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We carry out a detailed analysis of the scalar sector of the nonminimal supersymmetric standard model
with lepton number violation, and study the constraints imposed on it by the stability of the electroweak
symmetry breaking vacuum. The model contains a trilinear lepton number violating term in the super-
potential together with the associated supersymmetry breaking interactions which can give rise to neutrino
masses. We evaluate the mass matrices for the various boson and fermion modes and then discuss the
effect that the lepton number violating interactions have on the mass spectra using a phenomenological
prescription to implement the experimental constraints on the light neutrinos mass matrix. We also discuss
qualitatively the conditions on the lepton number violating parameters set by the unbounded from below
directions, and from the absence of the charge and color breaking minima in this model.
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I. INTRODUCTION

There are suggestive hints of lepton number violation in
the observation of neutrino flavor oscillations [1]. The link
between the new physics beyond the standard model (SM)
and lepton number violating interactions has so far been
realized in two main theoretical frameworks. The first
option, the seesaw mechanism [2], uses physics at the
grand unified scale, with lepton number violation repre-
sented by the nonrenormalizable interaction of dimension
5, Leff �

1
� �LHu��LHu�, where L and Hu are the lepton

and Higgs doublets, respectively. The second option in-
volves minimal supersymmetric standard model (MSSM)
with broken (generalized) lepton parity, and uses bilinear
and/or trilinear lepton number violating couplings in the
superpotential, with lepton number violation occurring at
the weak scale [3].

Recently, we have pointed out [4] that in the context of
low energy supersymmetry there is an attractive option of
generating neutrino masses in the nonminimal supersym-
metric standard model (NMSSM) with trilinear lepton
number violation. Unlike the minimal supersymmetric
standard model (MSSM), the superpotential of the
NMSSM is scale invariant. What is perhaps even more
interesting is the presence of an additional lepton number
violating trilinear coupling in the superpotential of
NMSSM which has no analog in the MSSM. In the
NMSSM with lepton number violation we have a situation
which is different from the one that arises in the seesaw
mechanism or the bilinear lepton number violation in
MSSM in that no dimensionful mass parameters (large or
small) are introduced.

There are several reasons for studying the nonminimal
supersymmetric standard model. First, and foremost, it is
the simplest supersymmetric extension of the standard
model in which the electroweak scale originates from the
supersymmetry breaking scale only. Second, and as men-
tioned above, this model breaks lepton number and
R-parity explicitly through a unique trilinear superpoten-
tial term [5,6]. Third, the model can successfully explain
the pattern of neutrino masses with normal type of hier-
archy [4] without invoking either a large or a small mass
parameter. And last, but not the least, its enlarged Higgs
sector may help in relaxing the fine-tuning and little hier-
archy problems of the MSSM [7], thereby opening new
perspectives for the Higgs boson searches at the next
generation of high energy colliders.

In addition to the familiar Yukawa interaction super-
potential for the three generations of quark and lepton
superfields, and for the Higgs bosons superfields, Hu, Hd,
the model couples the set of down-type Higgs boson and
sleptons, LA � �Hd; Li� �A � d; i; i � 1; 2; 3�, with the
Higgs singlet superfield S through the superpotential W �
~�ALAHuS�

�
3 S

3, where ~�A � ��; ~�i� and � are dimen-
sionless parameters. The familiar soft supersymmetry
breaking trilinear scalar couplings and mass terms intro-
duce the dimensional parameters A~�A

� �A�; A~�i
�; A�;

m2
~L;AB

and m2
S. Whereas the fundamental parameters in

the action are ~�A, A~�A
and m2

~L;AB
, the vacuum solution is

specified by the dynamical parameters corresponding to
the vacuum expectation values (VEVs) of the electrically
neutral scalar fields at the electroweak scale, vu � hHui,
vA � �vd � hHdi; vi � h~�ii�, which include the sneutrinos
together with the neutral components of the Higgs bosons.
We use a covariant notation for the down-type Higgs boson
and slepton superfields, and their couplings, in order to
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illustrate the invariance of observables under the SU�4�
group of transformations acting on the 4-dimensional col-
umn vectors LA, ~�A and A~�A

, and the matrix m2
~L;AB

. Strong

correlations usually exist between the fundamental and the
dynamical parameters. Thus, the experimental observa-
tions for the light neutrino mass matrix tightly constrain
certain combinations of the parameters which characterize
the inequivalent field directions distinguishing the down-
type Higgs boson from the sleptons, and hence the inter-
actions which conserve lepton number from those which
violate it. One may hope that imposing the necessary
restrictions on the misalignment type parameters would
still leave some freedom in the parameter space so as to
allow the lepton number violating interactions to signifi-
cantly affect the physics of the NMSSM. There is a close
analogy here with the situation that obtains in the MSSM
with R-parity violation [8–15].

At the tree level, the size of the neutrino Majorana mass
matrix is known to be controlled by deviations from the
~�A / vA alignment, such that the predicted single non-
vanishing neutrino mass is proportional to

P
i
~�02i , where

the effective misalignment parameters are defined by the
linear combinations ~�0i � ~�i � �vi=vd. We have previ-
ously shown [4] that the suitably constrained NMSSM
predicts an acceptable neutrino mass matrix of a normal
hierarchy type so that the tentative limits on the heaviest
neutrino mass,m�� < �10 MeV� 1 eV�, set bounds on the
effective parameters given by ~�0i < �3:10�2 � 10�5�.
Bounds of a similar type were found for the couplings ~�i
in the basis vi � 0 in an attempt to fit an extended version
of the model to the neutrino mass differences and mixing
angles [16]. It has also been observed that ratios as large as
~�i=�� 10�1 might be allowed at the price of fine tuning
the NMSSM parameters [17]. As far as one-loop contribu-
tions to the neutrino mass matrix is concerned, the situation
is more complex due to the larger number of unknown
parameters and the presence of several sources of contri-
butions arising in perturbation theory. Thus, to suppress the
contributions from the one-loop amplitude involving the
exchange of scalars and gauginos, it is necessary to impose
strong constraints on the effective parameters B0i � Bi �

Bvi=vd�BA � �B;Bi� � �A~�i
~�i; A���� controlled by the

BA / vA alignment.
Supersymmetric models, including the nonminimal

supersymmetric standard model, contain a large number
of scalar fields, such as the scalar partners of quarks and
leptons, which are not present in the standard model. As a
result, the scalar potential of supersymmetric models is
fairly complicated. Such a potential can have minima
which could lead to the breakdown of color or electric
charge conservation through the vacuum expectation val-
ues of squark and slepton fields. The condition that the
global minimum of the theory does not violate color or
electromagnetic gauge invariance provides useful con-

straints on the parameter space of the underlying super-
symmetric model, as has been well illustrated in the
context of the minimal supersymmetric standard model
[18–22] and its extended version with broken R parity
symmetry [23,24]. Significant bounds can be obtained
not only on the value of the trilinear soft supersymmetry
breaking parameters, but also on the values of the bilinear
soft scalar supersymmetry breaking parameter, as well as
scalar and gaugino masses, respectively.

The possibility that one can reproduce the lepton num-
ber violating observables without imposing strong restric-
tions on the coupling constants ~�i motivates us to examine
how the scalar sector of the NMSSM is affected by treating
~�i as free parameters. One may expect interesting impli-
cations regarding the stability of the regular vacuum solu-
tion and the properties of the neutral and charged scalars.
While performing the calculations within a field basis
independent formalism [8–10,12–15] is highly desirable,
this is very tedious and is not particularly illuminating. It
requires an unusually large amount of effort which is not
warranted at the present stage of our study. We, thus,
choose to pursue the calculations within a basis dependent
formalism. In principle, there is a choice of basis for the
neutrino superfields in which the sneutrino VEVs can be
set to zero at the expense of transferring through a super-
field redefinition the couplings LiHuS to the trilinear lep-
ton number violating couplings of the matter superfields.
Although the calculations are greatly simplified in the basis
vi � 0, there is a risk that this choice biases the parameter
space exploration, as has been clearly pointed out in the
above discussion regarding the neutrino mass matrix. In
fact, in the basis choice vi � 0, the couplings ~�i are so
strongly suppressed that the issue of establishing any ob-
servable effect on the scalar sector would be closed from
the very start.

In the present work, we shall adopt the view that the
lepton number violation phenomenology allows the cou-
plings ~�i to cover a wide range of variation, 0 	 j ~�i=�j 	
1. Thus, we treat all the ~�A on the same footing, while
requiring the soft and dynamical parameters to satisfy the
near alignment properties, vA / BA and vA / ~�A, in agree-
ment with the observations. Following a phenomenological
approach, we treat ~�i as free parameters, and determine vi
and Bi by restricting the linear combinations ~�0i � ~�i �
�vi=vd and B0i � Bi � Bvi=vd. Since vd and vi are deter-
mined by minimizing the scalar potential, this procedure
implies a fine tuning. However, one can use symmetries to
impose in a natural way a preferred direction in the LA field
space along which the various parameters get aligned.
While the horizontal flavor discrete symmetries [25,26]
indeed have the ability to enforce an approximate ~�A /
vA alignment, this property is robust only in the case of

hierarchically small ratios,
~�i
� �

vi
vd

, which is not exactly
what we want. By contrast, the supergravity inspired mod-
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els of the type discussed by Nilles and Polonsky [27], in
which the ~�ALAHuS couplings arise from nonrenormaliz-
able interactions controlled by a spontaneously broken
U�1�R type symmetry, are compatible with all the ~�A
having the same size. The alignment is realized dynami-
cally via universal type boundary conditions on the soft
parameters, and remains typically stable under the renor-
malization group [27,28]. Our main purpose is to study the
impact of the lepton number violation on the electroweak
symmetry breaking vacuum of the nonminimal supersym-
metric standard model consistent with the experimental
measurements for the light neutrinos. In the first stage,
we discuss its stability by testing for the occurrence of
tachyons (negative eigenvalues of the squared mass matri-
ces) for the charged and neutral scalar modes. In the second
stage, we analyze the dangerous directions in the scalar
field space along which the scalar potential is unbounded
from below (UFB) or develops deeper charge and/or color
breaking (CCB) minima. Distinct methods must be used at
these two stages, which both involve the nonsupersymmet-
ric couplings in an essential way.

This paper is organized as follows. In Sec. II we describe
the nonminimal supersymmetric standard model with
lepton number violation, and set up our notation and con-
ventions. Complementary definitions and results are sum-
marized in the appendix. In Sec. III we discuss the
conditions on the superpotential couplings and supersym-
metry breaking couplings required to exclude the tachyon
scalar modes for the regular vacuum. In Sec. IV we explore
the conditions on the superpotential and supersymmetry
breaking couplings implied by the lifting of UFB direc-
tions, and the removal of CCB minima. In Sec. V we
summarize our main conclusions.

II. THE NMSSM WITH BARYON AND LEPTON
NUMBER VIOLATION

In this section we summarize the basic features of the
superpotential and the associated soft breaking terms for
the nonminimal supersymmetric standard model with
baryon and lepton number violation, and establish our
notation and conventions. Some of the details are further
discussed in the appendix.

A. Superpotential and soft breaking terms

The superpotential of NMSSM with baryon and lepton
number violation is characterized by the scale invariant
superpotential

 W � WRPC 
WRPV; (2.1)

where WRPC and WRPV are the baryon and lepton number
(and R-parity) conserving, and baryon and lepton number
(and R-parity) violating contributions, respectively, to the
superpotential [4]. These contributions are written down
explicitly in the appendix. In the absence of lepton number

conservation, there is no distinction between the down-
type Higgs (Hd) and the lepton superfields (Li) as they
transform identically under the SM gauge group. We can,
therefore, employ a four vector notation for the down-type
Higgs and the lepton superfields, and the Yukawa cou-
plings

 LA � �Hd; Li�; ~�A � ��; ~�i�;

�A � d; i; i � 1; 2; 3�;
(2.2)

which is given in detail in Eq. (A4) of the appendix. The
quark and lepton generation indices are denoted by the
letters i; j; . . . ; and the trilinear couplings obey the anti-
symmetry property, �ABk � ��BAk. In this notation we can
write the complete superpotential of NMSSM with baryon
and lepton number violation as
 

W � �ujkHuQjU
c
k 


1

2
�ABkLALBE

c
k 
 �

0
AjkLAQjD

c
k



1

2
�00ijkU

c
i D

c
jD

c
k 


~�ALAHuS�
�
3
S3: (2.3)

The supersymmetric contribution to the Lagrangian of
NMSSM with baryon and lepton number violation gener-
ated by the superpotential (2.3) can be obtained by a
standard procedure. To this we must add the supersymmet-
ric contribution from the D terms generated by the gauge
interactions. In addition to the supersymmetric part, the
Lagrangian consists of soft supersymmetry breaking terms,
which include soft trilinear scalar couplings and soft
masses for all scalars and gauginos, respectively. The
part of the soft supersymmetry breaking scalar potential
of NMSSM containing trilinear scalar couplings can be
written as (note that it is�V that occurs in the Lagrangian)
 

Vsoft�trilinear��Vsoft
RPC�trilinear�
Vsoft

RPV�trilinear�;

��
1

2
A�ABk�ABk ~LA ~LB ~Eck�A

�0
Ajk�

0
Ajk

~LA ~Qj
~Dc
k

�Aujk�
u
jkHu

~Qj
~Uc
k�

1

2
A�

00

ijk�
00
ijk

~Uc
i

~Dc
j

~Dc
k

�A~�A
~�A ~LAHuS�

A��
3
S3
H:c:; (2.4)

and the part containing the bilinear mass terms for the
scalars and gauginos can be written as

 Vsoft�mass� � Vsoft
RPC�mass� 
 Vsoft

RPV�mass�; (2.5)

with the lepton number conserving RPC terms given by
 

Vsoft
RPC�mass� � m2

~Qi
j ~Qij

2 
m2
~Uc
i
j ~Uc

i j
2 
m2

~Dc
i
j ~Dc

i j
2


m2
~Li
j ~Lij

2 
m2
~Eci
j ~Eci j

2;
m2
Hu
jHuj

2


m2
Hu
jHuj

2 
m2
Hd
jHdj

2 
m2
SjSj

2


 ��2
HdHu

HdHu 
 H:c:�

�

� X
a�3;2;1

1

2
Ma

~�a ~�a 
 H:c:
�
; (2.6)
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and the lepton number violating terms given by

 Vsoft
RPV�mass� � m2

Hd
~Li
Hyd ~Li 
�2

~LiHu

~LiHu 
 H:c: (2.7)

We have used the convention in which the repeated indices
are implicitly summed over and have suppressed the SU�3�
color quantum numbers of the quark and squark fields by
setting, for instance, ~Q�

i � � ~U�
i ; ~D�

i � !
~Qi � � ~Ui; ~Di�.

Although we have represented the fields mass mixing by
the general terms, m2

~L;ij
~Lyi ~Lj and m2

~L;AB
~LyA ~LB, for the slep-

tons and for the down Higgs boson and sleptons, we
neglect throughout the present work the intergenerational
mixing of sleptons by assuming that ~Li are mass basis
fields with m2

~L;ij
� m2

~Li
�ij while retaining the off-diagonal

mass parameters, m2
Hd

~Li
� m2

di � 0. Since supersymmetry

breaking respects the SM gauge symmetry, we must assign
the same soft mass parameters for the two members of
electroweak doublet fields, as is explicitly done for the
expression of the slepton mass terms, viz. m2

~Li
j ~Lij2 �

m2
~Li
�j~�ij2 
 j~eij2�. The choice of the sign of Ma in the

gaugino masses conforms with the convention most often
used in the literature. We have also included above, for
generality, the holomorphic mass mixing terms with the
parameters �2

Au � ��
2
HdHu

� �2
du; �

2
~LiHu
� �2

iu�, although

the soft bilinear operators �2
Au

~LAHu are, in principle, dis-
allowed, since the same discrete symmetry that forbids the
bilinear superpotential terms �ALAHu should also forbid
the bilinear mass mixing operators. Mass mixing terms of
the same structure would still arise as effective contribu-
tions through the soft trilinear operators,�A~�A

~�AhSi ~LAHu,
with �2

Au � �A~�A
~�AhSi.

The scalar potential receives contributions from the
supersymmetric as well as the soft supersymmetry break-
ing interactions involving the electrically neutral and
charged complex scalar fields. The supersymmetric con-
tribution arises from the superpotential (2.3) (the F terms),
and from theD terms. The Higgs boson and slepton F-term
contributions to the scalar potential can be written as

 VF�Higgs; sleptons� � jWH0
u
j2 
 jWH
u j

2 
 jWSj
2


 jW~�A j
2 
 jW~eA j

2 
 jW~eci
j2;

(2.8)

where
 

WH0
u
� ��ujkuju

c
k 


~�AvAx;

WH
u � �ujkdju
c
k �

~�AeAx;
(2.9)

 WS � ~�AvAvu � ~�AeAv
 � �x
2; (2.10)

 W~�A � �ABkeBeck 
 �
0
Ajkdjd

c
k 


~�Avux; (2.11)

 W~eA � ��
0
Ajkujd

c
k � �BAkvBe

c
k �

~�Av
x; (2.12)

 W~eci
� �ABivAeB; (2.13)

with various vacuum expectation values denoted by
 

vA � �vd � hH
0
di; vi � h~�ii�;

eA � �v� � hH
�
d i; ei � h~eii�;

(2.14)

 eci � h~e
c
i i; v
 � hH
u i; vu � hH0

ui: (2.15)

The F-term contribution of the squarks to the scalar po-
tential can be written as

 VF�squarks� � jWui j
2 
 jWdi j

2 
 jWuci
j2 
 jWdci

j2;

(2.16)

where

 Wui � ��
u
ikvuu

c
k � �

0
AikeAd

c
k;

Wdi � �uikv
u
c
k 
 �

0
AikvAd

c
k;

(2.17)

 Wuci
� �uji�v
dj � vuuj� 


1

2
�00ijkd

c
jd

c
k;

Wdci
� �0Aji�vAdj � eAuj�;

(2.18)

with the vacuum expectation values of the squarks defined
by
 

ui � h ~Uii; di � h ~Dii; uci � h ~Uc
i i; dci � h ~Dc

i i:

(2.19)

The D-term contributions to the scalar potential can be
written as

 VD � VU�1�D 
 VSU�2�D 
 VSU�3�D ; (2.20)

with
 

VU�1�D �
g2

1

8

�
�jvdj2 � jv�j2 
 jvuj2 
 jv
j2 


1

3
juij2



1

3
jdij

2 �
4

3
juci j

2 

2

3
jdci j

2 � jvij
2 � jeij

2


 2jeci j
2

�
2
; (2.21)

 

VSU�2�D �
g2

2

8
��jvdj

2 � jv�j
2 
 jv
j

2 � jvuj
2 
 jvij

2

� jeij2 
 juij2 � jdij2�2 
 4jv?dv� 
 v
?
i ei


 v?
vu 
 u
?
i dij

2�; (2.22)

 VSU�3�D �
g2

3

6
�juij2 
 jdij2 � juci j

2 � jdci j
2�2: (2.23)

The complete soft supersymmetry breaking scalar po-
tential is given by
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Vsoft � m2
~Qi
�juij

2 
 jdij
2� 
m2

~Uc
i
juci j

2 
m2
~Dc
i
jdci j

2 
m2
~Li
�jvij

2 
 jeij
2� 
m2

~Eci
jeci j

2 
m2
Hd
�jvdj

2 
 jv�j
2�


m2
Hu
�jvuj2 
 jv
j2� 
m2

Sjxj
2 
 ��2

Au�vAvu � eAv
� 
m
2
Hd

~Li
�vdv?i 
 v�e

?
i � 
 H:c:�


 ��A~�A
~�A�vAvu � eAv
�x�

1

3
A��x

3 
 Aujk�
u
jk�ujvu � djv
�u

c
k � A

�
ABk�ABkvAeBe

c
k

� A�
0

Ajk�
0
Ajk�vAdj � eAuj�d

c
k �

1

2
A�

00

ijk�
00
ijku

c
i d

c
jd

c
k 
 H:c:�: (2.24)

We recall our convention of summing over the repeated
indices for the (suppressed) color indices and for the
squark and slepton generation labels, i; j; k; � � � � 1; 2; 3.
Assuming that the squark fields point in a fixed direction in
the color space, no summations over the color indices
would be present in the above formulas. Furthermore,
assuming that the VEVs for the squarks and sleptons of
different generations affect the scalar potential indepen-
dently of each other allows one to disregard the summa-
tions over the generation labels.

In order to discuss NMSSM in a somewhat realistic
manner, it is necessary to include the one-loop contribu-
tions to the scalar potential. We shall make the usual
assumption [29,30] that the scalar potential is dominated
by the top quark and squark modes whose explicit contri-
butions are given by

 Vloop �
3

32�2

� X
i�1;2

m4
~ti

�
ln
m2

~ti

Q2 �
3

2

�
� 2 �m4

t

�
ln

�m2
t

Q2 �
3

2

��
;

(2.25)

where �mt � �tvu is the top quark mass and m2
~ti
�i � 1; 2�

denote the squared masses of the top squarks. We do not
discuss this point any further, as detailed discussions can
be found in Refs. [29–32].

B. Symmetry constraints on the parameter space and
choice of free parameters

The scalar sector involves the scalar field components of
the doublet and singlet Higgs boson superfields, and the
lepton and quark superfields. The parameter space of the
NMSSM with lepton number violation consist of the gauge
couplings ga�a � 3; 2; 1�, the supersymmetric couplings �,
�, �ujk, �

d
jk, �

e
jk, ~�i, �ijk, �0ijk, the soft supersymmetry

breaking couplings A~�A
~�A, A��, A�ABk�ABk, A�

0

Ajk�
0
Ajk,

Aujk�
u
jk, and the soft supersymmetry breaking mass parame-

ters, m2
~Qi

, m2
~Uc
i
, m2

~Dc
i
, m2

Hd
, m2

Hu
, m2

~Li
, m2

S, m2
~Eci

, m2
Hd

~Li
, �2

Au.

We summarize below some useful definitions and abbre-
viations used in this paper:

 m2
W �

g2
2

2
v2; m2

Z �
g2

1 
 g
2
2

2
v2; tan	 �

vu
vd
;

G2
� �

g2
1 � g

2
2

8
; �v2 � v2

u 
 v̂
2
d; v̂

2
d � v2

d 
 v
2
i �:

(2.26)

The electroweak symmetry breaking scale has a numerical

value v �
��
2
p
mW
g2
’ 174 GeV.

Without loss of generality, the parametrization of the
NMSSM can be simplified by using the symmetries of the
action and the independence of observables under phase
redefinitions of the fields. The invariance of the Lagrangian
under the SU�2�L U�1�Y gauge symmetry allows elimi-
nating four real field degrees of freedom, independently of
the structure of the Yukawa couplings. We choose the
convention where the VEVs of the up-type Higgs boson
electroweak doublet are set as v
 � hH
u i � 0 and vu �
hH0

ui 2 R
. With the choice v
 � 0, the minimization
with respect to the field H
u becomes trivial. Next, using
the scalar potential invariance under phase redefinitions of
the fields S, Hd, ~Uc, ~Q and the pair of fields H�d , ~Dc, one
can make the following choice [33] for various parameters:

 �A� 2 R
; �A� 2 R
; Au�u 2 R
;

ui 2 R
; di 2 R
:
(2.27)

For completeness, we also observe that in the presence of
lepton number violation the NMSSM still satisfies a
Peccei-Quinn symmetry in the limit �! 0 and a R type
symmetry in the limit A� ! 0, A~�i

! 0, where the U�1�PQ
and U�1�R groups are defined by the assignment of charges
for �Q;Uc;Dc; L; Ec; Hd;Hu; S�, QPQ � ��1; 0; 2;�1; 2;
�1; 1; 0�, QR �

1
3 �3; 0; 2; 1; 4; 1; 3; 2�. In the limit x! 1,

with ~�Ax � ��A, �x, A~�A
~�Ax � �BA�A fixed, the physi-

cal observables must reduce to those of the MSSM with
bilinear R-parity violation [24].

In order to obtain significant contributions to the scalar
sector observables from the lepton number violating inter-
actions, some subset of the parameters ~�i, A~�i

, m2
Hd

~Li
, vi

should assume large enough values. Whether this can be
achieved while imposing at the same time highly sup-
pressed contributions to the neutrino mass matrix is closely
related to the formal symmetry under the SU�4� group
symmetry in the field space LA � �Hd; Li�. The freedom
with respect to the choice of LA field basis entails that
physical observables can only depend on the SU�4� invari-
ant combinations of the parameters ~�A, BA � A~�A

~�A,
m2

~L;AB
and vA, transforming as vectors or tensors. The

physical observables can only depend on the singlet com-
binations. At the quantum level, the field basis indepen-
dence holds only after summing all contributions at a given
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order of the perturbation theory. The basis independent
formalism can be developed along similar lines as for the
MSSM with R-parity violation [8–10]. Since Hd is distin-
guished from Li by not having lepton number, it follows
that the lepton number violating observables can only
depend on the invariants of the angle type characterizing
the inequivalent directions assigned to Hd. Thus, the tree
level contributions to the neutrino mass matrix involve
only the misalignment parameter j ~� ^ vj2 � 1

2

P
A;B�~� ^

v�2AB �
1
2

P
A;B�~�AvB � ~�BvA�

2, while the one-loop contri-
butions from the scalar-neutralino exchange Feynman dia-
grams, for instance, involve the invariant misalignment
parameters, jB ^ vj and jB ^ ~�j. By contrast, the lepton
number conserving observables can also depend on the
scalar products v̂2

d �
P
Av

2
A, v � B �

P
AvABA, and

~�Tm2
~L
v � ~�Am2

~L;AB
vB.

To avoid the excessive effort involved in developing the
basis independent formalism, we have pursued the analysis
by making a fixed choice of the LA field basis, while
distinguishing between the free and constrained parame-
ters phenomenologically. Although the choice vi � 0 is
perfectly admissible, this biases the exploration of the
parameter space. Upon working in the basis choice vi �

0, the constraints from the tree and loop level contributions
to the neutrino mass matrix can be implemented in several
ways. Since the tree contribution is proportional to ~�0i �
~�i � �vi=vd, we choose to regard ~�i as free parameters
and assign by hand vi consistently with the restricted range
of variation for ~�0i. The basic relation between the gauge
boson mass and the electroweak breaking mass scale, v2 �
v2
u 
 v2

d 
 v
2
i � v2

u 
 v̂2
d, is then implemented by using

the parametrization of the Higgs-sneutrinos VEVs
 

vd �
vu

tan	
�

v

�1
 
2
i 
 tan2	�1=2

; vi � 
ivd;

�

i �

~�i � ~�0i
�

�
; (2.28)

where we retain the usual definition for the ratio of VEVs,
tan	 � vu=vd. At the one-loop level, the contributions to
the neutrino mass matrix from the neutralino-slepton ex-
change Feynman diagram with a double mass insertion, as
given by Fig. 1(b) and Eq. (III.54) of our previous work [4],
bounds the misalignment parameter jB ^ vj, or equiva-

lently the effective parameters �i �
Bi
B �

vi
vd
�

A~�i
~�i

A��
� vi

vd
.

With the restrictions from the neutrino masses set on ~�0i and
�i, the parameters vi and A~�i

are explicitly determined in
terms of ~�i. It is important to note that once the equations
of motion are satisfied, the conditions ~�A / vA and BA �
A~�A

~�A / vA entail the condition on the squared mass ma-
trixm2

~L;AB
vB / vA. It then follows that fixing ~�0i and �i still

leaves the freedom of choosing the slepton mass parame-
tersm2

~Li
. Because of the strongly suppressed values ~�0i � 1

and �i � 1 imposed by the neutrino masses, the precise
values assigned to ~�0i and �i have little effect on the final
results.

We shall develop the study of the regular vacuum solu-
tion of the scalar sector in terms of the neutral scalar field
VEVs vd, vu, x and vi. A necessary condition for stability
is obtained by testing for the absence of saddle points of the
scalar potential along the charged and neutral boson field
directions in the field space. This condition is equivalent to
the requirement that the squared mass matrices for the
charged and neutral scalar bosons are free from negative
squared mass tachyonic eigenvalues. To simplify the dis-
cussion we shall assign finite values for the lepton number
violating parameters (coupling constants and VEVs) one at
a time for each lepton number flavor, so that finite coupling
constants ~�i, A~�i

, m2
Hd

~Li
and finite VEVs, vi, are assigned

for a fixed flavor index i. We thus neglect the quadratic
terms of the form ~�i ~�j, vivj, ~�ivj, � � �, with i � j. The
single dominant coupling constant assumption is not too
restrictive as long as the lepton number violating contribu-
tions are small relative to those of the lepton number
conserving contributions. To assess the validity of this
approximation, one could envision using the variant pre-
scription selecting some linear combinations of parameters
in the SU�4� group of the LA fields.

The structure of the scalar mass matrices depends on the
way in which one implements the equations of motion.
Since the scalar potential of the NMSSM is given by a
polynomial in the VEVs of the neutral fields, it is impos-
sible, in general, to obtain analytic formulas for the said
VEVs. Instead, we follow the practical procedure in which
one eliminates the soft mass parameters m2

Hu
, m2

Hd
, m2

S via
the minimization conditions for the VEVs of electrically
neutral fields vu, vd, and x, respectively. For the sneutrino
VEVs, vi, however, we need to specify beforehand our
choice for the independent mass parameters, because of the
presence of the off-diagonal and diagonal type sleptons
mass parameters for the combination �Hd; ~Li�, namely
m2
Hd

~Li
andm2

~L;ij
. The freedom in solving the field equations

(or equations of motion) for the sneutrinos ~�i could be used
to eliminate the mass parameters m2

Hd
~Li

, which would then

leave us with m2
~Li

as free parameters. We call this option in

the following as our prescription I. Alternatively, we could
eliminate the mass parameters m2

~Li
, and hence usem2

Hd
~Li

as

free parameters. We call this option in the following as
prescription II. These prescriptions only differ in the way
one treats the input data for the soft masses. While
prescription II is perhaps more natural, since m2

Hd
~Li

are

lepton number violating parameters on the same footing as
the soft parameters A~�i

, this has the drawback of introduc-
ing inverse powers of the parameters vi, which are ex-
pected to be small. In any case the results in prescription II
are readily obtained from those in prescription I by sub-
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stituting the expression form2
~Li

implied by the equations of

motion for ~�i, which we explicitly provide in Eq. (A9) of
the appendix. For definiteness, we quote below the formu-
las obtained with prescription I.

C. Mass matrices of scalar bosons

The lepton number violating term proportional to ~�i in
the superpotential (A2) produces mixing between the
charged Higgs bosons and scalar leptons [4]. Similarly,
there will be mixing between the charginos and the charged
leptons. These mixings can be studied through the appro-
priate mass matrices. Here we discuss the mass matrices of
charged Higgs bosons/charged scalar leptons, and neutral
Higgs bosons/neutral scalar leptons, respectively. The
mass matrices for charginos/charged leptons and neutrali-
nos/neutral leptons are discussed in the next subsection.
The field basis for the charged Higgs-slepton scalar modes
is denoted by the column vectors

 �ch � �H�?d ; H
u ; ~e?i ; ~e
c
i �; �ych � �H

�
d ; H


?
u ; ~ei; ~ec?i �;

(2.29)

with the mass term in the Lagrangian given by

 � Lmass � �ychM
2
ch�ch 
 H:c: (2.30)

After a straightforward calculation, we obtain the mass
squared matrix for the charged scalars whose elements
can be written as

 

M2
HdH?

d
�

vu
2vd
��2�2

du 
 g
2
2vdvu � 2�2vdvu 
 2A��x


 2��x2� �
vuxvi ~�i
v2
d

�A~�i

 �x� 


vuvi�
2
iu

v2
d



v2
i

4v2
d

�4m2
~Li

 g2

1vd
2 � g2

2vd
2 � g2

1vu
2

� g2
2vu

2 
 4 ~�2
i vu

2 
 4 ~�2
i x

2� 

v4
i

4v2
d

�g2
1 
 g

2
2�


 �dji�dkivjvk; (2.31)

 

M2
HdHu

�
g2

2vdvu
2

� �2vdvu 
 �x�A� 
 �x�

� �~�ivuvi ��
2
du; (2.32)

 M2
Hd~e?i
� �~�ix2 


g2
2vdvi

2
� �dAj�BijvAvB; (2.33)

 M2
Hd~eci
� ��dAi ~�Avux
 A

�
dAi�dAivA; (2.34)

 

M2
H?
uHu
�

vd
2vu
��2�2

du 
 g
2
2vdvu � 2�2vdvu


 2A��x
 2��x2� 

vi
vu
���2

iu � 2�~�ivdvu


 x~�i�A~�i

 �x�� 


�g2
2 � 2 ~�2

i �v
2
i

2
; (2.35)

 

M2
H?
u ~e?i
� ��2

iu � �~�ivdvu 
 x~�i�A~�i

 �x�



vuvi

2
�g2

2 � 2 ~�2
i �; (2.36)

 M2
H?
u ~eci
� �BAi ~�AxvB; (2.37)

 

M2
~ei~e?j
� m2

~L;ij



1

4
��g2

1 � g
2
2��vd

2 � vu2� 
 �g2
1 
 g

2
2�vi

2


 4 ~�2
i x

2��ij 
 �Aik�BjkvAvB; (2.38)

 M2
~ei~ecj
� ~�Avu�Aijx� A�Aij�AijvA; (2.39)

 M2
~ec?i ~ecj
� m2

~Ec;ij



1

2
g2

1��vd
2 � v2

i 
 vu
2��ij


 �ABi�AB0jvBvB0 : (2.40)

For completeness, we have quoted the results for general
bases of the slepton fields. The above formulas agree with
Ref. [34] for the MSSM with R-parity violation.

We now consider the neutral spin-0 Higgs-sneutrino
fields whose real and imaginary parts carry positive and
negative CP quantum numbers. The field basis for the
CP-even and CP-odd Higgs-sneutrino scalar modes is
defined by the Lagrangian mass terms as

 � Lmass � �yneutM
2
neut�neut 
 H:c:

� �ys;iM
2
s;ij�s;j 
�yp;iM

2
p;ij�p;j; (2.41)

where the neutral spin-0 fields have the decomposition

 �neut;i �
1���
2
p ��s;i 
 i�p;i�; �neut;i � �H

0
d; H

0
u; S; ~�j�:

(2.42)

The mass squared matrix for CP-even scalars in the
prescription I, using the equations of motion for ~�i to
eliminate the mass parameter m2

Hd
~Li

with m2
~Li

as free pa-

rameters, is given by
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M2
s;dd �

1

vd
�4G2


vd
3 
 vux�A��
 ��x��

�
vuxvi
v2
d

�A~�i
~�i 
 �~�ix�



vi

2

vd
2 �m

2
~Li

 2G2


�vd
2 � vu2�


 ~�2
i �vu

2 
 x2�� 

2G2

vi

4

vd
2 ; (2.43)

 

M2
s;du � �4G2


vdvu 
 2�2vdvu � A��x� ��x2


 2�~�ivuvi; (2.44)

 M2
s;dS � �A��vu 
 2���vd � �vu�x
 2�~�ixvi;

(2.45)

 

M2
s;d~�i
�

1

vd
�vux�A~�i

~�i 
 �~�ix�

� �m2
~Li
� 2G2


�vd
2 
 vu2� 
 ~�2

i �vu
2 
 x2��vi

� 2G2

vi

3�; (2.46)

 

M2
s;uu �

1

vu
�4G2


vu
3 
 vdx�A��
 ��x�


 x�A~�i
~�i 
 �~�ix�vi�; (2.47)

 

M2
s;uS � �A��vd 
 2�����vd� 
 ��

2 
 ~�2
i �vu�x


 ��A~�i
~�i � 2�~�ix�vi; (2.48)

 

M2
s;u~�i
� 2�~�ivdvu � x�A~�i

~�i 
 �~�ix�


 2��2G2

 
 ~�2

i �vuvi; (2.49)

 M2
s;SS �

A��vdvu
x


 x��A��
 4�2x� 

A~�i

~�ivuvi
x

;

(2.50)

 M2
s;S~�i
� �A~�i

~�ivu 
 2�~�ivdx� 2�~�ivux
 2 ~�2
i xvi;

(2.51)

 M2
s;~�i~�i

� m2
~Li

 2G2


�vd
2 � vu2� 
 ~�2

i �vu
2 
 x2�


 6G2

vi

2; (2.52)

and for the CP-odd modes by

 

M2
p;dd �

vux�A��
 ��x�
vd

�
vux�A~�i

~�i 
 �~�ix�vi
vd

2



�m2

~Li

 2G2


�vd
2 � vu

2� 
 ~�2
i �vu

2 
 x2��vi
2

vd
2



2G2

vi

4

vd
2 ; (2.53)

 M2
p;du � x�A��
 ��x�; (2.54)

 M2
p;dS � vu�A��� 2��x�; (2.55)

 

M2
p;d~�i

�
vux�A~�i

~�i 
 �~�ix�

vd

�
�m2

~Li

 2G2


�vd
2 � vu

2� 
 ~�2
i �vu

2 
 x2��vi

vd

�
2G2

vi

3

vd
; (2.56)

 M2
p;uu �

vdx�A��
 ��x�
vu



x�A~�i

~�i 
 �~�ix�vi
vu

; (2.57)

 M2
p;uS � vd�A��� 2��x� 
 �A~�i

~�i � 2�~�ix�vi; (2.58)

 M2
p;u~�i

� x�A~�i
~�i 
 �~�ix�; (2.59)

 M2
p;SS �

�
4��vdvu 


A��vdvu
x


 3A��x
�



vu�A~�i

~�i 
 4�~�ix�vi
x

; (2.60)

 M2
p;S~�i

� vu�A~�i
~�i � 2�~�ix�; (2.61)

 

M2
p;~�i~�i

� m2
~Li

 2G2


�vd
2 � vu

2� 
 ~�2
i �vu

2 
 x2�


 2G2

vi

2: (2.62)

The above formulas agree in the case of vanishing sneu-
trino VEVs, vi � 0, with those obtained in our previous
work [4].

The change of basis to the would-be Goldstone bosons in
charged and neutral sectors is implemented through the
transformation

 

G


h


� �
�R	

H�?d
H
u

� �
;

G0

A0

� �
�R	

HdI

HuI

� �
; (2.63)

 R 	 �
cos	 � sin	
sin	 cos	

� �
: (2.64)

In order to project out the CP-odd modes and the massless
Goldstone mode, G0, one simply needs to apply on the 2-
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dimensional Higgs bosons subspace the 2 2 matrix
rotation �HdI; HuI�

T ! �G0; A�T �R	�HdI; HuI�
T , where

the label I refers to the imaginary part of the fields, namely
HdI �

���
2
p
=�Hd�. The gauge basis for the physical CP-odd

scalar fields is given by �A;=�S�;=�~�i��T � R̂	�HdI;

HuI; SI�
T , where R̂	 � diag�R	; 1�. In the basis with

vi � 0, the zero eigenvalue Nambu-Goldstone neutral
and electrically charged bosons, defined by the conditions
M2
p;ijG

0
j � 0 and M2

ch;ijG


j � 0, are given in our current

choice of basis by the column vectors G0 �
�vd;�vu; 0; vi�

T and G� � �vd;�vu; vi; 0�
T . The mass

eigenstate fields are defined in terms of the mixing matrices
which diagonalize the squared mass matrices as

 ��s;p;I�mass � Us;p;Ii�s;p;i; �Us;pM2
s;pUT

s;p � �M2
s;p�diag�:

(2.65)

Among the variety of observables used in testing the scalar
sector (partial decay rates Z! HI 
HJ, Z! HI 
 AJ,
Z! ~�0

l 
 ~�0
m) we mention, for later reference, the ratio of

Z boson vertex couplings ZZHI to the Higgs bosons de-
fined by ZZHI

� �
gZZHI
gSMZZh
�2 � ��UT

s �1I cos	
 �UT
s �2I sin	�2.

D. Mass matrices for neutralinos and charginos

The mass matrix for the coupled system of neutralino
and neutrino fields has been calculated in our previous
paper [4]. Since the formulas for this matrix are rather
complicated and were given in full form there, we do not
reproduce these results here. We shall now concentrate on
the mass matrix for the charginos/charged leptons. The
mass term in the Lagrangian for the charginos receives
contributions coming from the following sources:

(1) Contributions from gauge interactions:

 ig
���
2
p
Taij��

a j��i 
 H:c�; (2.66)

where Ta is the generator of the underlying gauge
group, �a is the corresponding gaugino, and �i,  j
are the components of the matter superfield.

(2) Contributions from the superpotential (in our sign
convention):

 

1

2

�
@2W

@�i@�j

 H:c:

�
; (2.67)

where W is the superpotential, and �i are the scalar
components of a chiral superfield.

(3) Soft supersymmetry breaking gaugino masses:

 

1

2
M2

X
i

~�i2 ~�i2; (2.68)

where ‘‘2’’ here refers to the SU�2�L gauge group,
and i are SU�2�L indices. Putting together all these
contributions, we can write the mass term for the
charginos/charged leptons as

 Lmass � �
1

2
�~�
T; ~��T�

0 MT
~�

M~� 0

 !
~�


~��

� �
;

(2.69)

where we have chosen the basis

 ~�
T � ��i~�
; ~H
u ; e


R ;�



R ; �



R �; (2.70)

 ~��T � ��i~��; ~H�d ; e
�
L ;�

�
L ; �

�
L �; (2.71)

 

~�� �
1���
2
p �~�1

2 � i~�
2
2�; (2.72)

with the mass matrix for the charginos/charged lep-
tons given by

 M2
~� �

M2 g2vu 0 0 0
g2vd �x ��e�11v1 ��e�22v2 ��e�33v3

g2v1
~�1x ���e�11vd 0 0

g2v2
~�2x 0 ���e�22vd 0

g2v3
~�3x 0 0 ���e�33vd

0BBBBB@

1CCCCCA: (2.73)

Here we have assumed that the lepton Yukawa coupling
and mass matrices, �ejk � �M

e
jk=vd, are diagonal.

III. IMPLICATIONS ON SCALAR SECTOR AND
VACUUM STABILITY

Before discussing the scalar sector, we briefly discuss
some numerical predictions for the light neutrino masses.
The tree level contribution and the supposedly dominant

one-loop contribution arising from neutralino-slepton
exchange, give a neutrino mass matrix of approximate
structure in the lepton generation space m�;ij ’ a~�0i ~�

0
j 


b�i�j; �~�
0
i � ~�i � �vi=vd; �i � B0i=B � Bi=B� vi=vd�

where the coefficients a and b are expected to have a
smooth dependence on the parameters �, tan	, and x.
The pair of nonvanishing mass eigenvalues of this matrix
are expressed in terms of the invariant parameters by
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 m�2
�

b

2 ~�02
j ~~�0 ^ ~�j2; m�3

� a~�02 

b
~�02
� ~~�0 � ~��2;�

~�02 �
X
i

~�02i ; �
2 �

X
i

�2
i ; j

~~�0 ^ ~�j2 �
1

2

X
i;j

�~�0i�j � ~�0j�i�
2; ~~�0 � ~� �

X
i

~�0i�i

�
:

(3.1)

For clarity, we quote the explicit expression obtained within the familiar approach [35] for the single nonvanishing
neutrino Majorana mass eigenvalue present at the tree level [4],

 m�3
�


x2V2
u�M2=M1 
 g

2
2=g

2
1��

~�i � vi�=vd�
2

tan2	�V2
u�M2=M1 
 g2

2=g
2
1��4��x

2= tan	
 ��= tan	� �vu�2� �M2�2x2
�
;

�

 � 2

�
�x�

�vu
x

�
; � � �

X
A

~�AvA;� � ��x; Vu �
g1vu���

2
p

�
:

(3.2)

We have attempted to extract the values of the coeffi-
cients a and b from numerical calculations of the tree level
formula, Eq. (3.2), and of the one-loop amplitude in
Eq. (III.54) of our previous work [4]. Using the reference

set of parameters given in the caption of Fig. 1 with tan	 �
2, we get the following order of magnitude estimates: a �
10 GeV, b � 10�1 GeV. For these predictions to be com-
patible with the limit on the neutrino mass, jm�j< 1 eV,
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FIG. 1. The masses of lowest lying CP-even and CP-odd neutral scalars, the charged scalars, and the neutralino and chargino states
A;H;C; ~�0; ~�
 are plotted as a function of ~�i=�. We assume the single lepton number violating dominance hypothesis with a fixed
generation ~�i � 0 considered one at a time. The curves for HI�1, AI�1, CI�1, ~�0

l�1 and ~�
l�1 are drawn in full, dotted, dashed, dot-
dashed and double-dot dashed lines, respectively, as illustrated in the legend. The upper panels (a) and (b) correspond to tan	 � 2
whereas the lower panels (c) and (d) to tan	 � 8. The left-hand panels (a) and (c), and the right-hand panels (b) and (d) refer to the
parameter r � x=v � 2:03 and 4.03, respectively. Our choice of the parameters, as given in Ref. [32] (Fig. 1), is described by the
values: � � 0:5, � � 
0:5, A� � 500 GeV, A� � 
250 GeV, and Aut � 1 TeV, m ~Q � m ~Uc � 1 TeV, Q � 300 GeV, which enter
the tree and one-loop contributions to the scalar potential. In the prescription I in which we work, we set the sneutrino mass parameter
at m2

~Li
� 500 GeV. The neutralino-neutrino and chargino-lepton mass matrices are evaluated by assuming the relation between the

gaugino mass parameters M1 �
k1g2

1

k2g2
2
M2, with k1 �

5
3 , k2 � 1, while using the numerical valuesM2 � 400 GeV andM1 � 199:2 GeV.

The values of parameters vi and A~�i
are set through the alignment conditions ~�0i � 0, �i � 0, where ~�0i � ~�i �

�vi
vd

, �i �
A ~�i

~�i
A��
� vi

vd
�

B0i
B , �B0i � Bi � B

vi
vd
; Bi � A~�i

~�i; B � A���.
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we need to impose �0i < 10�5, �i < 10�4. We have not
attempted a global fit to the neutrino experimental data but
note that this could be done by following a similar treat-
ment as that used for the MSSM with bilinear R-parity
violation [36].

In order to have a reliable semiquantitative description
of the NMSSM, we have added to the tree level scalar
potential the lepton number conserving one-loop contribu-
tions from the top quark and the corresponding top squarks.
The corrections to the neutral scalar mass matrix are
obtained by evaluating Eq. (2.25) using a standard proce-
dure [32], so we refrain from quoting the explicit formulas.
The results of our numerical calculations for the mass
spectra of the scalar and sfermion modes are shown in
Figs. 1–3 as single parameter plots displaying the depen-
dence on the lepton number violating couplings ~�i. These
results were obtained by considering the reference set of
natural input parameters used in [32], which are detailed in
the caption of Fig. 1. Although our analytical formulas
include the trilinear lepton number violating interactions
with coupling constants �ijk and �0ijk, in our numerical
calculations we have retained only the lepton number
violating couplings ~�i.

In Fig. 1 we present the results of our numerical calcu-
lations for the masses of the lightest neutral and charged

scalar modes, and neutralino and chargino modes as a
function of the lepton number violating coupling, which
we take to vary within the range ~�i=� 2 �0; 1�. At small
tan	 � O�1�, the modifications induced by ~�i are essen-
tially quantitative. As the coupling increases, the lightest
CP-even scalar mass is enhanced and the CP-odd and
charged scalar masses are reduced. This effect of enhance-
ment and reduction of masses are clearly seen at large
values of r � x=v. These results are also sensitive to the
value of the VEV ratio tan	 � vu=vd. While the con-
straints on the scalar masses restrict tan	 to a small natural
range in the NMSSM, this feature is even more pronounced
for large values of the lepton number violating interactions
~�i � �. Already for the value tan	 � 8, the mass spectra
undergo a qualitative change with large negative contribu-
tions to both the neutral and charged scalar bosons causing
the vacuum instability signaled by the occurrence of tachy-
ons at ~�i=� � 0:5. This is explained by inspection of
Eq. (2.28) which shows how increasing vi=vd proportion-
ately to ~�i=� has the same effect as an increase of tan	.
The allowed intervals for tan	 further shrink with increas-
ing x. We also present in Fig. 1 the masses of the lowest
lying neutralino and chargino states. The results are char-
acterized by a slow growth of the masses with increasing
~�i=�.
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FIG. 2. The masses of the lightest CP-even and CP-odd neutral scalars are plotted as a function of ~�i=�, for fixed lepton generation,
under the same conditions as in Fig. 1. The single lepton number violating dominance hypothesis is assumed such that finite coupling
constants ~�i of fixed generation are considered one at a time. We use the same set of NMSSM parameters as in Fig. 1, the only change
being the vanishing trilinear supersymmetry breaking coupling, A~�i

� 0. We have also displayed the lightest neutralino and chargino
masses although these are independent of the supersymmetry breaking parameter A~�i

, and are given by the same curves as in Fig. 1.
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The coupling of Z to the Higgs, ZZH1
, is found to vary in

the intervals �0:84! 0:63�, �0:99! 0:91�, �0:96! 0:81�,
�0:99! 0:94� as ~�i=� increases in the range �0:1! 1:0�
for the mass spectra displayed in panels (a)–(d) of Fig. 1.
For the sake of a qualitative comparison with experiment,
we note that the LEP data indicate a correlation between
the lightest Higgs boson vector boson coupling and mass
such that ZZH1

< �0:02–1:0� for MH1
� �50–120� GeV.

In order to understand the dependence of the scalar mass
spectrum on the supersymmetry breaking interactions, we
display in Fig. 2 the results obtained for the case A~�i

� 0.
This choice is made only for illustrative purposes since it
violates the alignment condition for the parameters �i. As
compared to our initial choice, A~�i

� 0, in Fig. 1, we see
that switching off the supersymmetry breaking trilinear
lepton number violating interactions results in an enhanced
effect at small tan	 ’ 2 but a reduced effect at tan	 ’ 8.
Indeed, the vacuum instability at tan	 � 8 sets in at larger
values of ~�i=�.

In Fig. 3 we display one-parameter plots for the masses
of the lowest lying neutral CP-even and CP-odd Higgs
bosons as a function of tan	 (fixed x) and as a function of x
(fixed tan	) for the discrete set of values for ~�i=� � 0:1,
0.5, 1. From these results we see that the maximal values of
tan	 allowed by vacuum stability lie inside the range 5–10,
and that this interval gets further reduced at larger values of

the VEVof the singlet field x. As a related observation, we
note that the allowed interval for r � x=v 2 �1; 6� shrinks
to r 2 �1; 2� at tan	 � 4 for large enough values of ~�i.
Furthermore, we observe that for the fixed values of r �
2:03, 4.06 in panels (a), (b), corresponding to x

���
2
p
�

500 GeV and 1 TeV, respectively, our results at small
~�i=� ’ 0:1 join smoothly with those at ~�i � 0, as can be
seen in Fig. 1 [panels (a) and (c) of Ref. [32] ].

IV. CONSTRAINTS FROM UNBOUNDED FROM
BELOW DIRECTIONS AND CHARGE AND COLOR

BREAKING MINIMA

A. General considerations

The stability of the regular vacuum with respect to the
UFB directions and the distant CCB minima in the scalar
field space are expected to give useful constraints on the
NMSSM parameters. We briefly recall here the main fea-
tures of the renormalization group approach to this prob-
lem which was extensively discussed in the context of
MSSM [22]. This approach is particularly useful in the
context of a gravity mediation of supersymmetry breaking
in grand unified theories (supergravity GUT), where the
unknown independent parameters consist of a small set of
parameters and one can develop semianalytic methods.
The idea is to select suitable directions in the scalar field
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FIG. 3. The masses of the lightest CP-even and CP-odd neutral scalars plotted as a function of tan	 at two fixed values of r �
x=v � 2:03 and 4.06 [upper panels (a) and (b)], corresponding to x

���
2
p
� 500 GeV and 1 TeV, respectively, and as a function of

r � x=v at the two fixed values of tan	 � 2 and 4 [lower panels (c) and (d)]. We use the same set of parameters as in Fig. 1 and assume
the single lepton number violating dominance hypothesis with a finite ~�i of fixed generation. The three curves for the modes HI�1

(bold) and AI�1 (light) are drawn in full, dotted and dashed lines corresponding to the values ~�i=� � 0:1, 0.5, 1.

M. CHEMTOB AND P. N. PANDITA PHYSICAL REVIEW D 76, 095019 (2007)

095019-12



space along which the contributions to the scalar potential
are dominated by the supersymmetry breaking terms while
those from F� and D� terms are smaller and smoothly
varying. In practice, the field directions are parametrized in
terms of some single real variable, w, along which the
scalar potential is given by a polynomial in w which
receives, for a suitable choice of the parameter phases,
negative contributions of O�w2� or O�w3� from the super-
symmetry breaking trilinear scalar couplings and mass
terms, and positive contributions of O�w4� or higher order
from the supersymmetry terms. The higher order positive
terms lift the potential upwards at large w. Even when
absent at the tree level, higher order contributions to the
potential, which lift it, always arise at the one-loop order.
Requiring the scalar potential along these directions to stay
above the regular minimum yields algebraic conditions on
the coefficients of the polynomial. Considering, for illus-
tration, the case of the field direction yielding the quartic
order potential, V�w� � Aw4 
 Bw2 
 C; where the coef-
ficients A, B, C are known algebraic functions of the
various parameters, we see that this is an UFB direction
if A � 0. At A > 0, this direction develops a minimum if
B< 0, as seen by evaluating the extremum with respect to
w2,

 w2
min � �

B
2A
) V�wmin� � �

B2

4A

 C: (4.1)

The regular electroweak symmetry breaking vacuum is
stable against decay to the new vacuum solution as long
as V�wmin�> VMIN, where VMIN denotes the value at the
regular minimum. An improved quantum stability condi-
tion can be deduced without a detailed knowledge of the
one-loop radiative corrections to the potential upon invok-
ing the logarithmic dependence on the masses of states
scaled by the running momentum scale Q. One needs only
to assume that the above inequality involving the tree level
scalar potential still holds but with the parameters replaced
by renormalization group improved, momentum scale Q
dependent, running parameters,

 VUFB�w;Q � Q̂�>VMIN�w0;Q � MS�; (4.2)

where the arguments w and Q along the field direction are
set in the grand unification framework as w 2 �mW;MX�

and Q̂ � max�g2w; �tw;MS�, and those for the regular
minimum are set as w0 � �vu; vd� and Q � MS, where
vu and vd denote the usual Higgs VEVs, and MS the

effective supersymmetry breaking mass scale. Extensive
analyses of the vacuum stability constraints have been
developed for the MSSM [22]. For the MSSM with broken
R-parity, Abel and Savoy [23] inferred lower bounds on the
trilinear R-parity violating couplings �ijk, �0ijk, and Hirsch
et al. [24] discussed the implications on the bilinear
R-parity violating interactions.

Although a similar program for the NMSSM with lepton
number violation appears to be well motivated, its imple-
mentation is substantially complicated by the need to con-
sider two-dimensional field directions which include the
singlet field S � x as an independent variable, since there
are no obvious correlations between the contributions from
the electroweak singlet and nonsinglet fields. Another
complication stems from the fact that the renormalization
group formalism is more complicated. The dangerous field
directions for the NMSSM have been discussed in the
preliminary works [37–39] and also in [40]. The progress
achieved through the quasi-fixed-point solution for the
running parameters [41,42] or the numerical studies of
physical constraints [40,43–46] are not of direct help to
us in the present work. Since our main focus is on the
lepton number violation, rather than solving the full-
fledged problem, we shall follow a simple phenomenologi-
cal approach, which we now describe. We assign natural
values for the lepton number conserving Yukawa couplings
and soft parameters which respect the regular minimum
stability, and then examine the effect of increasing the
lepton number violating parameters ~�i, Bi, vi, consistently
with the constraints from the neutrino mass matrix. This
approach is similar in spirit to that followed in [24].

The field directions involve suitable subsets of the elec-
trically neutral and charged scalar states and the squark
states. We continue using the single lepton flavor domi-
nance hypothesis in which the nonvanishing parameters ~�i,
A~�i

, vi are finite only for fixed generation labels i; j; . . . .
Useful intermediate formulas for the scalar potential of the
electrically neutral fields and for the classical equations of
motion of the electrically neutral and charged fields are
given in Eqs. (A8), (A9), and (A11) of the appendix.

To start with, we need the potential at the regular mini-
mum. With our prescription of eliminating the dependence
on the soft mass parameters m2

Hu
, m2

Hd
, m2

S, and m2
Hd

~Li
by

using the minimization equations with respect to vu, vd, x,
and vi, the value of the scalar potential at the minimum is
given by

 

VMIN�vu; vd; x; vi� � �G
2

�vd

2 � vu
2�2 �

1

3
��6��vdvux

2 
 3�2�vu
2x2 
 vd

2�vu
2 
 x2��


 x��3A��vdvu 
 x�3 ~�2
i vu

2 � A�x
 3�2x2��� 
 �vux�A~�i
~�i 
 2�~�ix� � 2�~�ivd�vu2 
 x2��vi


 �2G2

��vd

2 
 vu
2� � ~�2

i �vu
2 
 x2��vi

2 �G2

vi

4: (4.3)
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The above formula is seen to be independent of the slepton-
Higgs boson soft mass parameters, so that it holds in the
same form in the prescription where one eliminates m2

~Li
rather than m2

Hd
~Li

. We also note that the quartic and qua-
dratic dependence on the VEVs coming from the gauge
interactions combine into a term of the same form as the
minimum value of the scalar potential in the MSSM with
bilinear R-parity violation

 �VMIN�MSSM � �G
2

�v

2
i 
 v

2
d � v

2
u�

2: (4.4)

B. Unbounded from below directions

The Higgs-slepton field directions of interest are those
which minimize the positive contributions from F and
D terms and maximize the negative contributions from
soft masses and trilinear couplings. There are three main
unbounded from below directions defined by
 

UFB� 1: Hd � Hu � 0; S � 0;

UFB� 2: Hd � 0; Hu � 0; ~�i � 0; S � 0;

UFB� 3: Hd � 0; Hu � 0; ~�i � 0; ~ej � ~ecj � 0;

S � 0; �i � j�: (4.5)

The singlet field dependence of the potential makes an
analytic study intractable. For instance, minimizing the
potential with respect to S introduces a nonpolynomial
dependence with respect to the variables describing the
electroweak nonsinglet field directions.

We now discuss the three UFB directions in detail.
Along the UFB� 1 direction described by the two varia-
bles jHdj � jHuj � w and S � x, the potential is given by
 

VUFB�1�w; x� � Aw4 
 B�x�w2 
 C�x�;

A � �2; B�x� � m2
Hu

m2

Hd
� 2A��x
 2�2

du


 x2�2���� �� 
 ~�2
i �;

C�x� � �2x4 �
2

3
A��x3 
m2

Sx
2: (4.6)

We have included the dependence on �2
du although this

parameter is expected to be absent, as already discussed, in
the minimal version of the model. For � � 0, the would-be
UFB direction is lifted at large w, and features a minimum
at wmin unless B�x�> 0. It is useful to note that B�x� is a
quadratic form in x with an extremum at xmin defined
by @B=@xjx�xmin

� 0 ���! xmin � A��=�2���� �� 
 ~�2
i �.

Since this is a minimum provided that 2���� �� 
 ~�2
i >

0, one can express the condition for the absence of the
UFB-1 direction by the approximate bound on the soft
parameters
 

B�x� � B�xmin�

�m2
Hu

m2

Hd
�

�A���
2

2������
 ~�2
i


 2�2
du > 0: (4.7)

It is interesting to compare with the corresponding bound
in the MSSM, B�xmin� ! m2

Hu

m2

Hd

 2��2 � �A���

2�.
To obtain the improved constraint, one should determine
the position of the potential minimum, xmin and wmin, and
require the condition VUFB�1�xmin; wmin; Q̂� � VMIN�x �
x0; vu � v sin	;vd � v cos	;Q � MS�.

The UFB-2 field direction can be conveniently described
by the parametrization vu � w, vd � w cos�, vi �
w sin�, x, �� 2 �0; 2���, which is designed to cancel the
D terms. The scalar potential is given by the quartic order
polynomial in w

 VUFB�2�w; x; �� � A�x; ��w4 
 B�x; ��w2 
 C�x; ��;

(4.8)

where

 A�x; �� � �� cos��� 
 ~�i sin����2; (4.9)

 

B�x; �� � �2x2 
 ~�2
i x

2 
m2
Hu
� 2x�A��
 ��x�

 cos��� 
 ��2x2 
m2
Hd
�cos2���

� 2x�A~�i
~�i 
 �~�ix� sin��� 
 �~�2

i x
2 
m2

~Li
�

 sin2��� 
 �~�ix
2 sin�2��; (4.10)

 C�x; �� �
�2A��x

3

3

 �2x4 
 x2m2

S: (4.11)

Since the UFB-2 direction coincides with the UFB-1
direction at � � 0, to determine whether one avoids a
distant minimum along w it is only necessary to test the
condition that the coefficient B�x; ��< 0 at some finite �.
Inspection of Eq. (4.10) forB�x; �� shows that the condition
B�x; � � 0�> 0 is sensitive to the signs of parametersm2

Hd
,

m2
Hu

and A�, while the condition B�x; ��> 0 at finite � is
sensitive to the signs of A~�i

and m2
~Li

. To achieve B�x; 0�>

0, it is more favorable to restrict to the choice A� < 0. We
now attempt to assign by hand typical values to the relevant
free coupling and mass parameters, and determine numeri-
cally whether the lepton number violating interactions can
drive B�x; �� to negative values if it started from a positive
value at � � 0. The dependence on � is displayed in Fig. 4
for typical values of the input parameters which are speci-
fied in the caption of that figure. We see from these results
that for trilinear couplings A~�i

of same negative sign as A�,
the ~�i interactions give significant positive sign contribu-
tions to B�x; �� which avoid the occurrence of dangerous
minima along w at finite �. By contrast, choosing triscalar
couplings of opposite sign, A~�i

> 0, always drives B�x; ��
to negative values at finite �. We note that a dependence on
� of similar type is found with various other choices of x
and that changing the sign of ~�i leaves the potential un-
changed up to the replacement, �! �� �. We, thus,
conclude that the lepton number violating couplings, ~�i
and A~�i

, have the ability to remove or induce the dangerous
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minima at finite � depending on whether A~�i
is negative or

positive, namely, of same or opposite sign to A�. We note
that the case with A� and A~�i

of opposite signs clashes with
the universality of supersymmetry breaking and is unlikely
to occur in the context of grand unified theories.

The UFB-3 direction can be conveniently described by
the parametrization vu � 
w2, ej � ecj � 
w, vi �


w�1
 w2�1=2�i � j�, designed to cancel the D terms,
while using 
 � �x

�ej
, in order to satisfy the F-term flatness

condition WHd
� 0. We refer to the work by Stephan [40]

for a numerical study of the stability constraints within the
NMSSM. The potential along this direction is given by

 

VUFB�3�w; x� � �
2

3
A��x3 
 �2x4 
 ~�2

i w
6
4 
 ~�2

i w
8
4 
 w3��2A~�i

~�i
���������������
1
 w2

p
x
2 � 2�~�i

���������������
1
 w2

p
x2
2�


 w2
2�2 ~�2
i x

2 
m2
~Lj

m2

~Ecj
� 
 w4
2��2x2 
 2 ~�2

i x
2 
m2

~Li

m2

Hu
� 
m2

Sx
2

� 2A�ijj�ijj

3w3�1
 w2�1=2 
 
3w4�2�Ajj ~�Ax
 �2

Ajj

 �
2
Aij
w

2�1
 w2� 
 �2
ijj
�1
 w

2��: (4.12)

Inspection of the above potential indicates that the lepton
number violating contributions from ~�i or �ijk add positive
terms to the potential that have the ability to lift the UFB-3
direction. We restrict ourselves to an illustrative example
by assigning the NMSSM parameters typical values result-
ing in a potential with a deep minimum at ~�i � 0, and
determining whether switching on ~�i to finite values lifts
this minimum. In Fig. 5 we display a representative case in
which a deep potential well, produced by choosing nega-
tive squared mass values for m2

Hu
and m2

~Li
, gets removed

upon increasing ~�i=�. We conclude that the lepton number
violating interactions can be effective in lifting the UFB-3
field direction.

C. Electric charge and color breaking minima

The lepton number violating interactions may generate a
minimum of the scalar potential along the field direction

involving finite VEVs for the charged Higgs-slepton fields,
v� � hH

�
d i, ei � h~eii. This so-called type II charge break-

ing minimum has been initially considered by Hirsch et al.
[24] for the MSSM with bilinear R-parity violation. We
pursue a corresponding analysis for the NMSSM with
lepton number violation by solving the equations of motion
for the neutral fields in terms of the soft mass parameters
m2
Hu

, m2
Hd

, m2
S and m2

~Li
(corresponding to prescription II),

and substituting these into the two equations of motion for
the charged fields, v� and ei. The equations are displayed
in Eq. (A11) of the appendix. Note that we can ignore the
VEV of the field ~eci since eci � 0 appears to be the only
solution for �ei � 0. The equations for v� and ei depend on
the gauge and Yukawa couplings, the soft mass parameters
m2
Hd

~Li
, and vi.
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FIG. 5. The potential energy density V�x;w� for the UFB-3
direction is plotted in GeV4 units as a function of w for the
choice of input parameters, � � 0:7, � � 0:3, A� � 500 GeV,
A� � 500 GeV, A~�i

� 500 GeV, m2
Hu
� m2

Hd
� m2

~L;i
�

�200 GeV2, m2
~Eci
� m2

S � 100 GeV2, with VEV parameters,

x � 100 GeV, tan	 � 2 and 
 � �x=�e� � �xvd=m�; �m� �
1:777 GeV� for the tau-lepton field case. The reduced range of
variation of the variable w is explained by the large value
assumed by the scaling factor, 
 � 30:6x. The curves for
~�i=� � �0:1; 0:5; 1:� are drawn with dashes of increasing lengths.
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FIG. 4. The coefficient B�x; �� for the UFB-2 direction is
plotted (in GeV2 units) as a function of � for the relevant input
parameters set � � 0:7, � � 0:3, A� � �100 GeV,m2
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To start with, we consider the limit of small lepton
number violating couplings obtained by expanding the
equation of motion in powers of the small parameters ~�i.
Substituting the expansion up to leading order in ~�i

 

vd � v�0�d 
 ~�iv
�1�
d ; vu � v0

u 
 ~�iv
�1�
u ;

x � x�0� 
 ~�ix�1�; vi � ~�iv
�1�
i ;

v� � ~�iv
�1�
� ; ei � ~�ie

�1�
i ;

(4.13)

in the equations of motion for v� and ei, we find that the
equations in leading order of ~�i only admit the trivial
solution v� � 0, ei � 0. Thus, we reach the conclusion
that as long as the couplings ~�i are small compared to
unity, the lepton number violating interactions cannot
cause the emergence of charge breaking vacuum solution.
This conclusion for NMSSM corresponds to that reached
in Ref. [24] for the MSSM.

To determine whether a nontrivial solution is favored at
finite ~�i, we attempt to solve numerically the equations of
motion for v� and ei, and compare the minimum value
Vmin with the regular minimum value VMIN at a discrete set
of values of the parameters ~�i and vi. For fixed tan	, we
evaluate VMIN by using the formulas vu � v0 sin	, vd �
v0 cos	, �v0 � �v2 � v2

i �
1=2�. Based on the argument that

the singlet VEV x is not strongly affected by the lepton
number violating interactions, we identify the value of x in
VMIN with its value along the charge breaking field direc-
tion in Vmin. The values of tan	 near unity are critical, as
nontrivial solutions exist only around tan	 � 1 and dis-
appear quickly at larger values. Since the task of determin-
ing the exclusion plot in the ~�i, vi plane is cumbersome, we
use typical values for the relevant parameters, so as to
determine to what extent a charge breaking solution at
�i � 0 becomes disallowed by increasing �i. We restrict
ourselves to solutions with real values of v� and ei. For the
choice of input parameters � � 0:7, g2

1 � 0:127, g2
2 �

0:425, � � 0:3, A� � 500 GeV, A~�i
� 500 GeV, A� �

250 GeV, m2
Hd

~Li
� 100 GeV2, with the fixed values of

the VEVs x � 100 GeV and vi � v=10, we find the real
solution �v�; ei� � ��60:9585:1� GeV having Vmin �
VMIN � �8:26 109 GeV4 for values of tan	 � 1 and
~�i=� � 0:1. However, we find no nontrivial solutions as
we increase the coupling ~�i=� 2 �0:5; 1�. We thus con-
clude that the lepton number violating interactions have the
ability to lift the charge breaking minima.

Finally, we comment briefly on the issue of charge and
color breaking minima in the NMSSM by focusing on the
field directions [18] described by vu � ~ui � ~uci � w and
the singlet field VEV x, with all other fields vanishing.
Assuming x to be frozen, for simplicity, one finds that the
resulting potential

 VCCB � �2x4 
m2
Sx

2 �
2

3
A��x3 
 w2

�
3�u2

i w
2


 2Aui �
u
i w
m

2
~Ui

m2

~Uc
i

m2

Hu


X
A

�~�Ax�
2

�
;

(4.14)

does not develop a deep minimum along w, for small
Yukawa coupling constants �ui , provided one satisfies the
conditions on the trilinear scalar matter couplings, Aui 	

3�m2
Hu

m2

~Ui

m2

~Uc
i

 �~�Ax�2�1=2. This approximate re-

sult suggests that the bounds on Aui should become weaker
upon increasing ~�i. The general field direction described
by [22] �jvuj; juij; juci j; jvdj; jvjj� � �1; �; 	; �; �L�w
along with the singlet field VEV x, involves a more elabo-
rate discussion which we shall not pursue here.

V. CONCLUSIONS

In the present work we have examined the effect of
lepton number conserving and violating Yukawa couplings
of same size, ~�i � �, on NMSSM. One expects significant
modifications for the scalar sector observables since the
spontaneous electroweak gauge symmetry breaking is now
linked to both the down-type Higgs boson and sleptons. An
important challenge was raised by the need to define a
simple parametrization of the model consistent with the
constraints on the light neutrinos without specifying in
detail the underlying dynamics. Noting that the dominant
contributions to the neutrino Majorana mass matrix are
controlled by the effective alignment parameters ~�0i �

~�i � �vi=vd and �i �
A~�i

~�i
A��
� vi

vd
, we proceeded by treat-

ing ~�i as free parameters while determining the values of
the sneutrino VEVs vi and A~�i

through the restrictive
conditions, ~�0i ’ 0; �i ’ 0. There is no unique prescription,
and the one used may well single out a nongeneric region
of the NMSSM parameter space. To answer this objection,
one could attempt building a supergravity unified model
with a U�1�R symmetry spontaneously broken in a hidden
sector so as to check whether this respects an approximate
dynamical alignment robust under the renormalization
group scale evolution, following a similar analysis as that
of Nilles and Polonsky [27].

In the first part of the present work we examined the
impact of the lepton number violating interactions on the
mass spectra of scalars. The vacuum stability constraints
were found to restrict the VEV parameters, tan	 � vu=vd
and x, to narrower intervals than in the lepton number
conserving case. This property is reflected in the fact that
the bounds on ~�i become stronger for larger tan	 and x.
There are certain analogies between our study and that
developed for the MSSM with bilinear R-parity violation
by Davidson et al. [14] in terms of the basis invariant
parameter �R, corresponding to

P
i�i in our basis choice,
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at fixed values of the CP-odd scalar masses. The conclu-
sions in the latter work regarding the reduced range of
variation of tan	 and the size of the corrections to the
scalar sector masses are qualitatively similar to ours.
However, no meaningful comparison can be made because
of the different parametrizations.

The second part of the present work was devoted to a
qualitative study of the vacuum stability constraints from
the UFB field directions and the CCB minima. The dis-
cussion for this case, unlike that in the first part, does not
bear directly on the implementation of the parameter align-
ment conditions. Based on illustrative examples covering a
small part of the parameter space, we found that the lepton
number violating interactions may have a positive impact
on the regular vacuum stability provided the coupling
constants ~�i and A~�i

assume large enough values. Since
the approach of selecting field directions based on the
renormalization group cannot be developed in the
NMSSM by analytic means only, its advantage over a
systematic numerical exploration covering the full field
space is not clear. Nevertheless, our discussion indicates
that pursuing the renormalization group approach on more
quantitative grounds is worthwhile. The recent progress in
developing efficient numerical methods to search for the
global minimum of the scalar potential in multidimen-
sional field spaces [47] could be useful for further studies
along these lines.
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APPENDIX: USEFUL FORMULAS AND
CONVENTIONS

The R-parity conserving and R-parity violating parts of
the NMSSM superpotential can be written as

 WRPC � �ujkHuQjU
c
k 
 �

d
jkHdQjD

c
k 
 �

e
jkHdLjE

c
k


 �HdHuS�
�
3
S3; (A1)

 

WRPV �
1

2
�ijkLiLjE

c
k 
 �

0
ijkLiQjD

c
k 


1

2
�00ijkU

c
i D

c
jD

c
k


 ~�iLiHuS: (A2)

The covariant four vector notation for the lepton and the
down-type Higgs superfields, and for the Yukawa cou-

plings, employed in this paper is

 LA � �Hd; Li� �

0@ H0
d; ~H0

d
H�d ~H�d

 !
;

~�i; �i
~ei; ei

� �1A; (A3)

 

~� A � ��; ~�i�; �Ajk � ��
e
jk; �ijk�;

�0Ajk � ��
d
jk; �

0
ijk�:

(A4)

We use the following convention in writing the multipli-
cation of chiral electroweak doublet superfields:

 LAHu � LA � � �Hu � �AH0
u � eAH
u

� �H0
dH

0
u �H

�
d H



u � 
 ��iH

0
u � eiH



u �; (A5)

 HuQ � Hu � � �Q � H
u D�H
0
uU;

HdQ � Hd � � �Q � H0
dD�H

�
d U;

(A6)

where � is the 2 2 antisymmetric matrix with �12 �
��21 � 1. The R-parity conserving and R-parity violating
contributions to the trilinear part of the potential can be
written as

 Vsoft
RPC � �A

u
jk�

u
jkHu

~Qj
~Uc
k � A

d
jk�

d
jkHd

~Q ~Dc
k

� Aejk�
e
jkHd

~Lj ~Eck � A��HdHuS�
A��

3
S3;

Vsoft
RPV � �

1

2
A�ijk�ijk ~Li ~Lj ~Eck � A

�0
ijk�

0
ijk

~Li ~Qj
~Dc
k

�
1

2
A�

00

ijk�
00
ijk

~Uc
i

~Dc
j

~Dc
k � A~�i

~�i ~LiHuS
 H:c:

(A7)

The relationship that we adopted between the superpoten-
tial and the effective Lagrangian uses the con-
vention LEFF � 
�W�F 
 H:c: � �jWij

2 
 1
2Wij i j 


H:c: in contrast to certain authors which use the opposite
sign convention, LEFF � ���W�F 
 H:c:� � �jWij

2 �
1
2Wij i j 
 H:c:. The latter sign convention is that
adopted, for instance, in the studies of the NMSSM by
Miller et al. [31] and by Barger et al. [32]. Accounting for
this fact, we obtain the following correspondence between
our notations and that of the latter authors: �! hs, A� !
As, �! �, A� ! �A�, �u ! ht, Aut ! At, x! s=

���
2
p

. We
have compared our formulas for the scalar sector potential
and mass matrices and for the neutralino sector and found
complete agreement.

The scalar potential for the electrically neutral fields,
with the electrically charged and color nonsinglet scalar
fields set to zero, is given by

 

VF 
 VD 
 Vsoft � j�vd 
 ~�ivij
2jxj2 
 �j�vuj

2 
 j ~�ivij
2�jxj2 
 jvu��vd 
 ~�ivi� � �x

2j2 
G2

�jvuj

2 � jvdj
2

� jvij
2�2 


�
�A��vdvux� A~�i

~�ivivux�
A��

3
jxj3 
�2

AuvAvu 
m
2
Hd

~Li
vdv

?
i 
 H:c:

�

m2

Hu
jvuj2 
m2

Hd
jvdj2 
m2

~Li
jvij2 
m2

Sjxj
2: (A8)
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The relevant neutral and charged field VEVs are denoted as, hH0
ui � vu, hH0

di � vd, hSi � x, h~�ii � vi, and hH�d i �
v�, h~eii � ei, h~eci i � eci , h~qii � qi, h~qci i � qci , �~qi � �~ui; ~di�; ~qci � �~u

c
i ; ~dci ��. Our choice of field basis, v
 � 0, obviates the

need to consider the electrically charged direction hH
u i � v
. The formulas determining the soft masses of the Higgs
bosons and sleptons through the minimization equations of the neutral fields in prescription I (usingm2

~Li
as free parameters)

for finite values of the neutral and charged fields are given by
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(A9)

The equations of motion for the LA � �Hd; Li� fields can be expressed in the SU�4� group covariant notation as

 M̂ 2
~L;AB

vB � ~�Axvu�A~�A

 �x�; �M̂2

~L;AB � m2
~L;AB

 ~�A ~�B�v

2
u 
 x

2� 
 2G2

�v̂

2
d � v

2
u��AB�: (A10)

The above structure of the neutral scalars squared mass matrix satisfies the important property that the alignment ~�A /
vA is satisfied if and only if ~�A is an eigenvalue of the matrix M̂2

~L;AB. This result generalizes that found for the MSSM with
R-parity violation [10,48].

The minimization equations for the charged slepton fields in prescription II (usingm2
Hd

~Li
as free parameters) are given by
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(A11)
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