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We derive a number of approximate analytical formulas for the neutralino masses and neutralino
states in the nominal supersymmetric standard model containing a Higgs singlet in addition to the two
Higgs doublets of the minimal model. A comparison with the numerical solution for the neutralino
masses shows that these formulas serve as an excellent approximation for almost the entire phenomeno-

logically interesting range of parameters.

PACS number(s): 14.80.Ly, 12.60.Jv

I. INTRODUCTION

In supersymmetric theories [1], all particles in the stan-
dard model are accompanied by their superpartners. In
order to give masses to quarks and leptons, and to cancel
triangle gauge anomalies, at least two Higgs doublets
H,=(H% H[ )and H,=(H; ,HY), with opposite hyper-
charge [Y(H,)=—1,Y(H,)=+1], are required in the
minimal version of the supersymmetric standard model
(MSSM). The fermionic partners of these Higgs bosons
mix with the fermionic partners of the gauge bosons to
produce two chargino states )’Z;Tt, i=1,2, and four neu-
tralino states X{?, i=1,2,3,4, in the MSSM. The neutrali-
no states of the minimal model have been studied in great
detail [2—-4] because the lightest neutralino state is ex-
pected to be the lightest supersymmetric particle (LSP) in
supersymmetric theories.

In this paper, we make an analysis of the neutralino
sector of the nonominimal supersymmetric model
(NMSSM) containing two Higgs doublets H, and H, and
a Higgs singlet chiral superfield N [5], represented by the
superpotential [6]

W=hyQ, UFH,+h,Q, DFH,+hyLEFH,

+AH,H,N—1kN?, (1.1
where k70 in order to avoid an unacceptable axion in
the model. Recently much attention [7,8)] has been devot-
ed to the study of the Higgs sector of the nonminimal su-
persymmetric standard model (NMSSM) (1.1). The
reasons for the study of the nonminimal supersymmetric
model are twofold. First, the Higgs bilinear term in the
superpotential of the MSSM can be generated dynamical-
ly in the model (1.1), through the trilinear coupling
AH H,N, thereby solving the so-called u problem of the
MSSM [9]. Second, the minimal supersymmetric stan-
dard model makes definite predictions about the spec-
trum of Higgs bosons and their couplings, including radi-
ative corrections [10]. These predictions about Higgs bo-
son masses and couplings can be tested experimentally.
If these predictions are not borne out, then it would be
natural to go to the nonminimal supersymmetric model.
In the nonminimal supersymmetric model (1.1), after
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mixing of Higgs and gauge fermions, there are two char-
gino ¥i,¥5, and five neutralino i, 0, 7% b 12 states.
The neutralino mass matrix arises from the interaction
between gauge and matter multiplets as well as the last
two terms in the superpotential (1.1) when the Higgs
fields obtain vacuum expectation values. In addition
there are supersymmetry-breaking gaugino masses M,
M,, M, associated with the U(1), SU(2), and SU(3) sub-
groups of the standard model, respectively. It is a com-
mon practice to reduce the parameter freedom by assum-
ing that the three mass scales are equal at some grand
unification scale, so that at the eletroweak scale the three
mass parameters are related [1] through (M, =M, M is
the gluino mass)

M, =iM'=tan’0y,M, M;=M; =(as/a)M , (1.2)

in standard notation. We shall use these relations in
what follows. In the nonminimal model (1.1), because
there is an additional gauge singlet fermion N, the mass
matrix for the neutralinos is a 5X5 matrix. We shall
choose the following convenient basis for the gaugino-
Higgsino system of the nonminimal model

¢j=(_i}"y’_—i}\'2)¢;1’¢21,¢1v)’ j=1>21394’5 ’ (133)

where A, and A are the two component spinors of the
photino and Z-ino, respectively, and

vy= 1/1},1 sinf, —tﬁ,z cosfy ,

(1.3b)
Vi =vy cosby+y} sinfy

are the Higgsino states, with ¢}ql, l/’%;z: Yy the two-

component spinors of the neutral Higgsinos H9, A ‘2’, and
N, respectively, and where [11]

(H))=v,/V2, (H})=v,/V2, tanf,=v,/v, .
(1.3¢c)
The mass term in the Langrangian has the form
Ly=—IMY,¥9+H.c. , (1.4a)

where the mass matrix [12]
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Alacos’0y +sin?0y) A(1—a)sinfy cosfy, 0 0 0
A(l—a)sinfy cosfy  Alasin®@y,, +cos’0y,) 1 0 0
Y= 0 1 —wvsin26, —wvcos28, 0 |, (1.4b)
0 0 —vcos28, vsin26, v
0 0 0 ¥ -8
with
24,,2y172
A =M e “";22;‘;22’ S (1.4¢)

where we have taken out a factor of M, so that we deal with dimensionless quantities only. Neglecting CP violation, Y
is a real symmetric matrix which can be diagonalized by a 5X5 unitary matrix N:

NimenYmnzgisik7 X?:Nij ?’ (1.5)

where £, =m; /M, with m; being the mass eigenvalue of the neutralino state y{. Since Y is a real symmetric matrix, we
can take N, to be a real orthogonal matrix. Some of the mass eigenvalues may be negative. These can be made posi-
tive by an appropriate choice of phases in N,,, but we shall not do that here. The sign of m; is related to the CP quan-
tum number of x? [13]. The eigenvalues &; of (1.4b) are the solutions of the eigenvalue equation

(E—ANE—A)[(E+B)E—vH) —y2E+vsin20,)]—(E— Aa cos’y — Asin?0y, )[(§+8)(E—vsin20,)—y2]=0. (1.6)

Once we obtain the eigenvalues £;, the eigenstates of the neutralino mass matrix can be written as

A(1—a)sinfy, cos@y [(VP—ENN(E; +v)+yHE +vsin260,)]
(& — Ala cos?@y, +sin?0y, ) ][ (v —E2)(E; +8) + (€ +vsin26))]
=L [(& = Alacos?y, +sin20y) ][ (vsin20, —&)(E+8)+72] (1.7)
(&, — Al cos®Oy +sin’0y, ) (£, +8)v cos26,,

[&; — Ala cos?0y, +sin’0y, ) Jyv cos20,,

in the chosen basis. Here N, is the appropriate normalization factor. The four-component Majorana mass eigenstates
1? of neutralinos are defined as usual in terms of x? and X°. The neutralino components given in (1.7) are elements of
the transformation matrix N which diagonalizes the mass matrix Y. These will determine the couplings of the neutrali-
nos to the other states in the model.

II. COMPLETE SOLUTIONS

The eigenvalue problem, Eq. (1.6), cannot, in general, be solved analytically. However, for certain special values of
the parameters, it reduces to a product of quadratic and linear equations, and can, thus, be solved analytically, as we do
in this section. These special cases will serve as a basis for our approximate formulas derived in Sec. III.

(a) sin’8y, =0, sin26,, = 1. For these special values of the parameters, the neutralino states are given by

1 0 0 0 0
0 cos¢ sing 0 0
0_— 0— | 0— | _ 0_— 0_—
Xi= 0|, x3= |sing |, x3= |—cosd |, xa=| O |, X5 0 : @2.1)
0 0 0 cosf3 sinf3
0 0 0 sinf3 —cosf3

The corresponding neutralino masses are given by

§?=Aa ,

_A—v+V(A+vH4 o A—v—V(A+v)P+4
gg— ) ’ gg—' ) 5

Q= v—=8—V(v+8)’+4y’ A= v=8+V (v+8)+4y>
4 55
2 2

with the mixing angles given by
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172

sinf=—— |1+ ——212

T ee——————— 1
V2 Vi(v+8)+4y?

, Sing= %2

CViAtv)i+ta

172
Aty 2.3)

(b) A>>1 and/or v>>1. In this case complete solutions exist only for sin28,,=1. This last condition is not required for
the analogous situation in the minimal model. The neutralino states in this limit are

sinfy, cosOy, 0 0
cosOy —sinfy, 0 0
A= 0 L, =] o |, ¥=|1], ¥i= , 8=| 0 |, (2.4)
0 0 0 cosf3 sinf3
0 0 0 sinf3 —cosf
with eiegenvalues
_s\T ) 2
B=A, 8=Aq, 8=—v, &,=VOFV ) +dy 2.5)

5T 2

with the mixing angle B the same as in (2.3). Note that
the states x? and x3 are W3 and B states, respectively,
whereas ) is a pure doublet Higgsino state. The states
X3 and 2 are a mixture of doublet and singlet Higgsino
states.

(c) The limit of x <<v,,v,. This limit is typical of the
result that emerges from renormalization-group analysis
[6] of the model and has been studied for the Higgs sector
of the model. In the present case this limit corresponds
to taking v,6 —0 in the lowest approximation. Then the
mass matrix splits into a 2X2 matrix whose eigenvectors
are a mixture of doublet Higgsino and the singlet Higgsi-
no:

0 0
0 0
xX3=| 0 |, x¥= 0 , (2.6)
1/v2 1/V2
1/v2 —1/V2

with eigenvalues

£s=tv, 2.7)

and a 3 X3 matrix which cannot be diagonalized analyti-
cally. However, in the limit sin29W=0, the 3 X3 matrix
can also be diagonalized analytically with eigenstates and
masses given by

1 0 0

0 cos¢ sing

xX3=10|, x3=|[sing |, x3=|—coss |, (2.8)

0 0 0

0 0 0

TV A+
&=Aa, §2,3=A——2A—4, (2.9)
i/2

. 1 A

sing=—= |1l — ——— (2.10)
=z [ VA +4

Here x{ is a pure photino, whereas X ; are mixtures of
the Z-ino and the doublet Higgsino.

III. ANALYTICAL FORMULAS
AND NUMERICAL RESULTS

Having discussed various special cases where complete
analytical solutions are possible, we now discuss several
approximation schemes for the neutralino masses which
may be of practical value in different domains of the pa-
rameter space. The approximation formulas are based on
applying perturbation theory to the exact analytical re-
sults obtained in Sec. II. We shall compare these approx-
imate formulas for the neutralino masses with the results
obtained by the exact numerical diagonalization of the
mass matrix to establish their range of applicability.

Since the number of parameters on which the neutrali-
no mass matrix depends is large, we shall use
renormalization-group equations as a guiding principle to
restrict the parameter space and to motivate specific
choice of the parameters for the numerical analysis. The
renormalization-group equations for the parameters A
and k have infrared fixed points such that if they have
values of order 1 or larger at the grand unified theory
(GUT) scale, then at low energies their values will be near
the fixed point values [6]:

A~0.87, k~0.63. (3.1)

We shall consider the values in (3.1) as a conservative
upper limit on the parameters, and use them in our nu-
merical work. The results (3.1) and the first of Egs. (1.2)
imply

%~o.7o, y~1.40 , 3.2)

a~0.47 , (3.3)

respectively. Thus, in a renormalization-group-inspired
model we have only three independent parameters
describing the neutralino mass matrix which we shall
take to be A, v, and tan6@,. Furthermore, if we assume
that there is no explicit or spontaneous CP violation, then
one can choose to work in a vacuum state with all three
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vacuum expectation values real and positive [6], implying Y=Y, +A(1—a)sin?g, 3+ A1 —a)sinfy cosb =,
a positive tanf [14]. In order to accomplish this in a
renormalization-group approach with supersymmetry
breaking at GUT scale induced by a universal gaugino . . C e,
mass term M’'=M=M,=M,+0, with no other soft where Y|, is the mass matrix for sin“6y =0, sin26, =1,

SUSY-breaking terms, M, must be chosen to be positive. ~ 21d €=0y —m/4. The 5X5 matrices 2; and 2; are given

+2vsin’e3;+2vsine cose 3, (3.4)

With A given by (3.1), the effective u(=Ax) parameter by
and the gaugino mass parameter M, and hence v and A, 000 0 0
are thus both positive, in contrast with the situation that
obtains in the minimal model [2]. We shall use this gen- 000 00
eral result to restrict the parameter space in our numeri- =100 o, 0|,
cal comparison with our analytical results, although our 00 0
analytical formulas are valid for any sign of v and A. 00 0 00
(3.5)
A. Expansion in sin’6y and sin2(8, —7/4) 000
; 000
This approximation scheme, which is based on the ) 7
analytical solution (a) of Sec. II for sin%6, =0 and 2=10 0000,
sin20,, =1, is analogous to the corresponding scheme for 0 0000
the minimal model [3]. The expansion is applicable for a 0 0000
large range of A, v, and tan6 values, A <10, v=<10, and
0.1=tanf, =1, respectively. The mass matrix Y, Eq. with o; the Pauli matrices. Perturbation theory applied
(1.4b), can be written as to (3.4) gives
£ =04 A(l—a) sin®6,, + [A(1—a)sinfy, cosy, |*cos’d N [A(1—a)sinfy cosby *sin’p
1761 w )
£—& £-&
&,=E— A(1—a)sin’6y, cos’d +2v sin’e sin’p
n [A(1—a)sindy cosby ’cos’d 2y sine sing cos]? o [2vsinesing sinB]?
£—& £—£ £-&8 ’
£,=E3— A(1—a)sin?Qy, sin’p +2v sin’e cos’
n [A(1—a)sinBy cosby sind]>  [2vsine cosd cosB]? 4 [2vsine cosd sinB]? 3.6
& £-& -85 ’
. . 2 . 2
£,=E0— 2y sin’ cosB+ [2v sine sing cosB] + [2v sine cos¢ cosf3]

£—86 £-63 ’

[2v sine sing sinB]* 4 [2v sine cose sinB]*

£5-6 £ ’

where g? are the eigenvalues of Y and are given by §?=Aa, and §? (i=2,3,4,5) as in (2.2), with ¢ and S given by (2.3).
These eigenvalues are plotted in Fig. 1 as a function of v for A=1.0 and tan6,, =0.4(sin26,, ~0.7), together with the
exact results for the same set of parameters. It is obvious that (3.6) is an excellent approximation for v<10 for
tanf, < 1. This covers almost the entire phenomenologically interesting range of parameters.

Es=EI—2vsin’e sin’B+

B. Expansion in v and sin?6y,

Since v and § are related through the renormalization-group equation constraint (3.2), this is effectively an expansion
in v, 8, and sin?0,,.. The limit of small v and & is interesting because it is a result which emerges from a
renormalization-group analysis of the nonminimal model [6]. If we expand about this limit, we will get approximation
formulas for v < 1 which are valid for all values of tanf,.. Starting from the exact solution (2.6)~(2.10) of Sec. II, and
expanding in v, 8, and sin?0,, we get the eigenvalues
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[A(1—a)sinfysing 2

E=8+A(1—a)sin’6y, +

£-8

[A(1—a)sinfy, cosp]?

&=E— A(1—a)sin?6 ycos’p+

£-8

[vsin28, sing cos¢ ]2

[v cos28) sing ]

-8 ’

>

—wvsin26y, sin’p+

£-6

&, =E— A(1—a)sin’8y, sin’p—vsin20}, cos’p+

2AE—£9)

[A(1—a)sinfsing 2

[1+§g:§0

88

i

£-§

[vsin20y, cosg sing]*  [vcos26, cosp]? 4+ 8-8 a7
£8-8 2(£3-€2) 8-81° '
=gt vsin20, [vsin20,)* [vcos28,sing]? [vcos26), cosd)® 4 52
v 2 4E—£9) 2A£3-£9) 2A£3—-£3) 2 ag-gy’
vsin20, [vsin20,]> [vcos28,sing]>  [vcos28 cos]? 5 82
Es=E2+ >+ -5t ,
4E-£9) 283-£Y) 2(89-£9) 4EI—-£9)

where 5‘,) are the eigenvalues in the limit of v, §,
sin’0,,—0, and are given in (2.7) and (2.9). Note that
only &, and &5 depend on 8. These eigenvalues are plot-
ted in Fig. 2, together with the exact results, as a function
of v for tan6,=0.4 and A=1.0. From the figure we see

LA L B S B S e S
ton8,=0.4

10F M/M,=10

FIG. 1. Approximate neutralino masses, result (3.6), as a
function of v for fixed value of A=1.0, tan8,=0.4, with
sin?0=0.23. Solid curves are exact numerical solutions.

[

that the approximation is of a good quality for v<1.0.
This approximation is in fact valid for all values of tan@.

C. Expansion in 1/A or 1/v and sin2(0, —m /4)

We have seen in Sec. II that complete analytical solu-
tions can be obtained for A>>1 and/or v>>1 with

1 T T T T
tanB,-0.4
20 M/M,=10 .
10 = .
0.0 t \ t + +
02 04 06 08 10 AX/M,
a0k == .
2.0} .
N
1 1 [l 1 1

FIG. 2. Neutralino masses as obtained from the approxima-
tion formulas (3.7), represented as dashed lines, as a function of
v. Solid lines represent exact solutions. This approximation is
valid for all values of tan6,..
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sin260;,=1. Taking solution (2.5) as the zeroth approxi-
mation, perturbation theory gives

cos’0y,
f—E+ o
1 1 g(l)__é,g

Sinzew
=g+ S
2 2 é_g_é,g

&,=E3+2vsin’e+ 05O + sin0y [vsin2e cosB]?
8-&  8-8 £3—&5
+ ['V‘_Si‘gop“’—zf ?OHBP , (3.8)
3 &5
£,=E3—2v sin’e cos’B+ Lvsin2e cosB]*

&8
[vsin’e sin2B]?

g-& 7

Es=E2—2vsin’e sin’B+

+

[v sin2e sinB]?

£-8
[vsin’e sin’B]?

g-& 7
where £9 are the limiting values given in (2.5), and
e=0,—m/4. The result (3.8) is shown in Fig. 3, where
we have plotted the eigenvalues as a function of v for
A=1.0 and tanf,. We see from the figure that the ap-
proximation is fairly good even for low values of A when

v is small. The approximation becomes better for larger
values of v for large A > 2.

—+

1IV. DISCUSSION AND CONCLUDING REMARKS

We have obtained exact analytical formulas for the
neutralino masses in NMSSM for some special values of
the parameters. Based on these solutions we have built
up approximate formulas through a perturbation expan-
sion which cover a wide region of the parameter space
relevant for phenomenology, and compared them with
exact numerical solution for the neutralino masses. We
note that the neutralino states can be obtained, for each
of the three cases discussed above, from the general result
(1.7). It is important to point out that the approximation
formulas (3.6)—(3.8) are valid when the corresponding ei-
genvalues é’? are nondegenerate. In case of degeneracy
one must apply degenerate perturbation theory. In our
numerical analysis, with the parameter space that we
have considered, we have not actually come across a de-
generacy. To illustrate this point we consider solution
(a) of Sec. II. We note that £ and &3, and £J and &2 are
never degenerate for any physical values of the parame-

ton9V=0.4 )
M/M,=1.0 /

TR |

FIG. 3. Approximation formulas (3.8) (dashed lines) for neu-
tralino masses plotted as a function of v. Solid lines represent
exact results. The approximation becomes better for larger
values of v at values of A >2.

ters. £ and &) can be degenerate only for negative values
of v, which we have not considered here. Similar re-
marks apply to the eigenvalues &) and &3, and £ and &5,
etc.

If future data rule out the minimal supersymmetric
model, then in the context of supersymmetry the non-
minimal model could be a viable alternative. We have
seen that in the context of renormalization-group
analysis, the effective number of parameters describing
the neutralino sector is three, the same as in the minimal
model. It will, therefore, be interesting to see whether
there are distinctive signatures of the model in the neu-
tralino sector in the context of present and future collid-
ers. This question is under study and will be reported
elsewhere [15].
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