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We derive the general upper bounds on the mass of the lightest neutralino, as a function of the gluino mass,
in different supersymmetry breaking models with minimal particle content and the standard model gauge
group. This includes models with gravity mediated supersymmetry breaking, as well as models with anomaly
mediated supersymmetry breaking. We include the next-to-leading order corrections in our evaluation of these
bounds. We then expand the mass matrix in powerdlgf u and find the upper bound on the mass of the
lightest neutralino from this expansion. By scanning over all of the parameter space, we find that the bound we
have obtained can be saturated. We compare the general upper bound on the lightest neutralino mass to the
upper bound that is obtained when the radiative electroweak symmetry breaking scenario is assumed.
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I. INTRODUCTION =(HY) are the vacuum expectation values of the two Higgs
doublets with opposite hypercharge, the supersymmetry
It is widely expected that at least some supersymmetribreakingU(1)y and SU(2), gaugino massed; and M,
particles will be produced at the CERN Large Hadron Col-and the supersymmetry conserving Hi@igs) mixing pa-
lider (LHC) that is starting operation in a few years time. rameteru. The mass matrix is symmetric, but not necessar-
However, most of these supersymmetric particles will not bely real. The mass parameters can have arbitrary complex
detected as such, since they will decay into the particles gphases, as can also the Higgs boson VEVs. However, all of
the standard modd€SM), or to the lightest supersymmetric these are not actually independent—one can choose the two
particle (LSP), which is stable as long as tHe parity is  nontrivial phases to be iM; and . The electric dipole
conserved. Thus, the experimental study of supersymmetmnoments strictly constrain the phases in supersymmetric
involves the study of cascade decays of the supersymmetrl&USY) models. However, these bounds are for products of
particles to the LSP and the reconstruction of the subsequekfte phases. Thus, if there are cancellations between phases, a
decay chains. The LSP in a large class of supersymmetr§ingle phase can be larger than the limits for the profitict
breaking models is the lightest neutralino, which has thus Recently, it has been demonstrated that at the linear col-
been a subject of intense study for a long tifde-6]. A lider one can determine the above parameters of the neu-
stable lightest neutralino is also an excellent candidate foffalino and chargino sectors from the masses of charginos
dark mattef5]. As such it is important to have information and three lightest neutralinos, or alternatively from two light-
on the mass of the lightest neutralino state. est neutralinos and the cross sectisre” — x{x5 [1,8]. The
In view of this, the properties of the |ightest neutralino linear collider is Iikely to be available several years after the
and also heavier neutralinos and charginos, which often agzompletion of the LHC, and thus all the information that is
pear in the cascade decays, are of considerable importandd/ailable now or can be obtained at the LHC will be very
In the minimal versioh of the supersymmetric extension of valuable.
the standard model at least two Higgs doubldtsand H, In this paper we obtain the theoretical upper bound on the
with hypercharge(Y) having values—1 and +1, respec- Mass of the lightest neutralino state in the most commonly
tively, are required. The fermionic partners of these Higgsstudied supersymmetry breaking models. These include the
doublets mix with the fermionic partners of the gauge bosongravity mediated supersymmetry breaking model and the
to produce four neutralino staté@o i=1234 and two anomaly mediated supersymmetry breaking model, with the
. ~ o minimal particle content.In a general model with an arbi-
chargino statesy;” ,i=1.2. . trary particle content, an upper bound for the lightest neu-
The neutralino mass matri%t depends on the ratio of the tralino mass was calculated [i]. For specific supersymme-
vacuum expectation valug¥EVs) of the two Higgs dou-
blets denoted by taB=uv,/v,, wherev;=(H?) and v,
2In the gauge mediated supersymmetry breakiBlylSB) models
the lightest neutralino is not the lightest supersymmetric particle.
1By minimal version we here mean the model with the minimal However, in many models it is the next-to-lightest particle. Here we
particle content and the standard model gauge group. will also comment on the upper bound in the GMSB models.
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try breaking scenarios we can give a more accurate bound. Imodels that we study in this paper. We compare the general
Sec. Il we obtain the general upper bound on the mass of thepper bound with the largest value of the lightest neutralino
lightest neutralino in the minimal version of the supersym-mass that is obtained when radiative electroweak symmetry
metric standard model. We then evaluate this upper bounbdreaking is assume@nd theu parameter determined from
for the two most popular supersymmetry breaking modelsthe radiative electroweak symmetry breakingor this pur-
namely, the gravity mediated supersymmetry breakingpose we have used the numerical progsmrTsusY[9]. In
(SUGRA) models and the anomaly mediated supersymmetrgec. IV we present our conclusions.

(AMSB) breaking models. We include the next-to-leading
order corrections in the numerical evaluation of this upper
bound.

In Sec. lll, we then study the expansion of the neutralino
mass matrix in powers dfl;/u, which at second order is e start by recalling the neutralino mass matrix in super-
accurate to 1% for large values pf The extremun{maxi- symmetric models in the basis
mum) of the lightest neutralino mass gives an upper bound
from this expansion. This value is lower than the upper
bound obtained directly from the mass matrix. By a numeri-
cal scan over real and complex parameter values we confirm
that this bound is accurately saturated in the supersymmetrighich can be written agL0]

Il. THE GENERAL UPPER BOUND ON THE MASS
OF THE LIGHTEST NEUTRALINO

Yi=(=iN =iNg, 05, 1=1234, (1)

M4 0 —MzcosB sinfy  Mzsing sinfyy,
0 M, Mz cosB cosfy, —M,sinB cosby
M=| - Mz cosB sinfy, Mz cosB cosby 0 - ' )
M;sinB sinfy  —MzsinB cosbyy — 0

where\’ and\ ; are the two-component gaugino states cor-We emphasize that the upper boudd is independent of the
responding to theJ(1)y and the third component of the supersymmetry conserving paramejerand also indepen-
SU(2)_ gauge groups, respectively, am&ﬁl,wﬁz are the dent of tarB, but depends on the supersymmetry breaking
two-component Higgsino states. Furthermagé,andg are ~ 9augino mass parametek$; and M,. Despite this depen-
the gauge couplings associated with tbgl), and the dence_z on the unknown supersymmetry breaking parameters,
SU(2), gauge groups, respectively, with thg=g'/g, and W€ will show that Eq.4) leads to a useful bound dVIXg.
M2=(g?+g’'?)(v2+v3)/2. AssumingC P conservation, this

mass matrix is real. We shall denote the eigenstates of the A. Gravity mediated supersymmetry breaking

neutralino mass matrix by}, x3,x3.x5 labeled in order of _ _ . :
increasing mass. Since some of the neutralino masses result- In the gravity mediated minimal supersymmetric standard

ing from diagonalization of the mass matrix can be negativemOdeL the soft gaugino masshf satisfy the renormaliza-

we shall consider the squared mass mattX 1. An upper fion group equation$RGES (|Ms|=mg, the gluino mass
bound on the squared mass of the lightest neutrarﬁwoan dM; 5 33

be obtained by using the fact that the smallest eigenvalue of 16772W=2bi|\/|i9i ; bi:(g-l-—3), 5
MTM is smaller than the smallest eigenvalue of its upper

left 2X 2 submatrix at the leading order. Herg;=3g’, g,=g, andgs is the

SU(3)c gauge coupling. The RGES$) imply that the soft

2 2 i 2 o
MZ+M sinf gy, —Mzsinéyy cosby (3  Supersymmetry breaking gaugino masses scale like gauge
—M2sin6ycosby M3+M2cos by, couplings:
thereby resulting in the upper bound Mi(Mz)  My(Mz) Mj3(My)

= = y 6

1 a1(Mz) as(Mz) a3(Mz) ©

2 2 2 2
M o< z[MI+M35+M

xpo2n b e wherea;=g%/4m,i=1,2,3.

The relation(6) reduces the three gaugino mass param-
eters to one, which we take to be the gluino mags The
(4) other gaugino mass parameters are then determined through

~V(Mf=M2%)?+M7—2(M7~M35)M5cos 2.
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FIG. 1. The upper bound on the mass of the lightest neutralino’v|3 =Ms(Q)) 1+ rs : M_é +F _g 9 - 37
in the SUGRA and AMSB models. The tree level results are given 12
by dashed lines and the next-to-leading order results by the solid (12
lines.
F(X)=1+2x+2x(2—x)Inx+2(1—x)?In|1—X]|. (13
M1(M2)= mg=0.14mg, (7) _ .
35008 Oy Here M;(Q) are the leading order results given by HE6).
Notice that the next-to-leading order corrections are of the
a same form in all models. It is only the leading ordéy(Q)
M2(Mz):a sirke my=0.28 mg, ®  that are different for different models.

3 w In order to calculate the next-to-leading order upper
where we have used the value of various couplings azthe bound on the lightest neutralino mass, we need to know
mass MO andMY-C. As with the leading order result, we ex-

i . pressM° and MY as a function ofM}-© (the NLO
a”i(Mz)=127.9, siRy=0.23, a3(Mz)=0.12. physical gluino mags using Eqs(10)—(13) and substitute it

©) in Eq. (4). We plot the NLO corrected upper bound on the

Using Egs.(7) and(8) in Eq. (4), we get the upper bound on lightest neutralino mass as a function of the gluino mass as a
the mass of the lightest neutralifor a gluino mass of 200 SOlid curve in Fig. 1. As input we have used here fan
GeV, the upper boun@) for the lightest neutralino mass is =10, Mi(pole)=174 GeV, mo=300 GeV, Ag=1 TeV, u
about 35 GeV. Similarly, for a gluino mass of 1 TeV, the = —460 GeV, and)=890 GeV. Since dependence on these
upper bound4) becomes 186 GeV. model parameters appears only at the loop level, the upper
We have plotted the upper bourtd) on the mass of the bound is not very sensitive to these parameters. We note that
lightest neutralino in Fig. 1. The almost straight dashed lindh® NLO corrections increase the upper bound from its tree

corresponds to the SUGRA model at the tree level. From Fig/€Vel rels%lt bé’ only ]f_‘ fg";’ththf?r: a,‘\’l"i‘z)e trr?”ge of thg glu(ijno
mass. Indeed, we find that at the e upper bound on
1, we observe than,o<186 GeV formy<1 TeV. PP

. . . the mass of the lightest neutralinons,0<194 GeV formg
We now include next-to-leading ord€lLO) corrections g 53 9

coming froma and from the top-quark Yukawa coupling <1 TeV. In [12] full one-loop corrections to spart?cle
(Ehtzmw) two-loop contributions to the beta functions and MaSSes were calculated. The loop corrections to the lightest

logarithmically enhanced weak threshold corrections. In thid'€Utralino mass can be typically 10% fam,0<40 GeV.
approximation, one findgl1] However, formX<1>= 100 GeV the full one-loop corrections to

the lightest neutralino mass are5%. We note that the ex-

2 m2 . ) .
MI:IILO: My (Q) 1+ —21In Q_2 110N _3 pelr_l(;nfental lower bou(;m(ﬂ3]_on the I|3g7htC<;estVneutral|no mass,
81 o6y 2 M?2 valid for any tang andmy, is m,o> eVv.
2
myoou® 2 my  u? . .
+91In —zln —+ I sin ZBﬁln — B. The anomaly mediated supersymmetry breaking
M1 Mji 1 pT My A

The anomaly induced soft terms are always present in a

broken supergravity theory, regardless of the specific form of
203 13y . >
+—- , (10)  the couplings between the hidden and observable sectors.
3w 66w They are linked to the existence of the superconformal

anomaly. Indeed, they explicitly arise when one tries to

%In the GMSB models, one gets the same relatiBisat the  €liminate from the relevant Lagrangian the supersymmetry

messenger scale, sinb&,« «, . Thus, the upper bound obtained in breaking auxiliary background field by making a suitable
the SUGRA model can be applied in the GMSB model as well. Weyl rescaling of the superfields in the observable sector.

115009-3



HUITU, LAAMANEN, AND PANDITA PHYSICAL REVIEW D 67, 115009 (2003

The soft terms in the anomaly mediated supersymmetrgolutions will spoil the RG invariance of the soft terms and
breaking models are especially interesting because they atke consequent ultraviolet insensitivity. Nevertheless, there
invariant under the renormalization group transformationsare various options to cure this problem without reintroduc-
The phenomenological appeal of the soft terms in AMSBing the flavor problenj15-18.
resides precisely in this crucial property. In particular, it im-  The necessary cure for the slepton masses may also com-
plies a large degree of predictivity, since all the soft termspletely upset the mass relations for the other partitessin
can be computed from the known low-energy SM parameterthe case of the model of R€f16]). However, here we will
and a single mass scafley,. Also, it leads to robust predic- simply parametrize the new positive contributions to the
tions, since the RG invariance guarantees complete insensiquared sfermion masses with a common mass parameter
tivity of the soft terms to the ultraviolet physics. As demon- m3, assuming that the extra terms do not reintroduce the
strated with specific examples in R¢l4], heavy states do supersymmetric flavor problem. The low-energy soft super-
not affect the low-energy parameters, since their effects imymmetry breaking parameters for the scalars and the trilin-
the beta functions and threshold corrections exactly comperear couplings are then obtained from
sate each other. This means that the gaugino mass prediction

1/ ay dy )
2 2 2
mz=— —| — Byt — By | M5+ Mg, 18
Mk:%mm (14 Q 4(&9 Byt gy Py| Mot Mo, (19
is valid irrespective of the grand unified theory gauge group Ay=— &mw, (19
in which the SM may or may not be embedded. A unique y

feature of the anomaly mediated supersymmetry is the

: : P : respectively. Using Egs(10—(13), we obtain for the
g?; grm\?venmii rrl]lae\szrchy implied by HG4). At the leading anomaly mediated supersymmetry breaking models the next-

to-leading order results for the gaugino mass parameters as

NLO__
Ml(Q)=%mg,2:8.9x 10 3mgy,, (15) My ~=1.06M(Q), (20)
7r CO
) MY O=1.28M,(Q), (1)
(Q) -
MZ(Q):MZTW,%’ZZZJX 107 my, (18) MYLO=0.9M4(Q), (22)

where theM;(Q),i =1,2,3(the leading order resultis given
3 in Egs. (15—(17). Here we have used as input {ar 10,
MyQ) = — 2 o8x10%my, (17 M(Pole)=174 GeV, my,=35 TeV, mo=600 GeV, x
4 =—600 GeV, and) =958 GeV. The Higgsino corrections to
M, andM, are proportional tqs/M, , and can become very
at the scaleVl;. Using Eqs(15)—(17) in Eq. (4), we obtain  important in models with largg., as discussed in Ref14].
the leading order result for the upper bound on the lightest In Fig. 1 we have plotted the next-to-leading order upper
neutralino mass in the minimal AMSB model. We have plot-bound on the mass of the lightest neutralino in anomaly me-
ted this upper limit as the upper dashed curve in the Fig. 1. Idiated supersymmetry breaking models. The NLO result, ob-
is interesting to note that there is a kink in this dashed curvéained using Eqs(20)—(22), is shown as a solid line. The
around mg=210 GeV. This is due to the competition be- NLO corrections are significant, of the order of 20%. The
tween the diagonal terms in thex2 submatrix(3). The larger NLO correction in the AMSB model as compared to
term containingM, is smaller, when the gluino mass is the SUGRA model is due to the fact that the corrections
small, but with the increasing gluino mass the term with  for the M, mass parameter are larger than for ke param-
becomes smaller around 210 GeV. This is becaus®\ieo  eter. Formg<<1 TeV, the upper bound on the lightest gluino
triplet mass parameter is always smaller thanBHao mass mass is 167 GeV, which is considerably less than in the
parameter in the AMSB type model, in contrast to theSUGRA case.
SUGRA or GMSB type models where tBeino mass param-
eter is smaller tha . IIl. LIGHTEST NEUTRALINO MASS BOUND
In the next-to-leading order corrections to the lightest FROM THE STRUCTURE OF THE MASS MATRIX
neutralino mass in AMSB models, the complete sparticle o ) )
spectrum becomes important. Unfortunately, it turns out that \We can also obtain information on the neutralino masses
the pure scalar mass squared anomaly contribution for thBY Studying the expansion of the neutralino mass matrix in
sleptons is negativEl5]. In order to avoid this problem we terms of the parametevl; /. This expansion can be ob-
need to consider other positive soft contributions to the spedained most conveniently by using the basjsZ°,H2,HP).
trum. This can arise in a number of ways, but most of theln this basis the mass matrix is given by
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Mica+M,ss, (M,—Mj)cysw O 0
. (My=Myp)Cysw  Mysi+M,cl M 0
M= 0 Mz MmSz —pMCop [ 23
0 0 _IU’CZﬂ IU’SZ,B
|
Here we have used the abbreviatiosg;=sin28, c,g4 lightest neutralino. The dependence of the lightest neutralino

=C0S 28, s\z,\,= Sir? 6y andc\z,\,= cos 6. Let us start by sup- mass on the specific SUSY breaking scenario is due to the
posing, as before, that all the mass parameters are real. Tf&ct that the ordering of the gaugino mass parameters is
mass matrix is then real and symmetti@he neutralino model dependerffor AMSB modelsM,<M,, whereas for
mass matrix{1 can be cast into a form whereby the gauginoSUGRA modelsM; <M). _ _

and Higgsino mass parameters are only at the diagonal posi- N Fig. 2 we plot the mass of the lightest neutralino ob-

tions by a similarity transformation with a matri, tained from the expansion of the mass matrix MA/u)
together with the exact results obtained from the numerical
M=ATMA, (24)  evaluation of the lightest neutralino mass from the mass ma-
trix. The results for the other neutralinos are very similar in
where accuracy. The second order tree level expansion is generally
better than 1% for|u|>450 GeV (nm5<1600 GeV and
Cw  Sw 0 0 tanB=10), with the exception of small gluino mass, when
—Sw Cw 0 0 m,o is very small, thus giving a larger relative error. For our
A= o 0 cogmld—pB) sinwl4—p) |- purpose it is sufficient to calculate the expansion up to sec-

ond order in M,/u).
Due to the simple functional form of Eq&6) and (27)
(25 the extremal values of the masses with respegt &e easily
calculated. These functions have only one extrentoraxi-
The mass matrix can then be diagonalized by using pertuimum), which is given(within the limits of validity of the
bation theory. In the SUGRA model, for the mass of theexpansionsfor the values ofu
lightest neutralino we get, up to terms G{M/ux)?,

0 0 -—sin(w/4—B) cogw/4—p)

M M2sin 28 s3,c3
M2s2, p=—2 —— + —= B Swlu) (29)
sin 28 sin28 - M-Mm t

lez: Ml_

and the maximum mass is then given by the upper bound

M3saca, ) 1
| M2Z2M+ N giop|—. (2 .
( 2SuMat gy Si2B 2 (26) 1 M2t2sir?23
mX8$M+Z > 2 2 2 /,_, ) (29)
Similarly, for the second lightest neutralind we obtain tM+MzsiCusin25/(M—=M)
%C\ZN Mo [GeV]
mxg=M2— sin 28

4.2 .2
MZSwCw

i 2.2
(MZCWM2+ —Ml_MZ

1
sin22,8)—2. (27
o
If instead we were considering the AMSB model, Eg7)

would represent the mass of the lightest neutraﬁ«‘jo and
Eq. (26) would give the formula for the mass of the second

“We note that in the specific models that we have been consider & [GeV]

ing, SUGRA and AMSB, the phases bf; and M, are the same

[see Egs(6) and(14)]. So if M, is real, therM, is also real. On the FIG. 2. Mass of the lightest neutraling as a function ofw.

other hand, theu parameter is in general complex. Complex pa- Solid lines correspond to the numerical results from the mass matrix
rameters would imply a non-Hermitian mass matrix, giving gener-and dashed lines to the second order expansion fronfZsy. The

ally complex eigenvalues. Such a situation can be handled by conpper two lines represent masses in SUGRA models and the lower

sidering the eigenvalues of the mateix ' X1. two in AMSB models. Here tag=10 andmg=900 GeV.

-1000 500 - 500 1000
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My9 |GeV] m [GeV]

176
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myg [GeV.

200 400 600 800 1000 200 400 600 800 1000

FIG. 3. The upper limit om,o as a function ofny . Solid lines FIG. 4. The upper limits ofn,o andm o as a function ofr; .
represent masses in SUGRA model and short dashed lines in AMSBiq fines represent masses in SUGRA and dashed in AMSB.
model. The lower curve in each case corresponds to the upper limit

obtained from the expansion itM(;/u), and the upper curve cor- for Xg is a minimum due to a sign change in the expansion,

responds to the general upper limit obtained from the mass matri .
The long dashed curves correspond to the case when the radiati)\i?é"t for experimentally allowed masses the extremum‘rigzr

electroweak symmetry breaking scenario is implemented. is @ maximum. In Fig. 4 we have plotted the upper limits for
both the lightest and second lightest neutralino obtained from
) ~ ) the expansion inNI,/u). The solid lines correspond to the
where M=min(M;,Mp),M=maxM; M) t=sy, if M=M;  SUGRA model, while the dashed lines correspond to the
(SUGRA), andt=c{, if M=M, (AMSB). In Fig. 3 we plot  AMSB model. Formg<1 TeV, the NLO upper bounds for
the upper limit on the lightest neutralino mass obtained fromthe second lightest neutralino are 440 GeV for the SUGRA
Eqg. (29 as a function ofmg, for both the SUGRA and case and 419 GeV for the AMSB case.
AMSB models. We also plot the upper limit obtained from
Eq. (4) in the same figure. The SUGRA results are repre- IV. CONCLUSIONS
sented as solid lines and the AMSB results as short dashed
lines. The lower curve of each set corresponds to the upper In this paper we have studied the neutralino mass matrix
bound obtained from the expansion iM§/u)?, and the for the minimal supersymmetric model with the aim of ob-
upper curve corresponds to the upper bound obtained frof@ining an upper bound on the mass of lightest neutralino.
Eq. (4). These results for SUGRA and AMSB in Fig. 3 are Knowledge of the mass of the lightest neutralino is of crucial
NLO results. We have plotted the results for the value offmportance for the supersymmetric phenomenology. We have
tanﬁ: 10. In order to Verify the accuracy of these resunS,ShOWn that a general ||m|t, valid for arbitrary values of pa-
we made an extensive scan over the parameter space, usif@ineters, can be obtained from the mass matrix. Even though
both real and complex values of theparameter. The high- such a bound depends on the supersymmetry breaking pa-
est mass obtained from this corresponds extremely well tf@metersM; and M, it nevertheless leads to a significant
the upper limit obtained from the expansion il §/u). numerical bound on the lightest neutralino mass in the
We have also made a scan over the parameter space usifty GRA and AMSB models. We have also obtained an upper
the SoFTsusyprogram[9], in which the phenomenon of ra- bound on the lightest neutralino mass by expanding the neu-
diative electroweak symmetry break”(]BEwsa is imp|e- tralino mass matrix in terms of the parameM!g/,u. We see
mented. ThUS, thw value in this program is given by the that the upper limit from this eXpanSion is ConSiderably
REWSB condition. The resulting spectrum includes one- andower for the AMSB model than for the SUGRA model for
dominant two-loop corrections. The maximum mass ob-imilar mg. From this analysis we conclude that the upper
tained for the lightest neutralino is plotted in Fig. 3 as abound on the mass of lightest neutralinonigo<200 GeV
function of my with long-dashed lines. The upper long- for mg<1 TeV.
dashed line corresponds to the SUGRA model and the lower |n Fig. 3 we have three separate regions for the upper
one to the AMSB model. One can see that with radiativebound on the mass of the lightest neutralino: one which is
electroweak symmetry breaking, thﬂx? in the AMSB  valid in both SUGRA and AMSB cases, one which is valid in
model is close to the maximum mass obtained from the exonly one of the models, and a third one which is not avail-
pansion in M,/x), while in the SUGRA model with RE- able for any of the models that we have studied.
WSB the m,o obtained is clearly lower than the maximum
value from the expansion, indicating thaikegwsg for the ACKNOWLEDGMENTS
SUGRA model is not close to the value obtained from K H. and J.L. thank the Academy of Finlangroject
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