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ABSTRACT For a real semisimple Lie group G, the descrip-
tion of the unitary dual remains an elusive question. One of the
difficulties has been the lack of technique for constructing unitary
representations. Unitary induction from parabolic subgroups of
G yields unitary representations by the very definition of these
representations. However, not all unitary irreducible represen-
tations of G are obtained by this type of induction. In addition,
we need derived functor parabolic induction [cf. Vogan, D. (1981)
Representations of Real Reductive Lie Groups (Birkhauser, Bos-
ton)] to describe all irreducible representations of G. For this sec-
ond type of induction, the obvious analogues from parabolic
subgroup induction regarding unitarity are false. In this an-
nouncement, we describe a setting where derived functor para-
bolic induction yields unitary representations of G. These results
include proofs of unitarity for some of the representations con-
jectured to be unitary by Vogan and Zuckerman [(1983) Invent
Math, in press] and also proofs of unitarity for some which lie
outside the domain described in those conjectures.

1. Introduction

The main results are described in Section 4 following the in-
troduction of 6-stable parabolic subalgebras and the associated
generalized Verma modules (Section 2) and a brief description
of the derived functors introduced by Zuckerman (Section 3).
These results include a proof of unitarity of Zuckerman's mod-
ules when the parabolic subalgebra has the property that the
compact and noncompact parts of the nilradical commute with
each other. These parabolic subalgebras will be called quasi-
abelian.

The remaining three sections describe applications of the re-
sults in Section 4. In Section 5, for each orthogonal group SO(p,
q) with p + q even, we define a unique representation that is
multiplicity free as a f-module and has f-highest weights lying
along a single line. We call these representations ladder rep-
resentations of SO(p, q). It is a result of Howe and of Vogan
(1) that no such ladder representations exist if p + q is odd and
p, q > 4.

In Section 6, we observe that the simply connected covering
group of SL(2n, R) has a unique maximal parabolic subalgebra
that is 6-stable. Applying the results of Section 4 to this par-
abolic, we obtain a set of unitary representations. These in-
clude the family of unitary representations 1(k), k E N of Speh
(2), which she constructed by analyzing certain poles of Eisen-
stein series associated to automorphic forms. When we apply
reduction techniques to subgroups (3), these modules l(k) prove
Zuckerman's conjecture for SL(n, R). The results of Section 4
prove, in a similar way, Zuckerman's conjecture for SU*(2n).

In ref. 4, Wallach studied the analytic continuation of the
holomorphic discrete series representations having a one-di-

mensional cyclic f-module. In Section 7, we apply the results
of Section 4 and those of Jantzen (5) to prove analogous results
for certain discrete series representations of g with (g, f) not
Hermitian symmetric. The results here prove unitarity for cer-
tain coherent continuations of discrete series representations
out of the Borel de Siebenthal Weyl chamber. These results are
given in Appendix 1.

There is a vast literature on various techniques for proving
the unitarity of certain representations of G. Vogan and Zuck-
erman (3) have shown that all representations "having" nonzero
continuous cohomology are Zuckerman representations. Thus
these representations are a particularly important class of rep-
resentations and their unitarity has been investigated many times
(cf. refs. 2, 6-10). To date, the main success has been in the
cases where the representations are of holomorphic type (6, 9,
11, 12), where they can be related to Howe's theory of dual
pairs (13), or where they can be related to automorphic forms
(2).

Interesting classes of unitary representations have been con-
structed recently by Flensted-Jensen (14) and Schlichtkrull (15).
These representations are obtained by analytic methods by de-
composing L2(G/H) for H the fixed points of an involution of
G.

Unitary representations have been constructed in many cases
by geometric methods. In particular, the recent work of Rawnsley
et al. (7) develops a theory of L2 cohomology based on harmonic
forms for indefinite Kaehler metrics to unitarize representa-
tions on Dolbeault cohomology in a number of cases.
The direct algebraic approach to proving unitarizability for

g-modules other than highest weight modules has been used
in only a few cases: Parthasarathy's work on the discrete series
(16), Vogan's work on representations associated to the minimal
coadjoint orbit (1), and Enright's work comparing representa-
tions of Hermitian symmetric pairs and complex Lie groups (17).
It is this direct approach that yields the results described here.

2. 0-stable parabolic subalgebras

Let G be a connected, simply connected semisimple Lie group
and let K be a maximal connected subgroup of G whose image
in G/center G is compact. Let go and fo be the corresponding
Lie algebras of G and K. Denote by 6 the Cartan involution of
go giving the Cartan decomposition go = to f Po. Choose a Car-
tan subalgebra to of to and let bo be the centralizer of to in go.
Then to is a fundamental Cartan subalgebra of go. Let the com-
plexification of a space be denoted by deleting the subscript 0.
This gives g = t ED p and Cartan subalgebras t and b.

Let q denote a 6-stable parabolic subalgebra of g with de-
composition q = m $ u, where u is the nilradical of q. Assume
that b is contained in m. Since q is 0-stable, so is U. Also, since
t is fixed by 0, so is t and then so is m. For any 6-stable vector
space, let subscripts c and n denote the + 1 and -1 eigenspaces
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for 0. For example, ut, = u n A, un = u fl p, giving the de-
composition u = uc ED u, and, similarly, In = mnceD mn. Most
of the results described here involve a special class of 6-stable
parabolic subalgebras q defined by the property: [Utc, Un] = 0.
We call these 0-stable parabolic subalgebras quasi-abelian.

For any ad(b) stable subspace of g, let A(E) denote the roots
that occur in the root-space decomposition of E. If E is ad(t)-
stable but not ad(b)-stable, let A(E) denote the nonzero t-weights
that occur in E. Let A = A(g) be the set of roots of g and fix
a 6-stable positive system of roots A'. For any ad(j)-stable E,
let A+(E) = Al+ n A(E). Let b be the Borel subalgebra cor-
responding to A+; i.e., b = b @ Saris+ga. Then, b is 6-stable
and bc = b n f is a Borel subalgebra of f. Let A+(f) be the pos-
itive system of A(f) corresponding to b, If E is ad(t)-stable, put
A+(E) = A+(f) n A(E).

If A E [* is a A+(m)-dominant integral andutE t* is A+(tnt)-
dominant integral, let F(A) and F(p.) denote the irreducible fi-
nite-dimensional in and mc modules having highest weights A
and g. Define generalized Verma modules by

N(A) = U(g) (® F(A), N.(u) = U(f) ® F(A).
U(q) U(QC)

Let L(A) and Lc(p) denote the unique irreducible quotients of
N(A) and N,(y). There are many especially interesting cases where
t = b and, for this reason, we include the subscript c to dis-
tinguish g- and f-modules. For convenience, we single out two
Weyl chambers associated to these generalized Verma mod-
ules. Let (E (resp LY) be the closed Weyl chamber in h"* (resp
t*) corresponding to the positive system A+(m) U -A(u) [resp
A+(mc) U -A(u,,)]. Let p (resp pc) be half the sum of elements
in A+ [resp A+(f)]. These Weyl chambers are distinguished by
the following property:
If A + p E (E (resp A + Pc E- (9j,

then N(A) [resp N,(I)] is irreducible. [2.1]
Let u- (resp u-) be the sum of the root spaces g,, (resp fs) with
-a E\A(u) [resp -(3 E A(u)].

3. Derived functors of the f-finite functor

Here, we briefly describe the derived functors introduced by
Zuckerman (13, 18). Let (E(g,mi) be the category of g-modules
that as tn,-modules are U(mc)-locally finite and completely re-

ducible. For a g-module A in 9(g,mc) define FA to be the sub-
space of U(f)-locally finite vectors. r is called the f-finite sub-
module functor. There are enough injective objects in this cat-
egory to construct injective resolutions; 0 -O A I* -*

Now define VIA to the ith cohomology group of the complex:
o0- Ve- rIl re p- r -* .. The PI are the rightderived
functors of on W(,mc). For all i, V'A is a U(f)-locally finite
g-module. If it has finite f-multiplicities, it is infinitesimally
equivalent to an admissible representation of G.

These right derived functors are quite computable on the
category of f-modules that are U(mc)-locally finite and com-
pletely reducible and, in fact, possess a duality property (18).
These results combine to give the following vanishing theorem
of Zuckerman.
THEOREM 3.1. Let s = dim uc. (i) Assume that the gener-

alized Verma module N(A) is irreducible. Then r'N(A) is zero
if i # s. (ii) Assume that L(A) is free as a module over U(u-).
Then VIL(A) is zero if i s.

We note that (i) follows from (ii).
In the next section, we study the unitarity of the g-modules

PN(A) and PL(A).

4. The main results

A U(f)-locally finite g-module will be called unitarizable (with
respect to go) if it is infinitesimally equivalent to a unitary rep-
resentation of G. The results of this section describe various
sufficient conditions that imply that I8N(A) and P'L(A) are uni-
tarizable.

Let M C G be the connected subgroup of G with complex-
ified Lie algebra equal to in. We call the rn-module F(A) uni-
tarizable if F(A) is a unitary representation of the simply con-
nected covering group of M. If we write m as a sum of simple
ideals in = l nti, then F(A) is isomorphic to a tensor product
F(A) ®0 Fi, where Fi is a finite-dimensional representation of
mi. Since all finite-dimensional representations of compact
groups are unitarizable, F(A) is unitarizable precisely when F,
is a unitary one-dimensional representation for all i with Mi not
contained in I.

If f is contained in in, then, since to is a maximal subalgebra
of go, f = in and (go, to) is a Hermitian symmetric pair. In this
case, s= 0 and P"N(A) = N(A) and we are considering the holo-
morphic discrete series and its analytic continuation. The uni-
tarity results are known here (12) and, so, we will assume
throughout that f n in # f.

Recall from Section 2 the definition of quasi-abelian q. The
first main result is the following:
THEOREM 4.1. Assume that q is quasi-abelian, F(A) is a uni-

tarizable finite-dimensional m-module and A + p satisfies the
inequalities

Re(A + p, a) ' Ofor all a E A(u).
Then, VSN(A) is either zero or unitarizable.

This result is implied by the following more general for-
mulation.
THEOREM 4.2. Let 6 E b* and suppose that F(o) is a one-

dimensional unitarizable m-module. Assume that (i) (a, a) <
0 for all a E A(u) and (ii) N(A + to is irreducible for t 2 0.
Also assume that q is quasi-abelian, F(A) is a unitarizablefinite-
dimensional r-module, and At + pc E LY, Then, VSN(A) is either
zero or unitarizable.
A sharper result is proved if [UC, U] = 0.
THEOREM 4.3. Let 6 be as in Theorem 4.2 with (i) and (ii)

satisfied. Assume that [u,, u] = 0 and F(A) is a unitarizablefi-
nite-dimensional m-module. Then, r'N(A) is either zero or uni-
tarizable.

This result can be rephrased loosely by saying that unitarity
is preserved at least as far as the first reduction point for N(A
+ to), t E R.
The sharpest results are available in the case where the nil-

radical u is abelian. In this case, there is a real form g' of g with
compactly embedded subalgebra V' such that (g', d') is a Her-
mitian symmetric pair and in is the complexification of d'. Let
G' be the simply connected, connected Lie group with Lie al-
gebra g'. Since N(A) is U(m)-locally finite, N(A) and L(A) are
infinitesimally equivalent to representations of G'. If the rep-
resentation of G' is unitarizable, we say that the corresponding
g-module is unitarizable for G'. The unitarizable highest weight
modules of g are known (12) and, so, the following result yields
a class of especially interesting unitarizable representations for
G.
THEOREM 4.4. Assume that the nilradical u is abelian and

F(A) is a unitarizable mrn-module. Assume that L(A) is a free
module over U(u-T) and is unitarizable for G'. Then, VSL(A) is
either zero or unitarizable for G.

Note that, if N(A) = L(A), then L(A) is free over U(u-). Also,
if q is quasi-abelian and Alt + Pc E (C, then N(A) is completely
reducible as a f-module and, so, L(A) is free over U(u ).
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5. Ladder representations for orthogonal groups SO(p, q)
with p + q even

In this section, we describe the first application of the results
of Section 4. We define a distinguished unitary representation
for each orthogonal group SO(p, q) with p + q even. We call
these representations ladder representations because their f-types
have highest weights that lie on a single line in t*.

Consider the Dynkin diagram Dn

an

al,

an-l

with ai = e, - ei+1 (1 ' i n-1) and an = En-1 + En. Let
q be the 0-stable parabolic subalgebra q = m (D u with A+(m)
having simple roots a2, ..., an. Assume that n ' 4 and I is an
integer, 2 - 1 ' n - 2. Let all aj be compact roots except al,
which is noncompact. The corresponding real form of g is SO(21,
2n - 21). In the e, coordinates, let A = (z, 0, 0, . .., 0), z E R.
From ref. 4, we know that N(A) is irreducible and unitary for
G' (cf. Theorem 4.4) if and only if z < -n + 2. At z = -n +
2, N(A) is reducible. For convenience, set A = (-n + 2, 0, ... I

0), L = L(A), and N = N(A).
N is completely reducible as a f-module:

N= do Nc (-n +2-2a -b,o0. . .0,b,o0. ..o0),
a,beN

with b occurring as the 1+1st coordinate. In this case, L is the
quotient of N by N(A - 2ej) and, so, we obtain the f-decom-
position of L

L~=03 Nc(-n + 2 -b, O... O. b, O... 0).
beN

Applying Ps to L gives the desired unitary representation by
Theorem 4.4. In fact, the result is the same for SO(p, q) with
p and q either both even or both odd. For p and q odd, an 1
and an are complex instead of compact.
THEOREM 5.1. Let 2n = p + q, 1 = [p/2] and assume that

n 24 and p and q are positive integers. Let G = SO(p, q). Then,
X = rsL is a unitarizable g-module. Moreover, X is a multi-
plicity-free f-module whose highest weights are the elements

(n - p + j,0...., j, O...0), j E N

with n - p + j 2 0. Here, j occurs as the 1+1st coordinate.

6. The Speh representations and their analogues for the
covering group of SL(2n, R)
Here we describe an alternative proof of unitarity for the Speh
representations as well as a proof of unitarity for their coherent
continuation. By using Theorem 4.4, we compare representa-
tions of SU(n, n) with representations of SL(2n, R).

Consider the Dynkin diagram for A2n-1

al an a2n-1

with ai = 3i - Ej+j (1 ' i ' 2n - 1). Let 0 be the Cartan in-
volution of SL(2n, R) that flips the diagram: Oaj = a2ni (1
i ' 2n - 1). In this case, an is a noncompact root and the other
aj are complex. Let A+(m) be the positive root system with sim-
ple roots {a, 1 _ i _ 2n - 1, i # n}. Define for 1 ' i S n,

2yj = aj + *.. + a2n-j restricted to t. Then the y, span t*, and
A (f) = vyi+ Rl i < j _ n},

A() = {E - Ej |1' i ' n < j ' 2n},

A(u,,) = {Iy + yj i < j n},

A(U.) = {y,+ viIi <i j n}.

Let A = z(1/2, ..., 1/2, 1/2, ..-, -1/2) with n 1/2's and n
-1/25S. Then, Akt = Z(^y + . + An). Let G and G' be the sim-
ply connected covering groups of SL(2n, R) and SU(n, n). Then,
from ref. 4, N(A) is irreducible and unitary for G' if and only
if z < -n + 1. Let X(A) = rFN(A).
THEOREM 6.1. For any half integer z < -n + 1, X(A) is a

unitarizable representation of G. Moreover, X(A) is multiplicity
free as a f-module and the highest weights are precisely those
elements of the form

(-z - n + 1)(y, + + Syn-l ± yn) + 2alRyj
+ 2a2y2 +... + 2anyn, ai E N,a, .-an.

Here, + (resp -) is used if n is even (resp odd).
In this case, A + p lies in the canonical chamber L for z

-2n + 1. In ref. 2, Speh has constructed a family of repre-
sentation that she denotes by I(k), k E N. These modules are
isomorphic to X(A) for z = -k - n. The half integral but non-
integral values of z correspond to representations that are de-
fined only on the simply connected covering group of SL(2n,
R).

If z = -n + 1, then Alt + PcE Cc and, so, by Theorem 4.4,
we obtain the following:
THEOREM 6.2. Let z = -n + 1 and L = L(A). Then X =

FSL is a unitarizable representation of SL(2n, R). Moreover, it
is multiplicity free as a f-module with highest weights 2ay1 +
. + 2an-lyn-I + O*Vn,

ai E N, a, 2 a2 2 an-l
The f-module structure described above follows from prop-

erties of Is and results in ref. 19.
There is a similar series of representations for the group

SU*(2n). In this case, the Dynkin diagram is as above except
that the pure imaginary roots are all compact instead of non-
compact.

7. Coherent continuation of Borel deSiebenthal discrete
series representations

In ref. 4, Wallach described the analytic continuation of the
holomorphic discrete series representations having a one-di-
mensional cyclic f-module. In this section, we apply Theorem
4.3 to prove analogous results for certain discrete series rep-
resentations of g with (g, f) not Hermitian symmetric.

Let the notation be as in earlier sections. Let a,, . .., a. be
the simple roots of A'. Assume that all ai are compact except
a = a', which is noncompact. Let A+(m) have simple roots a3,
all i # 1 and assume that the coefficient of a in the expansion
of the maximal root as a sum of simple roots is 2. Then q = m
ED u is a maximal 0-stable parabolic subalgebra with u = uic D
Ulo. A(Un) [resp A(u,)] is the set of roots P3 whose coefficient of
a in the expansion of 3 as a sum of simple roots is 1 (resp 2).
In this case, weight vectors in [u, uj] would have a weight with
coefficient of a greater than 2. So [u, uj] = 0 and Theorem 4.3
applies in this setting.
Let; E- t* be orthogonal to A(m) and normalized by 2(a,

0)/(a, a) = 1. Consider the line z4, z E R, and let A0 be the
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unique point on this line such that Ao + p lies on a wall of W.
Let A = Ao + z4. We consider the modules N(A) for various
values of z. Let a be the smallest value of z with N(A) reducible.
We call this thefirst reduction point. By Theorem 4.3 we obtain
the following:
THEOREM 7.1. For z < a, N(A) is completely reducible as a

f-module and if A is A(f)-integral, X(A) = FSN(A) is a unitary
representation of G. Moreover, for z < 0 and A A(f)-integral,
X(A) is a discrete series representation of G.

Using the results of Jantzen (5), we can determine the value
a above. The results are summarized in Appendices 1 and 2.

Appendix 1. First reduction point
Comple- First

Root mentary reduction
system Diagram simple root a, point z = a

2 I n- 1 [
n a, an 1 n ~ r

2

Cn a, ...2 lc - n- 21
1=1 2n- 1

D o a,

2 I n 2 n- 1

E6 aa3a4a5a6 3or5 5
l a2 2 11/2

aja3a4ajsa6a7 1 17/2
E7 ' . X ' 2 7

a2 6 6

aa3a %a6sa7as 1 23/2
Es ' ia2 ' 8 29/2

1 4F4, alaa3a, 4 5

G2 s 2 4/3

Appendix 2. f-integrality
Condition

Root for A(f) Number of unitary Unitarity of
system integrality PN(A) (0 _ z < a) r8L(A) at z = a

2zEZ 2(n-[]) Yeif[31+ 1] n

z EZ 2[-] +1 ? otherwise
2

Appendix 2. (Continued)
Condition

Root for A(f) Number of unitary Unitarity of
system integrality PN(A) (0 s z < a) 178L(A) at z = a

zEZ nj- ] Yes
C, 2

zE Z 2n- 1 Yes

D, 2z E Z 2nl-1 -[2]i) [2 J
? otherwise

E6 2zEz Z 10 Yes

17
E7 2z E Z 14 Yes

12

E8 2z EZ 23 Yes

F4 2zE Z 8 Yes
F4 zEZ 5 ?

G2 2z E Z 3 PL(a) = 0
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