. � � 0). For n = 1, all 
oherent systems are �-stable for all � > 0 andG(�; 1; d; k) 
oin
ides with the 
lassi
al variety of linear systems Gk�1d .A systemati
 study of 
oherent systems on 
urves of genus g � 2 de�ned over the
omplex numbers was begun in [5℄ (see also [4℄) and 
ontinued in [6℄ and [7℄. In parti
ular,pre
ise 
onditions for non-emptiness of G(�;n; d; k) are known when k � n [6, Theorem3.3℄. For k > n, mu
h less is known. There are general results due to E. Balli
o [2℄ andDate: De
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2 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADM. Teixidor i Bigas [30℄; Teixidor's results are mu
h the stronger, but are 
ertainly notbest possible. Some more detailed results have been obtained in [8, 9℄. It is known thatthe �-stability 
ondition stabilises for � > d(n� 1); we denote the 
orresponding \large�" moduli spa
e G(�;n; d; k) by GL(n; d; k) (see se
tion 2 for more details).Our obje
t in this paper is to study the 
ase k = n + 1 when the 
urve X is a Petri
urve, in other words, for every line bundle L on X, the multipli
ation mapH0(L)
H0(L� 
K)! H0(K)is inje
tive. In this 
ase GL := GL(�;n; d; n + 1) is non-empty if and only if the Brill-Noether number � := �(n; d; n+ 1) = g � (n+ 1)(n� d+ g)is non-negative [5, Theorem 5.11℄. When in addition d � g + n, G(�) := G(�;n; d; n+ 1)is independent of � > 0 and its stru
ture has been determined [8, Theorem 2℄. Our �rstmain theorem (Theorem 3.1) generalises these results and gives a signi�
ant improvementof the estimate � > d(n�1) for G(�) to 
oin
ide with GL. The detailed statement, whi
hin
ludes additional information on the stru
ture of GL, is as follows (here E 0 denotes thesubsheaf image of the evaluation map V 
 O ! E; for the de�nitions of generated andgeneri
ally generated, see se
tion 2).Theorem 3.1. Suppose that X is a Petri 
urve of genus g � 2 and � > maxf0; �lg,where �l := d(n� 1)� n�n� 1 + g � hgni� :Then(1) G(�) 6= ; if and only if � � 0;(2) G(�) = GL;(3) (E; V ) 2 G(�) if and only if (E; V ) is generi
ally generated and H0(E 0�) = 0;(4) if � > 0, G(�) is smooth and irredu
ible of dimension �; moreover the generi
element of G(�) is generated;(5) if � = 0, G(�) is a �nite set of 
ardinalityg! nYi=0 i!(g � d+ n+ i)! ;moreover every element of G(�) is generated.It follows in parti
ular that, if (E; V ) 2 GL, then the 
okernel E=E 0 of the evaluationmap V 
O ! E is a torsion sheaf. In se
tion 4, we de�ne a strati�
ation of GL in termsof the length of E=E 0. More pre
isely, for every integer t � 0, we write�t = f(E; V ) 2 GL : E=E 0 has length tg and St =[i�t�i:Then



ON COHERENT SYSTEMS 3Theorem 4.2. Suppose � � 0 and that the subsets St of GL are de�ned as above. Then(1) St is 
losed in GL and is non-empty if and only if 0 � t � t1 := � �n+1�;(2) for 1 � t � t1, St � St�1 n St;(3) for 1 � t � t1, dimSt = � � t;(4) St is irredu
ible for t < �n+1 ;(5) if �n+1 is an integer, then all irredu
ible 
omponents of St1 have the same dimen-sion.In se
tion 5, we show that there exists (E; V ) 2 GL su
h that (E; V ) is not �l-stable,in other words �l is an (a
tual) 
riti
al value in the sense of [5, De�nition 2.4℄. In viewof Theorem 3.1, �l is in fa
t the top 
riti
al value of �.Se
tions 6 { 8 are 
on
erned with the moduli spa
e G(�) for arbitrary �. It wasproved in [8℄ that, if G(�) 6= ;, then � � 0. Several results on the non-emptiness ofG(�) when � � 0 were also proved in [8℄. In se
tion 6, we extend these results usingthe te
hniques of elementary transformations and extensions of 
oherent systems. Inparti
ular for n = 2; 3; 4, we show in se
tion 7 that G(�) 6= ; if and only if � � 0 (seeTheorems 7.1, 7.2 and 7.3 for details). We then 
onsider in se
tion 8 the 
ase g � 5(in
luding g = 0 and g = 1, whi
h have been ex
luded from our general dis
ussion). Forg � 2, the results are 
omplete, while for g = 3; 4; 5, there are a few 
ases still to besolved.In se
tion 9, we give some appli
ations to higher rank Brill-Noether theory (see se
tion2 for de�nitions). We �rst obtain some irredu
ibility and smoothness results for Brill-Noether lo
i using the programme envisaged in [5, se
tion 11℄. For the se
ond appli
ation,suppose that L is a generated line bundle of degree d > 0 and let V be a linear subspa
eof H0(L) of dimension n + 1 whi
h generates L (in other words, (L; V ) is a generated
oherent system of type (1; d; n+ 1)). We have an evaluation sequen
e0 �!MV;L �! V 
O �! L �! 0:The bundles MV;L arise in several 
ontexts and have been used in the study of Pi
ardbundles [13℄, normal generation of ve
tor bundles [25, 11℄, syzygies and proje
tive embed-dings [14℄, higher rank Brill-Noether lo
i [20℄, theta-divisors [3, 23℄ and 
oherent systems[12, 5, 8℄.A parti
ular point of interest is to determine whether or not MV;L is stable. In fa
t,in [12℄, Butler 
onje
tured that MV;L is stable for general 
hoi
es of X, L and V . His
onje
ture [12, Conje
ture 2℄ is 
on
erned more generally with generated 
oherent systemsof any type (n; d; k). We shall be 
on
erned only with the 
ase n = 1; Butler's 
onje
ture
an then be stated as follows.Conje
ture 9.5. Let X be a Petri 
urve of genus g � 3. Suppose that � := �(1; d; n+1) � 0 and that L is a general element of B(1; d; n+1) (when � = 0, L 
an be any element



4 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADof the �nite set B(1; d; n + 1)) and let V be a general subspa
e of H0(L) of dimensionn+ 1. Then MV;L is stable.In most of the above referen
es, V is taken to be H0(L), whi
h implies by Riemann-Ro
h that d � g + n and the stability problem has been solved in this 
ase [12, 8℄.However the 
ase where V is a proper subspa
e of H0(L) seems equally interesting; thisis mentioned but not used in [12℄, used in a minor way in [5℄ and studied for low values ofthe 
odimension in [23℄. However, the restri
tion pla
ed on d in [23℄ implies that d � 2n,so this 
ase (although not the remaining results of [23℄) is also 
overed in [20, 22℄. Inthe present paper, we do not use the stability of MV;L ex
ept through 
itations fromearlier papers. We are therefore able to use our methods to prove the stability of MV;Lin some 
ases where it is not (to our knowledge) already known. These new examplesfor whi
h MV;L is stable depend essentially on the use of extensions of 
oherent systems(more spe
i�
ally on Propositions 6.9, 6.10, 6.12, 7.5 and 7.6).We assume throughout that X is a Petri 
urve of genus g, where, ex
ept in se
tion8, g � 2. We assume also that X is de�ned over the 
omplex numbers. We denote the
anoni
al line bundle on X by K. 2. PreliminariesIn this se
tion, we re
all some fa
ts about 
oherent systems, most of whi
h 
an be foundin [5℄ and [15℄.For � 2 R, we de�ne the �-slope of the 
oherent system (E; V ) of type (n; d; k) by��(E; V ) := dn + �kn:A 
oherent subsystem of (E; V ) is a pair (F;W ), where F is a subbundle of E and W �V \H0(F ).De�nition 2.1. For any � 2 R, a 
oherent system (E; V ) on X is �-stable (respe
tively�-semistable) if, for every proper 
oherent subsystem (F;W ),��(F;W ) < ��(E; V ) (respe
tively �):We denote by G(�;n; d; k) the moduli spa
e of �-stable 
oherent systems of type(n; d; k) ([16℄, [19℄, [26℄) and by eG(�;n; d; k) the moduli spa
e of S-equivalen
e 
lassesof �-semistable 
oherent systems (see [5, se
tion 2℄). It follows from the de�nition of�-stability that, if k � 1 and G(�;n; d; k) 6= ;, then � > 0 and d > 0 [5, se
tion 2 andLemmas 4.1 and 4.3℄.Remark 2.2. Given a 
oherent system (E; V ) and an e�e
tive line bundle L, let eE =E 
 L. Choose a non-zero se
tion s of L and let eV be the image of V in H0( eE) underthe indu
ed in
lusion H0(E) ,! H0( eE) : v 7! v 
 s. Then(1) E is (semi)stable if and only if eE is (semi)stable.



ON COHERENT SYSTEMS 5(2) (E; V ) is �-(semi)stable if and only if ( eE; eV ) is �-(semi)stable [26, Lemma 1.5℄.Remark 2.3. It follows from Remark 2.2 that, if G(�;n; d; k) 6= ; for all integers d 2 [a; b℄with a; b 2 Z and b� a � n� 1, then G(�;n; d; k) 6= ; for all d � a:For any triple (n; d; k), we de�ne the Brill-Noether number �(n; d; k) by�(n; d; k) = n2(g � 1) + 1� k(k � d+ n(g � 1)):For a 
oherent system (E; V ), the Petri map at (E; V ) is the map(2.1) V 
H0(E� 
K)! H0(E 
 E� 
K)given by multipli
ation of se
tions. We have the following fundamental result (see [15,Corollaire 3.14℄, [5, Corollary 3.6 and Proposition 3.10℄).Proposition 2.4. Every irredu
ible 
omponent of G(�;n; d; k) has dimension� �(n; d; k).Moreover, if (E; V ) 2 G(�;n; d; k), then G(�;n; d; k) is smooth of dimension �(n; d; k) at(E; V ) if and only if (2.1) is inje
tive.For a line bundle L with V = H0(L), the Petri map (2.1) takes the form(2.2) H0(L)
H0(L� 
K)! H0(K)De�nition 2.5. The 
urve X is a Petri 
urve if (2.2) is inje
tive for every line bundle Lon X.It is a 
lassi
al fa
t (see [1℄) that the general 
urve of any given genus g is a Petri 
urve.It should however be emphasised that, ex
ept for 
ertain low values of the genus, thereexist �-stable 
oherent systems (E; V ) on the general 
urve for whi
h (2.1) is not inje
tive(see, for example, [29, x5℄).The �-range is divided into a �nite set of intervals by a set of 
riti
al values f�ig,where, for k � n, 0 = �0 < �1 < � � � < �L <1[5, Proposition 4.6℄. For �; �0 2 (�i; �i+1), we have G(�;n; d; k) = G(�0;n; d; k) and wedenote this moduli spa
e by Gi := Gi(n; d; k). In parti
ular, for � > �L, we have the\large �" moduli spa
e GL := GL(n; d; k).The relation between two 
onse
utive moduli spa
es Gi�1 and Gi is given by the so
alled \
ips" (see [5℄ for a more 
omplete des
ription). For any 
riti
al value �i, wedenote by ��i , �+i values of � in the intervals respe
tively immediately before and after�i and let G+i := f(E; V ) 2 Gi j (E; V ) is not ��i �stablegand G�i = f(E; V ) 2 Gi�1 j (E; V ) is not �+i �stableg:These are 
alled 
ip lo
i and(2.3) Gi �G+i = Gi�1 �G�i :



6 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADFor any 
riti
al value �i, the 
ip lo
us G+i 
onsists of the 
oherent systems (E; V ) 2 Gifor whi
h there exists an exa
t sequen
e(2.4) 0! (E1; V1)! (E; V )! (E2; V2)! 0;with (Ej; Vj) of type (nj; dj; kj), �i-semistable and �+i -stable for j = 1; 2 and(2.5) ��i(E1; V1) = ��i(E2; V2); k1=n1 < k=n(see [5, Lemma 6.5℄ for more details). Similarly, the 
ip lo
us G�i 
onsists of the 
oherentsystems (E; V ) 2 Gi�1 for whi
h there exists an exa
t sequen
e0! (E2; V2)! (E; V )! (E1; V1)! 0;with (Ej; Vj) �i-semistable and ��i -stable for j = 1; 2 and satisfying (2.5).In [5℄, numeri
al 
riteria were obtained to help determine whether the 
ip lo
i havepositive 
odimension. More generally, these 
riteria 
an be used to estimate the numberof parameters on whi
h the 
oherent systems (E; V ) given by extensions (2.4) depend.De�ne, for fj; lg = f1; 2g,Cjl = njnl(g � 1)� njdl + nldj + kjdl � kjnl(g � 1)� kjkl= (kj � nj)(dl � nl(g � 1)) + nldj � kjkl(2.6)and(2.7) H 0jl = Hom((Ej; Vj); (El; Vl)); H 2jl = H0(E�l 
Nj 
K)�;Nj being the kernel of the evaluation map Vj 
 O ! Ej. We have, by [5, equations (8)and (11)℄,(2.8) dimExt1((Ej; Vj); (El; Vl)) = Cjl + dimH 0jl + dimH 2jl :The following lemma 
an be regarded as a simpli�ed version of [5, Lemma 6.8℄.Lemma 2.6. Suppose that, for j = 1; 2, (Ej; Vj) has type (nj; dj; kj) and varies in afamily depending on at most �(nj; dj; kj) parameters. Suppose further that, for some h0,h2, dimH 021 � h0; dim H 221 � h2for all (Ej; Vj) o

urring in these families and thatC12 � h0 � h2 > 0:Then the 
oherent systems (E; V ) arising as non-trivial extensions of the form (2.4) de-pend on at most �(n; d; k)� 1 parameters.Proof. By (2.8), for �xed (E1; V1), (E2; V2), the 
oherent systems (E; V ) depend on atmost C21 + h0 + h2 � 1parameters. The result follows from [5, Corollary 3.7℄. �



ON COHERENT SYSTEMS 7Remark 2.7. Note that, if we assume in addition that (E; V ) is �-stable for some �, thenwe 
an take h0 = 0, sin
e a non-zero homomorphism (E2; V2)! (E1; V1) would 
ontradi
t[5, Proposition 2.2(ii)℄.The \small �" moduli spa
es G0(n; d; k) and eG0(n; d; k) are 
losely related to the Brill-Noether lo
us B(n; d; k) of stable bundles, whi
h is de�ned byB(n; d; k) := fE 2M(n; d)jh0(E) � kg:Similarly one de�nes the Brill-Noether lo
us eB(n; d; k) for semistable bundles byeB(n; d; k) := f[E℄ 2 fM(n; d)jh0(gr(E)) � kg;where fM(n; d) is the moduli spa
e of S-equivalen
e 
lasses of semistable bundles, [E℄ isthe S-equivalen
e 
lass of E and gr(E) is the graded obje
t asso
iated to a semistablebundle E. The formula (E; V ) 7! [E℄ de�nes a morphism : G0(n; d; k)! eB(n; d; k);whose image 
ontains B(n; d; k). We shall use this morphism  in se
tion 9.We �nish this se
tion with a useful de�nition and some notation.De�nition 2.8. A 
oherent system (E; V ) isgenerated if the evaluation map V 
O ! E is surje
tive;generi
ally generated if the 
okernel of the evaluation map is a torsion sheaf.Notation. We shall write �, G(�), eG(�), GL for �(n; d; n + 1), G(�;n; d; n + 1),eG(�;n; d; n + 1), GL(n; d; n + 1) respe
tively. For any 
oherent system (E; V ), we shall
onsistently denote by E 0 the subsheaf image of the evaluation map. We shall also denoteby (ni; di; ki) the type of a 
oherent system (Ei; Vi).3. The moduli spa
e for large �In this se
tion we assume that X is a Petri 
urve and obtain a strengthening of [5,Theorem 5.11℄. In parti
ular we obtain a mu
h better lower bound on the parameter �whi
h ensures that G(�) = GL. In later se
tions we shall prove that this bound is bestpossible and des
ribe a natural strati�
ation of GL. For d � g+n, Theorem 3.1 has beenproved in [8, Theorem 2℄. We re
all that, for any 
oherent system (E; V ), E 0 denotes thesubsheaf image of V 
O in E.Theorem 3.1. Suppose that X is a Petri 
urve and � > maxf0; �lg, where(3.1) �l := d(n� 1)� n�n� 1 + g � hgni� :Then(1) G(�) 6= ; if and only if � � 0;(2) G(�) = GL;



8 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEAD(3) (E; V ) 2 G(�) if and only if (E; V ) is generi
ally generated and H0(E 0�) = 0;(4) if � > 0, G(�) is smooth and irredu
ible of dimension �; moreover the generi
element of G(�) is generated;(5) if � = 0, G(�) is a �nite set of 
ardinalityg! nYi=0 i!(g � d+ n+ i)! ;moreover every element of G(�) is generated.We shall prove Theorem 3.1 by means of a sequen
e of propositions. We begin withtwo lemmas, the �rst of whi
h is a variant of [8, Lemma 3.1℄. Sin
e the hypotheses arenot exa
tly the same as those of [8, Lemma 3.1℄, we in
lude a proof.Lemma 3.2. Let X be a Petri 
urve and (E; V ) a 
oherent system of type (n; d; k). If(E; V ) is generi
ally generated and H0(E 0�) = 0, then k � n + 1 and d � g + n� � gn+1�.Moreover, if (E2; V2) is a quotient 
oherent system of (E; V ), then (E2; V2) is generi
allygenerated and H0(E 0�2 ) = 0.Proof. Certainly k � n. If k = n, then E 0 �= On, 
ontradi
ting the hypothesis H0(E 0�) =0. So k � n+ 1.Repla
ing V , if ne
essary, by a subspa
e of dimension n + 1 whi
h generates E 0, wehave an exa
t sequen
e(3.2) 0! L� ! V 
O ! E 0 ! 0;where L = detE 0. From the dual of (3.2) and the hypothesis H0(E 0�) = 0, we see thath0(L) � n+ 1. By 
lassi
al Brill-Noether theory, this implies thatdegE 0 = degL � ngn + 1 + n = g + n� gn + 1 :Hen
e d � degE 0 � g + n� � gn+1� as required.For the last part, note that the image of E 0 in E2 is pre
isely E 02. Hen
e E 02 is a quotientof E 0 and the result follows. �Remark 3.3. Note that(3.3) �l = (n� 1)(d� g � n)� �g � n hgni� = (n� 1)(d� n)� n�g � hgni� :and that d � g + n� � gn+ 1�, d � ngn+ 1 + n, � � 0:Note in parti
ular that, by (3.3),�l � 0) d � g + n) � � 0:



ON COHERENT SYSTEMS 9Lemma 3.4. Let f : Z>0 ! Q be de�ned byf(r) := 1r �g � � gr + 1�� :Then f is a de
reasing fun
tion of r.Proof. If g � r + 1, we have f(r) � 1r �g � gr + 1� = gr + 1and f(r + 1) � 1r + 1 �g � g � r � 1r + 2 � = g + 1r + 2 � gr + 1 :On the other hand, if g < r + 1, thenf(r) = gr > gr + 1 = f(r + 1): �Proposition 3.5. Suppose that (E; V ) is a generi
ally generated 
oherent system of type(n; d; n+ 1) and H0(E 0�) = 0. Then (E; V ) is �-stable for � > maxf0; �lg.Proof. Let (E2; V2) be a proper quotient 
oherent system of (E; V ) of type (n2; d2; k2). Itfollows from Lemma 3.2 that k2 � n2 + 1 and d2 � g + n2 � h gn2+1i. Hen
e(3.4) ��(E2; V2) � 1 + 1n2 �g � � gn2 + 1�� + ��n2 + 1n2 � :If � > maxf0; �lg then, sin
e 0 < n2 < n,(3.5) �� 1n2 � 1n� = ��n� n2nn2 � � �n(n� 1) > dn � 1� 1n� 1 �g � hgni� :Hen
e, from (3.4) and Lemma 3.4,��(E2; V2)� ��(E; V ) > 1n2 �g � � gn2 + 1��� 1n� 1 �g � hgni� � 0:Sin
e this holds for all (E2; V2), it follows that (E; V ) is �-stable. �Remark 3.6. Suppose (E2; V2) is a 
oherent system of type (n2; d2; k2) with0 < n2 < n; k2 � n2 + 1; d2 � g + n2 � � gn2 + 1� :If � � �l > 0, then (3.4) still holds as does the �rst inequality in (3.5), while the se
ondinequality in (3.5) be
omes �. So��(E2; V2) � ��(E; V )with equality if and only if � = �l and



10 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADn2 = n� 1; k2 = n; d2 = g + n� 1� hgni :Proposition 3.7. For given n and d, the following three 
onditions are equivalent:(a) there exists a generated 
oherent system (E; V ) of type (n; d; n+1) with H0(E�) =0;(b) there exists a generi
ally generated 
oherent system (E; V ) of type (n; d; n+1) withH0(E 0�) = 0;(
) � � 0.Proof. Clearly (a) implies (b) and, by Lemma 3.2 and Remark 3.3, (b) implies (
).Now suppose (
) holds. By 
lassi
al Brill-Noether theory, G(1; d; n + 1) 6= ; and itsgeneral element (L;W ) is generated (in the 
ase � = 0, G(1; d; n + 1) is �nite and allelements are generated). If we de�ne E by the exa
t sequen
e0! E� ! W 
O ! L ! 0;then (E;W �) satis�es (a). �Proposition 3.8. Suppose that � > maxf0; �lg and (E; V ) is an �-semistable 
oherentsystem of type (n; d; n+ 1). Then (E; V ) is generi
ally generated and H0(E 0�) = 0.Proof. Sin
e (E 0; V ) is a generated 
oherent system, we 
an write (E 0; V ) �= (Os; H0(Os))�(G;W ) where H0(G�) = 0, W = H0(G) \ V and (G;W ) is generated. Let r denote therank of G. Note that, sin
e h0(E 0) � n+1, we must have r � 1. We require to show thatr = n.Suppose to the 
ontrary that r � n�1. Sin
e the 
oherent system (G;W ) is generated,we have, by Lemma 3.2, degG � g + r � � gr+1�. Hen
e1r �g � � gr + 1�� + 1 + �n+ 1� sr � ��(G;W ):Sin
e (E; V ) is �-semistable, it follows that1r �g � � gr + 1�� + 1 + �n+ 1� sr � dn + �n+ 1n :Now s � n � r; so, for any �xed r, the minimum value for the left-hand side of thisinequality is given by s = n� r. By Lemma 3.4, this minimum value is then a de
reasingfun
tion of r. Hen
e 1n� 1 �g � hgni� + 1 + � nn� 1 � dn + �n+ 1n ;i. e. �n(n� 1) � d� nn � 1n� 1 �g � hgni� ;
ontradi
ting the hypothesis that � > �l. �



ON COHERENT SYSTEMS 11Remark 3.9. Under the hypotheses of Proposition 3.8, we have an exa
t sequen
e(3.6) 0! E 0 ! E ! � ! 0;where � is a torsion sheaf. If t is the length of � , then degE 0 = d � t. Sin
e (E 0; V ) isgenerated and H0(E 0�) = 0, Lemma 3.2 gives d� t � g + n� � gn+1�, or equivalently(3.7) t � t1 := d� g � n+ � gn + 1� = � �n+ 1� :We shall see later (Theorem 4.2) that this bound is best possible. In parti
ular, if wewrite d0 = g + n� � gn+ 1� ;then, for d > d0, we have t1 � 1, so there exists a non-generated 
oherent system (E; V )in GL.Proof of Theorem 3.1. Parts (2) and (3) follow from Propositions 3.5 and 3.8, and (1)then follows from Proposition 3.7.(4) If � > 0, it follows from [8, Lemma 4.2℄and [5, Theorem 5.11℄ that G(�) is smoothand irredu
ible of dimension �. The fa
t that the generi
 element is generated then followsfrom Proposition 3.7.(5) If � = 0, it follows from [8, Lemma 4.2℄ that G(�) is �nite and that, as a s
heme, itis redu
ed. By (3.6) and (3.7), every element is generated. The formula for the 
ardinalityof G(�) now follows from [1, Chapter V, formula (1.2)℄. �4. A stratifi
ation of GLLet(4.1) �0 = f(E; V ) 2 GLj(E; V ) is generatedg:Clearly �0 is open in GL. If � � 0, we know from Theorem 3.1 that �0 6= ;. Moreover,by Remark 3.9, the 
omplement of �0 in GL is a disjoint union of lo
ally 
losed subsets�t, de�ned for 1 � t � t1 by(4.2) �t = f(E; V ) 2 GLj 9 an exa
t sequen
e (3:6) with � of length tg:We now de�ne St =[i�t�i;where the �i are the lo
ally 
losed subsets of GL de�ned in (4.1) and (4.2). ClearlyGL = S0 � S1 � � � � � St � : : : . We would like to show that the subsets St de�ne awell-behaved strati�
ation of GL.We begin with a lemma, whi
h will be needed again later



12 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADLemma 4.1. Suppose that we have an exa
t sequen
e0 �! F �! E �! � �! 0;where � is a torsion sheaf of length t, and that V is a subspa
e of H0(F ) of dimensionn+ 1. Then (E; V ) 2 GL(n; d; n+ 1), (F; V ) 2 GL(n; d� t; n + 1):Proof. It is 
lear that (E; V ) is generi
ally generated if and only if (F; V ) is generi
allygenerated and that E 0 = F 0. The result follows at on
e from Theorem 3.1(3). �Theorem 4.2. Suppose � � 0 and that the subsets St of GL are de�ned as above. Then(1) St is 
losed in GL and is non-empty if and only if 0 � t � t1 := � �n+1�;(2) for 1 � t � t1, St � St�1 n St;(3) for 1 � t � t1, dimSt = � � t;(4) St is irredu
ible for t < �n+1 ;(5) if �n+1 is an integer, then all irredu
ible 
omponents of St1 have the same dimen-sion.Proof. The fa
t that St is empty if t > t1 = � �n+1� has already been proved in Remark3.9. We prove the rest of the theorem by indu
tion on t1, the result being an immediate
onsequen
e of Theorem 3.1 if t1 = 0.Suppose therefore that t1 � 1. We 
onsider the moduli spa
eGL;d�1 := GL(n; d� 1; n+ 1)and denote by St;d�1 the subset of GL;d�1 given bySt;d�1 := f(F; V ) 2 GL;d�1j 9 an exa
t sequen
e (3:6) with � of length � tg:The maximum value of t on GL;d�1 is��(1; d� 1; n+ 1)n + 1 � = t1 � 1;so we 
an assume indu
tively that the theorem holds for GL;d�1.Note next that, if (F; V ) 2 GL;d�1 and E is de�ned by an elementary transformation(4.3) 0! F ! E ! � ! 0;with � a torsion sheaf of length 1, then (E; V ) 2 GL by Lemma 4.1. In fa
t it is easyto see that the (E; V ) obtained in this way are pre
isely the elements of S1 and, moregenerally, for 1 � t � t1,(4.4) (E; V ) 2 St , (F; V ) 2 St�1;d�1:The next step is to 
arry out this 
onstru
tion for families of 
oherent systems. Sin
e(n; d � 1; n + 1) are 
oprime there is a universal family (U ;V) parametrised by GL;d�1



ON COHERENT SYSTEMS 13[6, Proposition A.8℄. Denote by p : PU ! X � GL;d�1 the natural proje
tion. As in theHe
ke 
orresponden
e of [24℄, PU parametrises the triples(F; V; 0! F ! E ! � ! 0)for whi
h (F; V ) 2 GL;d�1 and � has length 1. The universal property of GL now gives usa diagram PU 	�! GLp #X �GL;d�1:By (4.4), we have(4.5) St = 	(p�1(X � St�1;d�1)); 	�1(St�1 n St) = p�1(X � (St�2;d�1 n St�1;d�1)):The fa
t that St 6= ; for t � t1 follows at on
e. Moreover GL;d�1 is a proje
tive varietyand, by indu
tive hypothesis, St�1;d�1 is 
losed and, provided t � 1 < �n+1 � 1, alsoirredu
ible; hen
e St is 
losed in GL, 
ompleting the proof of (1). Properties (2) and (4)follow immediately from (4.5).For (3), note that, by the indu
tive hypothesis,(4.6) dim(p�1(X � St�1;d�1)) = �(n; d� 1; n+ 1)� (t� 1) + 1 + (n� 1) = � � t:Moreover, if (E; V ) 2 �t and the torsion sheaf � of (4.2) has support 
onsisting of tdistin
t points, then 	�1(E; V ) 
onsists of pre
isely t points. Hen
e 	 is generi
ally �niteon (p�1(X � St�1;d�1)), so (3) follows from (4.6).Finally, for (5), suppose �n+1 is an integer and let S 0 be any irredu
ible 
omponent ofSt1�1;d�1; by indu
tive hypothesis, dimS 0 = �(n; d� 1; n + 1)� (t1 � 1). As in (4.6), wehave dim(	(p�1(X � S 0)) = � � t1:The result follows. �5. The Top Criti
al ValueIn the previous se
tions we gave a des
ription of GL(n; d; n + 1). We shall show nowthat the bound of Theorem 3.1 is best possible if �l > 0 and analyse what happens atthis value of the parameter. Note that the 
ondition �l > 0 implies that n � 2.Theorem 5.1. Suppose �l > 0. Then there exists a 
oherent system (E; V ) whi
h is�+l -stable and �l-semistable, but not �l-stable.Proof. We shall 
onstru
t (E; V ) as an extension(5.1) 0! (E1; V1)! (E; V )! (E2; V2)! 0;where(5.1a) (E2; V2) 2 GL(n� 1; d2; n) with d2 = g + n� 1� � gn�;(5.1b) (E1; V1) is of type (1; d� d2; 1).



14 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADNote that d > d2 by (3.3), so (E1; V1) exists. Moreover �(n�1; d2; n) � 0; so, by Theorem3.1, (E2; V2) also exists and indeed is �-stable for all � > 0 and in parti
ular for � = �l.It is easy to 
he
k from the de�nition (3.1) that(5.2) ��l(E1; V1) = ��l(E2; V2);so (E; V ) is �l-semistable but not �l-stable. Moreover, sin
e (E1; V1) and (E2; V2) areboth �l-stable but not isomorphi
, it follows from (5.2) that(5.3) Hom((E1; V1); (E2; V2)) = 0 = Hom((E2; V2); (E1; V1)):Now any subsystem of (E; V ) whi
h 
ontradi
ts �+l -stability must also 
ontradi
t �l-stability. If the extension (5.1) is non-trivial, the only subsystem whi
h 
ontradi
ts �l-stability is (E1; V1) and 
learly this does not 
ontradi
t �+l -stability. It remains only toprove that there exists a non-trivial extension (5.1), or equivalently to prove thatExt 1((E2; V2); (E1; V1)) 6= 0:Now, by (2.8) and (2.6),dimExt 1((E2; V2); (E1; V1)) � C21 = (k2 � n2)(d1 � n1(g � 1)) + n1d2 � k1k2:Here we have (n1; d1; k1) = (1; d� d2; 1), (n2; d2; k2) = (n� 1; d2; n), soC21 = (d� d2 � g + 1) + d2 � n = d� g � n+ 1:Sin
e �l > 0, it follows from (3.3) that d� g � n > 0 and so C21 > 0 as required. �Corollary 5.2. If �l > 0, then it is equal to the top 
riti
al value �L. Moreover the 
iplo
us G+L is given pre
isely by the non-trivial extensions (5.1) whi
h satisfy (5.1a) and(5.1b) and has dimension � � � 1.Proof. The fa
t that �L = �l follows at on
e from Theorems 3.1 and 5.1. If (E; V ) 2 G+L ,we have a sequen
e (2.4) for whi
h (E2; V2) is �+l -stable and (2.5) holds with �i = �l.By Lemma 3.2, we must have k2 � n2 + 1 and d2 � g + n2 � h gn2+1i. By Remark 3.6, itfollows that n2 = n� 1; k2 = n; d2 = g + n� 1� hgni :Hen
e all the 
onditions of (5.1) hold.A

ording to Lemma 2.6 and Remark 2.7, it remains to prove thatC12 � h0(E�1 
N2 
K) > 0:Putting in values from (5.1), we have, sin
e �l > 0,C12 = (n� 1)�d� g � n + 1 + hgni�� n > g � hgni� 1 � 0:On the other hand, E�1 
N2 
K is a line bundle of degree 2g � 2� d. If d > 2g � 2, weare �nished. If d � 2g � 2, then, by Cli�ord's Theorem,h0(E�1 
N2 
K) � g � d2 < g � g + n2 :



ON COHERENT SYSTEMS 15It is therefore suÆ
ient to prove thatg + n2 � hgni + 1:Sin
e n � 2, this is obvious. �Remark 5.3. The estimate for the dimension of G+L in the proof of Corollary 5.2 issuÆ
ient for our purposes, but is quite 
rude and 
an 
ertainly be improved.We now turn to the determination of the 
ip lo
us G�L .Proposition 5.4. If �l > 0, then the 
ip lo
us G�L 
onsists of the non-trivial extensions(5.4) 0! (E2; V2)! (E; V )! (E1; V1)! 0;where (E1; V1) and (E2; V2) satisfy the same properties as in (5.1), and has dimension� � � 1.Proof. If (E; V ) 2 G�L , then there 
ertainly exists a non-trivial extension (5.4) with(E2; V2) ��l -stable and ��l(E2; V2) = ��l(E; V ); k2 � n2 + 1(see (2.5)). By [8, Theorem 1(1)℄, we must have �(n2; d2; n2 + 1) � 0 and so, by Remark3.3, d2 � g + n2 � h gn2+1i. By Remark 3.6, it follows thatn2 = n� 1; k2 = n; d2 = g + n� 1� hgni :Hen
e all the 
onditions of (5.1) hold. Now note that N1 = 0 and C21 > 0 as shown inthe proof of Theorem 5.1. The proposition follows from Remark 2.7. �Remark 5.5. Taking � = �l in the proof of Proposition 3.8 gives a slightly di�erentdes
ription of G�L , namelyG�L = f(E; V ) j (E; V ) generi
ally generated; E 0 �= O�G;H0(G�) = 0; G saturated in Eg:It is easy to see that these two des
riptions are equivalent.Theorem 5.6. Suppose �l > 0. Then GL�1 is non-empty and irredu
ible, and is birationalto GL.Proof. This follows from Corollary 5.2, Proposition 5.4 and (2.3). �6. Moduli spa
es for any �As we have seen (see Theorems 3.1 and 5.6), for �(n; d; n + 1) � 0 and � > �L�1,the moduli spa
e G(�;n; d; n+1) is non-empty and the non-emptiness is related with theexisten
e of 
oherent systems (E; V ) su
h that E is generi
ally generated andH0(E 0�) = 0:Our obje
t in this se
tion is to try to generalise these results to arbitrary � > 0. Ford � g + n, these results are largely 
ontained in the unpublished [12℄ (see also [11℄) andin [8℄.



16 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADWe begin by re
alling the results of [8℄ whi
h we require.Proposition 6.1. [8, Theorem 1(1)℄ Let X be a Petri 
urve and � < 0. Then G(�) = ;for all � > 0.Before pro
eeding further, we de�neU(n; d; n+ 1) := f(E; V ) 2 GL : E is stablegand U s(n; d; n+ 1) := f(E; V ) : (E; V ) is �-stable for all � > 0g:Note that U(n; d; n+ 1) 
an be de�ned alternatively asU(n; d; n + 1) := f(E; V ) : E is stable and (E; V ) is �-stable for all � > 0gand in parti
ular U(n; d; n + 1) � U s(n; d; n + 1). In the 
onverse dire
tion, note that,if (E; V ) 2 U s(n; d; n + 1), then E is semistable. However it is not generally true thatU(n; d; n+1) = U s(n; d; n+1) and we 
an have U s(n; d; n+1) 6= ;, U(n; d; n+1) = ;. Ourmain obje
t in the remainder of the paper is to determine when these sets are non-empty.Remark 6.2. By openness of �-stability, U(n; d; n + 1) and U s(n; d; n + 1) are opensubsets of GL, thus inheriting natural stru
tures of smooth variety, and with these samestru
tures they are also embedded as open subsets of every G(�). If either U(n; d; n+ 1)or U s(n; d; n+1) is non-empty, then, by Theorem 3.1, it is irredu
ible of dimension � (or�nite when � = 0) and its generi
 element (E; V ) is generated with H0(E�) = 0.Proposition 6.3. [8, Proposition 2.5(4)℄ Let (E; V ) be a generated 
oherent system oftype (n; d; n+ 1) su
h that E is semistable. Then (E; V ) 2 U s(n; d; n+ 1).Proposition 6.4. [8, Proposition 4.1(2)℄ Let X be a Petri 
urve and suppose that g +n � � gn+1� � d � g + n and that g and n are not both equal to 2. Then U(n; d; n + 1) isnon-empty.Proposition 6.5. [8, Proposition 4.6℄ Let X be a Petri 
urve and � � 0: If g � n2 � 1,then U(n; d; n+ 1) 6= ;.In the remainder of this se
tion, we shall introdu
e two further te
hniques for 
onstru
t-ing 
oherent systems. The �rst is that of elementary transformations, whi
h we shall usein two distin
t ways.Sin
e any stable bundle of degree � n(2g� 1) is generated by its se
tions, Proposition6.3 implies that U(n; d; n + 1) 6= ; for d � n(2g � 1) (see also [8, Proposition 2.6℄). Thenext proposition provides a signi�
ant improvement on this.Proposition 6.6. Let X be a Petri 
urve. Ifd0 = � n(g+3)2 if g is oddn(g+2)2 if g is even,then U s(n; d0; n+ 1) 6= ;.



ON COHERENT SYSTEMS 17If d � d1, where d1 = 8><>: n(g+3)2 + 1 if g is oddn(g+2)2 + 1 if g is even and n � g!( g2 )!( g2+1)!n(g+4)2 + 1 if g is even and n > g!( g2 )!( g2+1)! ;then U(n; d; n+ 1) 6= ;.Proof. It is easy to 
he
k that, with the above de�nition of d0, �(1; d0n ; 2) � 0 (in fa
t,d0n is the smallest integer for whi
h this is true). Hen
e, by 
lassi
al Brill-Noether theory,there exists a line bundle L of degree d0n su
h that h0(L) � 2 and L is generated byits se
tions. Now let L1; : : : ;Ln be any su
h line bundles and let V be a subspa
e ofH0(L1 � : : : � Ln) of dimension n + 1 su
h that (L1 � : : :� Ln; V ) is generated. Hen
e(L1 � : : :� Ln; V ) 2 U s(n; d0; n+ 1) by Proposition 6.3.Again by 
lassi
al Brill-Noether theory, one 
an �nd pairwise non-isomorphi
 line bun-dles L1; : : : ;Ln of degree d1�1n su
h that, for all i, h0(Li) � 2 and Li is generated byits se
tions (in the 
ase g even and d1 = n(g+2)2 + 1, the number of distin
t line bundlesof degree d1�1n with h0 � 2 is g!( g2 )!( g2+1)! [1, Chapter V, formula (1.2)℄). Now 
onsiderextensions 0! L1 � : : :� Ln ! E ! � ! 0;where � is a torsion sheaf of length t � 1. These extensions are 
lassi�ed by n-tuples(e1; : : : ; en) with ei 2 Ext1(�;Li). It 
an be shown (see [21, Th�eor�eme A.5℄) that, forany t, there exists an extension of this type for whi
h E is stable. Moreover V 
an beregarded as a subspa
e of H0(E), making (E; V ) a 
oherent system. If (E1; V1) is a propersubsystem of (E; V ) with E1 6= E, then V1 � V \H0(E1 \L1� : : :�Ln). It follows fromthe �-stability of (L1 � : : :� Ln; V ) for large � that k1n1 � kn . Sin
e E is stable, we havealso d1n1 < dn . It follows that (E; V ) 2 U(n; d; n+ 1). �Remark 6.7. For a general 
urve X, the se
ond part of Proposition 6.6 is valid withd1 = � n(g+1)2 + 1 if g is oddn(g+2)2 + 1 if g is evenby [30℄. However, this does not imply the result for an arbitrary Petri 
urve.Our se
ond use of elementary transformations is to proveProposition 6.8. Suppose that U(n; na; n+1) 6= ; for some integer a. Then U(n; d; n+1) 6= ; for all d with d > na and d � �1 mod n.Proof. In view of Remark 2.2, it is suÆ
ient to prove this for d = na + 1 and for d =na+ n� 1.Suppose �rst that d = na+1. Let (F; V ) 2 U(n; na; n+1) and de�ne E as an elementarytransformation (4.3). Then (E; V ) 2 GL(n; na+1; n+1) by Lemma 4.1. The stability ofE follows easily from the stability of F , so (E; V ) 2 U(n; d; n+ 1).



18 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADNow suppose d = na + n � 1. Again let (F; V ) 2 GL(n; na; n + 1) and let x 2 X.Let � be the torsion sheaf of length 1 supported at x and de�ne E as an elementarytransformation 0! E ! F (x)! � ! 0:Then F 
an be regarded as a subsheaf of E and V as a subspa
e of H0(E). By Lemma4.1, the 
oherent system (E; V ) 2 GL(n; na + n � 1; n + 1). The stability of E followsfrom the stability of F (x). �The se
ond te
hnique is the use of extensions of 
oherent systems. The idea is to takea generi
 element (E; V ) of GL and try to prove that E is stable. If this is not the 
ase,there exists a quotient E2 of E with �(E2) � �(E) and we 
an 
hoose E2 to be stable.We have therefore an extension 0! E1 ! E ! E2 ! 0;and, taking V1 = V \H0(E1) and V2 = V=V1, we obtain an extension of 
oherent systems(6.1) 0! (E1; V1)! (E; V )! (E2; V2)! 0:We are assuming that (E; V ) is a generi
 element of GL, so (E; V ) is generated andH0(E�) = 0. Using Lemma 3.2, we see that (6.1) is subje
t to the following 
onditions:� �(E2) � �(E);� E2 is stable, (E2; V2) is generated and k2 � n2 + 1;� �(E2) � 1 + 1n2 �g � h gn2+1i�.Proposition 6.9. Suppose that X is a Petri 
urve, n � 3, d < g+n+ gn�1 and n2 � n�2.Then no extension (6.1) exists satisfying the stated 
onditions.Proof. Suppose we have su
h an extension. Then1 + 1n2 �g � � gn2 + 1�� � �(E2) � dn:By Lemma 3.4, the left hand side of this inequality is a de
reasing fun
tion of n2; so wehave 1 + 1n� 2 �g � � gn� 1�� � dn;i.e. d � g + n+ 2gn� 2 � nn� 2 � gn� 1�� g + n+ 2gn� 2 � ng(n� 2)(n� 1)= g + n+ gn� 1 :This gives the required 
ontradi
tion. �



ON COHERENT SYSTEMS 19It remains to 
onsider the extensions (6.1) for whi
h n2 = n� 1. We have two 
ases:(6.2) 0! (E1; V1)! (E; V )! (E2; V2)! 0; n1 = k1 = 1and(6.3) 0! (E1; 0)! (E; V )! (E2; V2)! 0; n1 = 1:Proposition 6.10. Suppose that X is a Petri 
urve, n � 2 and d > g + n. Thenthe extensions (6.2) whi
h satisfy the 
onditions stated above depend on at most � � 1parameters.Proof. Sin
e E2 is stable and (E2; V2) is generated, (E2; V2) 2 GL(n2; d2; n2+1) by Propo-sition 6.3. Hen
e (E2; V2) depends on �(n2; d2; n2+1) parameters, while (E1; V1) dependson d1 = �(1; d1; 1) parameters. By Remark 2.7,H 021 = Hom((E2; V2); (E1; V1)) = 0:By Lemma 2.6, it remains to prove that(6.4) C12 > dimH 221 :Now, by (2.6), C12 = (n� 1)d1 � n;while dimH 221 = h0(E�1 
N2 
K);where N2 is the kernel of the evaluation map V2 
 O ! E2. Now E�1 
N2 
K is a linebundle of degree 2g � 2� d. If d � 2g � 2, then, by Cli�ord's Theorem,h0(E�1 
N2 
K) � g � 1� d2 + 1 = g � d2 :So (6.4) holds if (n� 1)d1 � n > g � d2 :Sin
e d1 � dn , this will be true if (n� 1)dn � n > g � d2 ;i.e. if 3n� 22n d > g + n:This is 
ertainly true sin
e d > g + n.If d > 2g� 2, then h0(E�1 
N2
K) = 0 and we require to prove only that C12 > 0. Infa
t C12 = (n� 1)d1 � n � n� 1n d� n > n� 1n (g + n)� n = n� 1n g � 1 � 0: �



20 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADRemark 6.11. Propositions 6.9 and 6.10 are dire
ted towards proving that U(n; d; n +1) 6= ;. If we wish only to prove that U s(n; d; n + 1) 6= ;, we are not 
on
erned withthe stability of E and we need to 
onsider extensions (6.2) under the usual 
onditions of[5, se
tion 6.2℄ for the 
ip lo
i G+i . We 
an still assume that (E; V ) is generated withH0(E�) = 0, so (E2; V2) is also generated with H0(E�2) = 0, hen
e d2 � g + n2 � h dn2+1i,and now �(E2) < �(E). So the result of Proposition 6.9 holds under the assumptiond � g + n+ gn�1 . In Proposition 6.10, note that (E2; V2) 2 GL(n2; d2; n2 + 1) by Theorem3.1(3); so (E2; V2) depends on pre
isely �(n2; d2; n2 + 1) parameters and the rest of theproof goes through.We turn now to the 
onsideration of the extensions (6.3).Proposition 6.12. Let X be a Petri 
urve and n � 3. Suppose that d < g + n + gn�1 .Then there exist no extensions (6.3) satisfying the 
onditions of (6.1) with(6.5) dn < 2g2n� 1 + 2:Proof. Sin
e (E2; V2) is generated, we 
an write as usual0! N2 ! V2 
O ! E2 ! 0:Note that H0(N2) = 0 and that (N�2 ; V �2 ) is generated. Moreover N�2 has rank 2 and, sin
eh0(E�2) = 0, h0(N�2 ) � n+ 1. Suppose we prove that, for any line subbundle L1 of N�2 ,(6.6) h0(L1) � 1:Then, by [25, Lemma 3.9℄, h0(detN�2 ) � 2n� 1:Hen
e, by 
lassi
al Brill-Noether theory and the assumption �(E2) � �(E),(n� 1)dn � d2 = degN�2 � (2n� 2)g2n� 1 + 2n� 2;whi
h 
ontradi
ts (6.5).It remains to prove (6.6). Consider an exa
t sequen
e0! L1 ! N�2 ! L2 ! 0:Sin
e N�2 is generated, so is L2. But L2 is 
ertainly not trivial sin
e h0(N2) = 0, soh0(L2) = s � 2 and degL2 � (s� 1)gs + s� 1:If s < n, then h0(L1) � n+ 1� s � 2 anddegL1 � (n� s)gn� s+ 1 + n� s:



ON COHERENT SYSTEMS 21So d2 = degN�2 � (s� 1)gs + s� 1 + (n� s)gn� s + 1 + n� s= 2g � (n+ 1)gs(n� s+ 1) + n� 1:Sin
e 2 � s � n� 1, this gives(6.7) d2 � 2g � (n+ 1)g2(n� 1) + n� 1 � g + n� 1;sin
e (n�1)dn � d2, this 
ontradi
ts the assumption that d < g + n + gn�1 . It follows thats � n, so degL2 � (n� 1)gn + n� 1and(6.8) degL1 = d2 � degL2 < g + n� 1� (n� 1)gn � n + 1 = gn:The inequality (6.6) now follows from 
lassi
al Brill-Noether theory. This 
ompletes theproof. �Remark 6.13. The non-stri
t inequality(6.9) d � g + n+ gn� 1is suÆ
ient ex
ept when n = 3, when (6.7) fails to give a 
ontradi
tion. The other pla
ewhere the inequality d < g + n+ gn�1 is used is (6.8). In this 
ase (6.9) gives degL1 � gn ;whi
h is suÆ
ient for (6.6). In parti
ular, if n � 4, (6.9) and (6.5) are suÆ
ient for thevalidity of Proposition 6.12.7. The 
ases n = 2, n = 3 and n = 4In this se
tion we shall assume that g � 3.Theorem 7.1. Let X be a Petri 
urve of genus g � 3. Then U(2; d; 3) 6= ; if and only if�(2; d; 3) � 0.Proof. This follows at on
e from Propositions 6.1 and 6.5. �Theorem 7.2. Let X be a Petri 
urve of genus g � 3. Then U(3; d; 4) 6= ; if and only if�(3; d; 4) � 0.Proof. A

ording to Proposition 6.5, the result holds for g � 8. For lower values of g, theresult holds by Proposition 6.4 in the following 
ases� g = 3; d = 6;� g = 4; d = 6; 7;� g = 5; d = 7; 8;� g = 6; d = 8; 9;



22 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEAD� g = 7; d = 9; 10.For g 6= 5, Proposition 6.8 and Remark 2.3 give the result for all d � g + 3� �g4�, i.e. forall � � 0.When g = 5, Remark 2.2 gives the result for d = 10; 11 and Proposition 6.6 for d � 13,leaving only d = 9; 12 open. For g = 5; d = 9, the inequalities d < g + n+ gn�1 , d > g + nand dn < 2g2n�1 + 2 are all satis�ed and the result follows from Propositions 6.9, 6.10 and6.12. Finally, the 
ase d = 12 now follows using Remark 2.2. �Theorem 7.3. Let X be a Petri 
urve of genus g � 3. Then U(4; d; 5) 6= ; if and only if�(4; d; 5) � 0.Proof. Proposition 6.5 gives U(4; d; 5) 6= ; for g � 15. Now Proposition 6.4 
overs thefollowing 
ases� g = 3; d = 7;� g = 4; d = 8;� g = 5; d = 8; 9;� g = 6; d = 9; 10;� g = 7; d = 10; 11;� g = 8; d = 11; 12;� g = 9; d = 12; 13;� g = 10; d = 12; 13; 14;� g = 11; d = 13; 14; 15;� g = 12; d = 14; 15; 16;� g = 13; d = 15; 16; 17;� g = 14; d = 16; 17; 18.Proposition 6.8 now gives the following additional 
ases� g = 4; d = 9; 11;� g = 5; d = 11;� g = 8; d = 13;� g = 9; d = 15;� g = 10; d = 15;� g = 12; d = 17;� g = 14; d = 19.Remark 2.3 now 
ompletes the argument for g = 10; 12; 14.For other g, we try using extensions of 
oherent systems. Propositions 6.9, 6.10 and6.12, together with Proposition 6.8, give the following additional 
ases� g = 5; d = 10;� g = 6; d = 11;� g = 7; d = 12; 13;



ON COHERENT SYSTEMS 23� g = 8; d = 14;� g = 9; d = 14;� g = 11; d = 16;� g = 13; d = 18.Again using Remark 2.3, this 
ompletes the argument for g = 5; 7; 8; 9; 11; 13. Moreover,in view of Proposition 6.6, the only outstanding 
ases are g = 3; d = 8; 9; 10; 12, g =4; d = 10; 14 and g = 6; d = 12; 16.Proposition 7.4. Suppose that X is a Petri 
urve of genus 3 and d = 8; 9 or 12. ThenU(4; d; 5) 6= ;.Proof. Suppose �rst that d = 8. Sin
e d = 2n, the result then follows from [7, Theorem5.4℄. For d = 9, we now use Proposition 6.8 and, for d = 12, we apply Remark 2.2. �Proposition 7.5. Suppose that X is a Petri 
urve of genus 6 and d = 12 or 16. ThenU(4; d; 5) 6= ;.Proof. In view of Remark 2.2, it is suÆ
ient to prove that U(4; 12; 5) 6= ;. Note that inthis 
ase we have12 = d = g + n + gn� 1 and dn = 3 < 2g2n� 1 + 2 = 127 + 2:Let (E; V ) be a generi
 element of GL(4; 12; 5) and suppose that E is not stable. ByRemark 6.13 and Proposition 6.10, the only possible form for a destabilising sequen
e is(7.1) 0! (E1; V1)! (E; V )! (E2; V2)! 0; E2 stable ; n2 � 2:Moreover, all the inequalities in the proof of Proposition 6.9 must be equalities, whi
h isthe 
ase if and only if n1 = n2 = 2 and d1 = d2 = 6:Sin
e (7.1) is the only possible form for a destabilising sequen
e with E2 stable, it followsthat E is semistable. If k2 > 3, then [25, Lemma 3.9℄ applies to give h0(detE2) � 5,whi
h would require d2 � 9 by 
lassi
al Brill-Noether theory, a 
ontradi
tion. So k2 = 3and k1 = 2.Sin
e (E2; V2) is generated and h0(E�2) = 0, we have (E2; V2) 2 U(2; 6; 3), whi
h hasdimension �(2; 6; 3) = 0. Sin
e E is semistable and �(E1) = �(E), E1 is also semistable.Moreover, (E1; V1) must be generi
ally generated, otherwise it would have a subsystem(L; V1) with L a line bundle, 
ontradi
ting the �-stability of (E; V ). It follows that anysubsystem (L1;W1) of (E1; V1) with L1 of rank 1 has degL1 � 3 and dimW1 � 1, so(E1; V1) is �-semistable for all � > 0. Now, by [5, Theorem 5.6℄,dimGL(2; 6; 2) = �(2; 6; 2) = 9:On the other hand, if (E1; V1) 62 GL(2; 6; 2), we have(7.2) 0! (L1;W1)! (E1; V1)! (L2;W2)! 0



24 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADwith degL1 = degL2 = 3 and dimW1 = dimW2 = 1:Moreover, for the extensions (7.2), we have, by (2.6),� C21 = 3� 1 = 2;� dim H 021 = dimHom((L2;W2); (L1;W1)) � 1;� dim H 221 = 0 by (2.7),so dimExt1((L2;W2); (L1;W1)) � C21 + 1 = 3:Sin
e (L1;W1) and (L2;W2) ea
h depend on 3 parameters, the extensions (7.2) dependon at most 3 + 3 + 3� 1 = 8 < �(2; 6; 2)parameters.We now 
onsider the extensions (7.1) with (E1; V1), (E2; V2) as above. We have, by(2.6) and (2.7),� C12 = 12� 6 = 6;� dim H 221 = h0(E�1 
 N2 
 K) � 3 by [10, Theorem 2.1℄ sin
e E�1 
 N2 
 K issemistable of rank 2 and slope�d12 + degN2 + degK = �3� 6 + 10 = 1;� H 021 = 0 by Remark 2.7.So, by Lemma 2.6, the general (E; V ) 2 GL(4; 12; 5) does not admit an extension (7.1)and we are done. �Proposition 7.6. Suppose that X is a Petri 
urve of genus 3 or 4 and d = 10 or 14.Then U(4; d; 5) 6= ;.Proof. In view of Remark 2.2, it is suÆ
ient to prove that U(4; 10; 5) 6= ;. Let (E; V )be a generi
 element of GL(4; 10; 5) and suppose that E is not stable. Then we have adestabilising sequen
e(7.3) 0! (E1; V1)! (E; V )! (E2; V2)! 0satisfying the 
onditions of (6.1). We have the following possibilities.� n2 = 1: 3 � �(E2) � 52 , whi
h is a 
ontradi
tion.� n2 = 2: 12(g + 1) � �(E2) � 52 , so d2 = 4 or 5 if g = 3, d2 = 5 if g = 4; moreoverk2 � 3 and, by [27℄, h0(E2) � 72 , so k2 = 3.� n2 = 3: 2 � �(E2) � 52 , so d2 = 6 or 7; moreover k2 � 4 and, by [27℄, h0(E2) �d2+32 , giving the possibilities (d2; k2) = (6; 4); (7; 4); (7; 5).



ON COHERENT SYSTEMS 25We 
onsider �rst the 
ase n2 = 3. If k2 = 4, we are in the situation of (6.2) andProposition 6.10 applies. In the remaining 
ase d2 = 7, k2 = 5, we have h0(detE2) =8� g � 5. So, by [25, Lemma 3.9℄, E2 possesses either a line subbundle L with h0(L) � 2or a subbundle F of rank 2 with h0(F ) � 3. In the �rst 
ase, sin
e E2 is stable, we havedegL � 2, a 
ontradi
tion. In the se
ond 
ase dF := degF � 4 and any line subbundleof F has degL � 2, hen
e h0(L) � 1. It follows that, for any subspa
e W of H0(F ) ofdimension 3, (F;W ) 2 GL(2; dF ; 3). Hen
e, by Theorem 3.1(1), �(2; dF ; 3) � 0. Sin
edF � 4, this holds only when g = 3, dF = 4. It follows that F is semistable and, by[27℄, h0(F ) � 3 and hen
e h0(F ) = 3. Note further that F is not stri
tly semistable, forotherwise we would have a sequen
e 0 ! L1 ! F ! L2 ! 0 with degL1 = degL2 = 2,so that h0(F ) � 2. Hen
e F is stable and (F;W ) 2 U(2; 4; 3). Now let W1 := H0(F )\ V2and 
onsider the exa
t sequen
e(7.4) 0! (F;W1)! (E2; V2)! (L;W2)! 0;where dimW1 � 3. If dimW1 < 3, then dimW2 � 3, 
ontradi
ting the fa
t that degL = 3.So dimW2 = 2, dimW1 = 3 and(F;W1) 2 U(2; 4; 3); (L;W2) 2 U(1; 3; 2):For the extensions (7.4), we have, by (2.6) and (2.7),� C21 = 4� 4 + 6� 6 = 0;� H 021 = 0 by Remark 2.7;� dim H 221 = h0(F � 
 L� 
K)� = 0 sin
e F � 
 L� 
K is stable of degree �2.So, by (2.8), the extension (7.4) splits, whi
h 
ontradi
ts the stability of E2. We havetherefore proved that the only possible destabilising sequen
es for a general (E; V ) of type(7.3) with E2 stable are those with n2 = 2.Suppose then that n2 = 2. We have k2 = h0(E2) = 3 and we know that (E2; V2) isgenerated and h0(E�2) = 0, so (E2; V2) 2 U(2; d2; 3). Suppose now that E is semistable,so that d2 = 5. Then also E1 is semistable and in fa
t stable sin
e g
d(n1; d1) = 1.It follows that any line subbundle L of E1 has degL � 2 and hen
e h0(L) � 1. So(E1; V1) 2 U(2; 5; 2). For the extensions (7.3), we have, by (2.6) and (2.7),� C12 = 10� 6 = 4;� dim H 221 = h0(E�1 
N2 
K) = 0 sin
e E�1 
N2 
K is stable with slope < 0;� H 021 = 0 by Remark 2.7.So, by Lemma 2.6, the general (E; V ) does not admit an extension of this type.It remains to 
onsider the possibility that E is not semistable. From the above, this
an happen only when g = 3 and we have an extension (7.3) withn1 = n2 = 2; d1 = 6; d2 = 4; k1 = 2; k2 = 3:We 
ertainly have (E2; V2) 2 U(2; 4; 3), but we 
an no longer guarantee that E1 issemistable. However the maximal degree of a line subbundle of E1 is 4, for otherwise



26 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADE would have a quotient bundle of rank 3 and degree � 5; this 
annot be stable sin
e Ehas no stable quotient bundles of rank 3 
ontradi
ting the stability of E. It follows thatE would have either a quotient line bundle of degree � 1 or a stable quotient bundle ofrank 2 of degree � 3; both of these are impossible (see the itemized list following (7.3)).Moreover, we 
an still argue as in the proof of Proposition 7.5 to show that (E1; V1) de-pends on at most �(2; 6; 2) parameters. Now for the extensions (7.3), we have, by (2.6)and (2.7),� C12 = 12� 6 = 6;� dim H 221 = h0(E�1 
N2
K) = 0 sin
e degN2
K = 0 and the maximal degree ofa line subbundle of E�1 is �2;� H 021 = 0 by Remark 2.7.The result now follows from another appli
ation of Lemma 2.6. �This 
ompletes the proof of Theorem 7.3. �Remark 7.7. In the 
ourse of proving Proposition 7.6, we have shown that there isno 
oherent system (E2; V2) of type (3; 7; 5) on a Petri 
urve of genus 3 or 4 with E2stable. A slight modi�
ation of the proof shows that G(�; 3; 7; 5) = ; for all � > 0and all g � 3 (we have to prove that E2 is stable for all (E2; V2) 2 G(�; 3; 7; 5)). Sin
e�(3; 7; 5) = 17� 6g < 0 for g � 3, this is to be expe
ted, but, so far as we are aware, ithas previously been proved only for g � 6 (see [8, Theorem 3.9℄, where it is shown that,for k > n, G(�;n; d; k) = ; if �(n; d; n + 1) < 0; in this 
ase �(3; 7; 4) = 16 � 3g < 0 ifand only if g � 6.). 8. Low genusThe 
ases g = 0 and g = 1 have been ex
luded from the earlier part of this paper sin
ethey present spe
ial features and have been handled elsewhere [17, 18℄.For g = 0, there are no stable bundles of rank � 2, so U(n; d; n + 1) is always emptyif n � 2. Moreover, if d is not divisible by n, there exist no semistable bundles; hen
eU s(n; d; n+ 1) = ;. For the remaining 
ase, when d is divisible by n, U s(n; d; n+ 1) 6= ;(see [17, Proposition 6.4℄). One may note that in this 
ase � � 0 is equivalent to d � n.For g = 1, the moduli spa
es G(�) are well understood (see [18℄). The results forU(n; d; n+ 1) and U s(n; d; n+ 1) are summarised in the following theorem.Theorem 8.1. Let X be a 
urve of genus 1 and n � 2. Then� U s(n; d; n+ 1) 6= ; if and only if d � n+ 1;� U(n; d; n + 1) 6= ; if and only if d � n + 1 and g
d(n; d) = 1.



ON COHERENT SYSTEMS 27Proof. The �rst part follows from the main theorem of [18℄ and [18, Remark 6.3℄. For these
ond part, re
all that, on an ellipti
 
urve, stable bundles exist if and only if (n; d) = 1,and, in this 
ase, all semistable bundles are stable. �The 
ondition d � n+ 1 here is pre
isely equivalent to � � 0.For g = 2, note �rst that the 
ase g = n = 2, d = 4 is a genuine ex
eption inProposition 6.4 (see [8, Lemma 6.6(1)℄). More generally, if E is any bundle of rank n � 2and degree 2n with h0(E) � n + 1 on a 
urve of genus 2, then E 
annot be stable. Infa
t, by Riemann-Ro
h, we have h1(E) � 1, so there exists a non-zero homomorphismE ! K, whi
h immediately 
ontradi
ts stability. There do exist semistable bundles withh0(E) � n + 1, whi
h 
an be 
onstru
ted as in the proof of Proposition 6.6 or by usingsequen
es 0! E� ! V 
O ! L ! 0with degL = 2n and V a subspa
e of H0(L) of dimension n + 1 whi
h generates L; the
oherent system (E; V �) is then �-stable for all � > 0. We dedu
eTheorem 8.2. Let X be a 
urve of genus 2 and n � 2. Then� U s(n; d; n+ 1) 6= ; if and only if d � n+ 2 (or equivalently � � 0);� U(n; d; n + 1) 6= ; if and only if d � n + 2, d 6= 2n.Proof. We have U(n; d; n+ 1) 6= ; in the following 
ases:� d � 3n by [8, Proposition 2.6℄;� d = n + 2; : : : ; 2n� 1 by [7, Theorem 5.5℄;� d = 2n + 2; : : : ; 3n� 1 by Remark 2.2.Moreover U s(n; 2n; n+ 1) 6= ; by Proposition 6.6. It remains to prove(i) U(n; 2n; n + 1) = ;;(ii) U(n; 2n + 1; n+ 1) 6= ;.For (i), we have already remarked that a ve
tor bundle E of rank n and degree 2n withh0(E) � n + 1 
annot be stable (see also [22, Th�eor�eme 2℄).For (ii), every stable bundle E of rank n and degree 2n + 1 has h0(E) � n + 1. If we
an prove that there exists su
h a bundle whi
h is generated, we 
an 
hoose a subspa
e Vof H0(E) of dimension n+ 1 su
h that (E; V ) is generated. Then (E; V ) 2 U(n; d; n+ 1)by Proposition 6.3.To show that E is generated, we need to prove that h1(E(�x)) = 0 for all x 2 X. NowE(�x) is stable of degree n+1 and E(�x)�
K is stable of degree n�1. We 
onsider theBrill-Noether lo
us B(n; n� 1; 1). By [28℄ or [10℄, this lo
us has dimension �(n; n� 1; 1)and hen
e 
odimension 1� (n� 1) + n(g � 1) = 2



28 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEADin M(n; n� 1). It follows that the generi
 E 2M(n; 2n + 1) hash1(E(�x)) = h0(E(�x)� 
K) = 0for all x 2 X as required.This 
ompletes the proof of the theorem. �Theorem 8.3. Let X be a Petri 
urve of genus 3 and n � 2. Then U(n; d; n + 1) 6= ; if� � 0, ex
ept possibly when n � 5, d = 2n+ 2.Proof. For n = 2; 3; 4, this has already been proved. For n � 5, we have U(n; d; n+1) 6= ;in the following 
ases:� d � 3n+ 1 by Proposition 6.6;� d = n + 3; : : : ; 2n by [7, Theorem 5.4℄;� d = 2n + 1 by Proposition 6.8;� d = 2n + 3; : : : 3n by Remark 2.2. �Remark 8.4. For general X (but not ne
essarily for all Petri X), the ex
eption 
an beremoved using Teixidor's degeneration methods [30℄.Remark 8.5. For g = 4; 5 and n � 5, a similar argument works with the followingpossible ex
eptions� g = 4, d = 2n+ 2; 2n+ 3; 3n+ 2; 3n+ 3;� g = 5, n = 5, d = 12; 13; 17; 18;� g = 5, n � 6, d = 2n+ 2; 2n+ 3; 2n+ 4; 3n+ 2; 3n+ 3; 3n+ 4.For general X, one 
an use Teixidor's result to rule out some of the ex
eptions.9. Appli
ations to Brill-Noether theory and dual spansWe re
all from se
tion 2 that the Brill-Noether lo
usB(n; d; k) and eB(n; d; k) are de�nedby B(n; d; k) = fE 2M(n; d)jh0(E) � kgand eB(n; d; k) = f[E℄ 2 fM(n; d)jh0(gr(E)) � kg;It follows that the formula (E; V ) 7! [E℄ de�nes a morphism : G0(n; d; k)! eB(n; d; k);whose image 
ontains B(n; d; k).The following theorem, whi
h is essentially a restatement of [5, Theorem 11.4 andCorollary 11.5℄ for the 
ase k = n+ 1, is true for any smooth 
urve; we state it in a verygeneral and formal way to make it appli
able in a wide variety of situations.



ON COHERENT SYSTEMS 29Theorem 9.1. Suppose that B(n; d; n+ 1) 6= ;. Then(1)  is one-to-one over B(n; d; n+ 1)�B(n; d; n+ 2);(2) if G0(n; d; n+ 1) is irredu
ible, then B(n; d; n+ 1) is irredu
ible;(3) if �(n; d; n+ 1) � n2(g � 1) and G0(n; d; n+ 1) is smooth and irredu
ible, thenSingB(n; d; n+ 1) = B(n; d; n+ 2)and G0(n; d; n+1) is a desingularisation of the 
losure B(n; d; n+1) of B(n; d; n+1)in fM(n; d).Proof. (1) is obvious.(2) follows from (1) and the fa
t thatB(n; d; n+1) is a Zariski-open subset of  (G0(n; d; n+1). [Note that the hypothesis �(n; d; n+1) � n2(g�1) of [5, Conditions 11.3℄ is not neededhere.℄(3) follows from [5, Corollary 11.5℄. �Of 
ourse, if U(n; d; n+1) 6= ;, then B(n; d; n+1) 6= ;. Thus we have many instan
es inthis paper for whi
h B(n; d; n+1) 6= ;. We shall not list all of them as we shall be statinga more spe
i�
 result later. For the time being, we note the following two 
orollaries. The�rst is a slightly extended version of [8, Corollary 4.5℄, the se
ond is new.Corollary 9.2. Suppose that X is a Petri 
urve, g + n � � gn+1� � d � g + n and(g; n) 6= (2; 2). Then(1) B(n; d; n+1) is irredu
ible of dimension �(n; d; n+1) and smooth outside B(n; d; n+2);(2) GL(n; d; n+ 1) is a desingularisation of B(n; d; n+ 1);(3) if either d < g + n or d = g + n and n 6 j g, B(n; d; n + 1) is proje
tive andGL(n; d; n+ 1) is a desingularisation of B(n; d; n+ 1).Proof. The 
ondition on d implies that �l � 0. Hen
e, by Theorem 3.1, G0(n; d; n+ 1) =GL(n; d; n + 1) and is smooth and irredu
ible of dimension �(n; d; n + 1). MoreoverU(n; d; n+1) 6= ; by Proposition 6.4. (1) and (2) now follow from Theorem 9.1. For (3), wenote that, under the stated 
onditions on d, E is stable for every (E; V ) 2 GL(n; d; n+1)[8, Proposition 3.5℄; hen
e  (GL(n; d; n+ 1)) = B(n; d; n+ 1). �Remark 9.3. When g = n = 2 and d = 4, B(2; 4; 3) = ; by [8, Lemma 6.6℄, butGL(2; 4; 3) 6= ;. In this 
ase, the image of  is 
ontained in fM(2; 4) nM(2; 4).Corollary 9.4. Suppose that X is a Petri 
urve and that all the 
ip lo
i for 
oherentsystems of type (n; d; n + 1) have dimension � �(n; d; n + 1) � 1. If B(n; d; n + 1) 6= ;,then � B(n; d; n+ 1) is irredu
ible;



30 U. N. BHOSLE, L. BRAMBILA-PAZ AND P. E. NEWSTEAD� B(n; d; n+1) is smooth of dimension �(n; d; n+1) at E whenever E is generi
allygenerated and h0(E) = n+ 1.Proof. The hypotheses imply that G0(n; d; n + 1) is birational to GL(n; d; n + 1) and istherefore irredu
ible. Irredu
ibility of B(n; d; n+ 1) follows from Theorem 9.1(2). If E isstable, h0(E) = n + 1 and E is generi
ally generated, then (E;H0(E)) 2 U(n; d; n + 1),whi
h is smooth of dimension �(n; d; n+ 1) by Theorem 3.1(4). The result follows from[5, Theorem 11.4(iv)℄. �We know that this 
orollary has genuine 
ontent sin
e the 
ip lo
i at �l = �L havedimension � �(n; d; n+ 1)� 1 (Corollary 5.2 and Proposition 5.4).We now turn to our se
ond appli
ation. Suppose that L is a generated line bundle ofdegree d > 0 and let V be a linear subspa
e of H0(L) of dimension n+1 whi
h generatesL (in other words, (L; V ) is a generated 
oherent system of type (1; d; n+ 1)). We havean evaluation sequen
e(9.1) 0 �!MV;L �! V 
O �! L �! 0:This is also known as the dual span 
onstru
tion (see [12℄) and has been used in the 
ontextof 
oherent systems in [5, 8℄ and also in the proof of Proposition 3.7. The following is aspe
ial 
ase of [12, Conje
ture 2℄.Conje
ture 9.5. Let X be a Petri 
urve of genus g � 3. Suppose that � := �(1; d; n+1) �0 and that L is a general element of B(1; d; n+ 1) (when � = 0, L 
an be any element ofthe �nite set B(1; d; n+1)) and let V be a general subspa
e of H0(L) of dimension n+1.Then MV;L is stable.This 
onje
ture is related to our results by the following simple proposition (
ompare[5, Theorem 5.11℄).Proposition 9.6. Suppose that X is a Petri 
urve. The following are equivalent:(1) there exists a generated 
oherent system (L; V ) of type (1; d; n+1) withMV;L stable;(2) U(n; d; n + 1) 6= ;.Proof. For (1))(2), we note that (M�V;L; V �) is a generated 
oherent system of type(n; d; n+1) withM�V;L stable, so (M�V;L; V �) 2 U(n; d; n+1) by Proposition 6.3. Conversely,suppose U(n; d; n + 1) 6= ;. If �(n; d; n + 1) > 0, the generi
 element of U(n; d; n + 1) isa generated 
oherent system (E;W ) with h0(E�) = 0 and E stable. If �(n; d; n+ 1) = 0,then all elements of U(n; d; n+1) have this property. The dual of the evaluation sequen
eof (E;W ) 
an be written as0 �! E� �!W � 
O �! L �! 0;where L is a line bundle of degree d. It follows that MW �;L �= E� and is therefore stable,proving (1). �



ON COHERENT SYSTEMS 31Remark 9.7. By Theorem 8.2 and Proposition 9.6, the 
onje
ture fails for g = 2, d = 2n,but is otherwise true for g = 2. In fa
t, although Butler [12, x1℄ dis
usses the questionof whether MV;L is stable, [12, Conje
ture 2℄ a
tually has the weaker 
on
lusion that(M�V;L; V �) 2 G0(n; d; n + 1). In this form the 
onje
ture is true for g = 2 (see Theorem8.2).Using Proposition 9.6, we 
an now begin to form a list of 
ases for whi
h Conje
ture9.5 holds. In the list we have noted where ea
h 
ase was proved.� g + n� � gn+1� � d � g + n ([12℄, [8, Proposition 4.1℄);� g � n2 � 1 ([12℄, [8, Proposition 4.6℄);� d � d1 (Proposition 6.6, [30℄);� d � 2n ([20, 22, 7℄);� n = 3; 4 (Theorems 7.2, 7.3)The �rst and fourth items in this list 
an be expanded further by the use of Remark 2.3and Proposition 6.8. A

ording to the analysis in se
tion 7, the following 
ases for n = 3and n = 4 depend on the use of extensions of 
oherent systems (possibly in 
onjun
tionwith other methods):� n = 3; g = 5; d = 9; 12;� n = 4; g = 3; d = 10;� n = 4; g = 4; d = 10; 14;� n = 4; g = 5; d = 10; 14;� n = 4; g = 6; d = 11; 12; 15; 16;� n = 4; g = 7; d = 12; 13; 16; 17; 20;� n = 4; g = 8; d = 14; 18;� n = 4; g = 9; d = 14; 18; 22;� n = 4; g = 11; d = 16; 20; 24; 28;� n = 4; g = 13; d = 18; 22; 26; 30.All of these 
ases, and those depending on Propositions 6.6 and 6.8, are (so far as we areaware) new.Of the methods we have used, the only ones 
apable of further development appearto be elementary transformations (using dire
t sums of higher rank ve
tor bundles) andextensions of 
oherent systems (using more re�ned 
al
ulations). The methods of [30℄
ould also yield improved results for general X.Referen
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